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Background: Individualized recurrence risk prediction in patients with stage II/III
colorectal cancer (CRC) is crucial for making postoperative treatment decisions.
However, there is still a lack of effective approaches for identifying patients with stage
II and III CRC at a high risk of recurrence. In this study, we aimed to establish a
credible gene model for improving the risk assessment of patients with stage II/
III CRC.

Methods: Recurrence-free survival (RFS)-related genes were screened using
Univariate Cox regression analysis in GSE17538, GSE39582, and
GSE161158 cohorts. Common prognostic genes were identified by Venn diagram
and subsequently subjected to least absolute shrinkage and selection operator
(LASSO) regression analysis and multivariate Cox regression analysis for signature
construction. Kaplan-Meier (K-M), calibration, and receiver operating characteristic
(ROC) curves were used to assess the predictive accuracy and superiority of our risk
model. Single-sample gene set enrichment analysis (ssGSEA) was employed to
investigate the relationship between the infiltrative abundances of immune cells
and risk scores. Genes significantly associated with the risk scores were identified to
explore the biological implications of the 9-gene signature.

Results: Survival analysis identified 347 RFS-related genes. Using these genes, a 9-
gene signature was constructed, which was composed of MRPL41, FGD3, RBM38,
SPINK1, DKK1, GAL3ST4, INHBB, CTB-113P19.1, and FAM214B. K-M curves verified
the survival differences between the low- and high-risk groups classified by the 9-
gene signature. The area under the curve (AUC) values of this signature were close to
or no less than the previously reported prognostic signatures and clinical factors,
suggesting that this model could provide improved RFS prediction. The ssGSEA
algorithm estimated that eight immune cells, including regulatory T cells, were
aberrantly infiltrated in the high-risk group. Furthermore, the signature was
associated with multiple oncogenic pathways, including cell adhesion and
angiogenesis.
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Conclusion: A novel RFS prediction model for patients with stage II/III CRC was
constructed using multicohort validation. The proposed signature may help
clinicians better manage patients with stage II/III CRC.
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stage II/III colorectal cancer, risk score, recurrence-free survival, prognostic signature,
immune infiltration

Introduction

Colorectal cancer (CRC) is a common and fatal gastrointestinal
malignant tumor, with an estimated 147,950 new cases in 2020
(Siegel et al., 2020). Although great advances have been achieved in
the perioperative management of CRC patients, a high postoperative
recurrence rate remains a challenge that hampers remarkable
improvement in patient outcomes (Xie et al., 2021). Most patients
with CRC are diagnosed at stage II/III and present with resectable
tumors (Brenner et al., 2014). After radical resection and subsequent
adjuvant chemotherapy, 30%–60% of patients relapse within 5 years,
with a dismal prognosis (Manfredi et al., 2006). Moreover, the
individual benefits of adjuvant therapy are still questionable,
resulting in potential over-treatment (Gray et al., 2007;
Schippinger et al., 2007; Varghese, 2015). Therefore, accurate
recurrence risk stratification and personalized adjuvant
chemotherapy are of great significance for the long-term survival
of patients with CRC.

To date, the most commonly used clinicopathologic factor for
identifying high-risk stage II/III patients is using the tumor-node-
metastasis (TNM) system. However, drug responses and clinical
outcomes can vary widely in patients with CRC at the same TNM
stage because of high genetic and epigenetic heterogeneity (Weiser
et al., 2011; Ji et al., 2018; Lahoz et al., 2022). This clinical challenge
indicates that the conventional TNM staging system is inadequate for
risk evaluation, highlighting the urgent need to exploit novel and
reliable molecular classifiers. With recent advances in high-
throughput techniques, risk assessment and prognostic prediction
have been dramatically improved by the use of gene expression
profiling and bioinformatics technology (Koncina et al., 2020;
Ahluwalia et al., 2021; Ghafouri-Fard et al., 2021). For stage II/III
CRC, several prognostic signatures with predictive capacity for
recurrence risk have been established by analyzing key cancer-
associated pathways, such as autophagy and the tumor
microenvironment (Mo et al., 2019; Zhang et al., 2021; Ren et al.,
2022; Zhang et al., 2022). All of these models exhibit favorable
predictive performance, but their credibility remains to be
improved because they are mostly derived from a single
GSE39582 dataset and lack multi-cohort and cross-platform
validation.

In the current study, we explored genes with the potential to
predict CRC recurrence and established a prognostic 9-gene
signature with cross-cohort compatibility. The proposed model
showed elevated accuracy and efficiency compared with previous
models and clinical parameters for risk assessment. Moreover, this
signature is closely related to multiple oncogenic pathways such as
cell adhesion and angiogenesis. These findings might be meaningful
in guiding postoperative prognostic stratification and in
understanding the recurrence mechanisms of patients with stage
II/III CRC.

Methods

CRC cohorts

Five independent CRC cohorts with TNM stage information were
collected for survival analysis in the current study. Gene expression
profiles and clinical data were obtained from the Gene Expression
Omnibus (GEO) database. Among these cohorts, the GSE39582 cohort
(N = 464) was used for training, while the GSE17536 (N = 110),
GSE17538 (N = 142), GSE37892 (N = 129), and GSE161158 (N = 151)
cohorts were used for validation. To ensure accuracy, samples with
RFS <30 days were excluded from the subsequent analyses. In addition,
54 pairs of tumor and adjacent normal specimens were gained from
patients who were diagnosed with stage II/III CRC and underwent
surgical treatments at the Department of Colorectal Surgery at Shanghai
Changhai Hospital. None of the patients received any local or systemic
treatment before the surgery. Written informed consent for the use of
clinical samples in medical research was obtained from all patients. All
clinical procedures were approved by the Ethics Committee of Shanghai
Changhai Hospital.

Identification and functional annotation of
RFS-associated genes

Three cohorts with the largest number of CRC samples
(GSE17538, GSE39582, and GSE161158) were selected to screen
reliable genes indicative of RFS. Univariate Cox regression analysis
was conducted using the ‘survival’ package in the R environment
(version 3.5.2) to screen for prognostic genes (p < .05) in three
independent cohorts. The Venn diagram (Bardou et al., 2014) was
subsequently used to screen for common genes with the ability to
predict RFS in these three cohorts. The identified genes were then sent
for Gene Ontology (GO) analysis for functional annotation on the
Database for Annotation, Visualization, and Integrated Discovery
(DAVID) online website (Sherman et al., 2022).

Development and assessment of the risk
signature

Using the commonly prognostic genes screened above, least
absolute shrinkage and selection operator (LASSO) regression
analysis based on the “glmnet” R package combined with
multivariate Cox regression analysis based on the “survival” R
package were performed to generate an optimal prognostic signature.
The risk score was calculated as follows: Risk score = (coefficient 1 ×
expression level of gene 1) + (coefficient 2 × expression level of gene 2) +
... + (coefficient n × expression level of gene n). Each patient was
assigned a risk score, and patients were classified into low- and high-risk
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groups according to the medium value of the risk scores. Kaplan–Meier
(K-M) survival curves plotted by the “survminer” R package, calibration
curves plotted by the ‘rms’ R package, and time-dependent receiver

operating characteristic (ROC) curves plotted by the “timeROC”
package were utilized to assess the prognostic ability of this
signature. The area under the curve (AUC) values calculated using

FIGURE 1
Construction of prognostic signature using RFS-related genes. (A) Venn diagram screened 207 prognostic genes with a hazard ratio >1 in three CRC
cohorts. (B) Venn diagram screened 140 prognostic genes with a hazard ratio <1. (C) Top 20 enriched GO-BP terms of 347 RFS-related genes. (D) Cross-
validation for tuning parameter (lambda) screening in the LASSO regression model. (E) LASSO coefficients of 24 RFS-related genes. (F) Hazard ratio, 95% CI,
and p-value of the nine genes.
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the K-M ROC R package were used to compare the predictive
performance of our signature with clinical factors and two previously
reported prognostic signatures that predicted postoperative recurrence

in stage II/III CRC patients (Cheng et al., 2018; Zhang et al., 2022).
Additionally, univariate Cox regression analyses were conducted to
identify independent survival indicators in each cohort.

FIGURE 2
Assessment of prognostic performance in training and validation cohorts. (A–E) The proposed signature precisely captured the survival differences
between two risk groups in GSE39582 (A), GSE17538 (B), GSE161158 (C), GSE17536 (D), and GSE37892 (E) cohorts, respectively. Left panel: K-M curves
estimated the RFS differences between two risk groups. Middle panel: From top to bottom was the distribution of survival status and risk scores. The orange
dots represented recurrence while the blue dots represented non-recurrence. Right panel: Calibration curves for the 9-gene signature.
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Estimation of infiltrative abundances of
immune cells

The single-sample gene set enrichment analysis (ssGSEA) method
was conducted by the “GSVA” package to estimate the immune
infiltration values of 23 immune cells in CRC samples. The
relationships between immune infiltrative levels and risk scores
were determined using Pearson correlation analysis.

Functional analyses of the risk signature

To clarify the close association between the risk signature and
patient prognosis, Pearson correlation analysis was performed to
identify genes correlated with (p < .05) risk scores in the
GSE39582 cohort. Based on the correlation coefficients, the top
1000 genes with positive or negative correlations were subjected to
Gene Ontology-Biological Process (GO-BP) annotation and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment using the
DAVID online website. The enriched items and corresponding
p-values were visualized by the “ggplot2” package.

Immunohistochemical (IHC) staining

IHC assays were performed as previously described (Chen and
Zhang, 2018). Sections were incubated with specific primary
antibodies against MRPL41 (1:200 dilution, ab121821, Abcam,
Cambridge, United Kingdom) and RBM38 (1:50 dilution,
ab200403, Abcam, Cambridge, United Kingdom) at 4°C overnight.
After incubation with the appropriate secondary antibodies at room

temperature for 1 h, sections were stained with diaminobenzidine and
hematoxylin. IHC scores were quantified as previously described
(Chen and Zhang, 2018).

Statistical analysis

Statistical analyses were performed using GraphPad Prism
6 software. Parametric data were analyzed using the Student’s
t-test. Statistical log-rank p < .05 was considered significant.

Results

Construction of prognostic signature using
RFS-related genes

A total of 207 common genes with an HR > 1 (Figure 1A) and
140 common genes with an HR < 1 (Figure 1B) were selected for
model construction. GO-BP analysis demonstrated that these
347 genes were closely related to functions of cell adhesion,
proliferation, and angiogenesis (Figure 1C). LASSO regression
analysis of these prognostic genes identified 24 candidate genes for
subsequent analysis (Figures 1D, E). To avoid overfitting, multivariate
Cox regression analysis was performed on these 24 genes to generate a
9-gene signature (Figure 1F). The risk score formula was developed as
follows: Risk score = −0.82604 × expression level of
MRPL41–0.68172 × expression level of FGD3—0.35399 ×
expression level of RBM38–0.06949 × expression level of SPINK1 +
0.09875 × expression level of DKK1 + 0.35278 × expression level of
GAL3ST4 + 0.38681 × expression level of INHBB +0.50069 ×

FIGURE 3
Comparison of predictive accuracy between our signature and previous signatures. (A–E) ROC curves investigated the predictive accuracy of gene
signatures for 2 year RFS prediction in GSE17536 (A), GSE17538 (B), GSE37892 (C), GSE39582 (D), and GSE161158 (E) cohorts, respectively.
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expression level of CTB-113P19.1 + 1.01899 × expression level of
FAM214B.

Assessment of prognostic performance in
training and validation cohorts

In the GSE39582 cohort, the K-M survival curve showed a
significantly decreased RFS time in patients in the high-risk group
(Figure 2A, left panel). Patients in the high-risk group had markedly
higher recurrence rates than those in the low-risk group (Figure 2A,
middle panel). The calibration curve analysis showed that the survival
probabilities predicted by our model were in good agreement with the
actual survival probabilities (Figure 2A, right panel). In addition to the
training cohort, the proposed signature also precisely estimated the
different survival times and events of low- and high-risk patients in the
GSE17538 (Figure 2B), GSE161158 (Figure 2C), GSE17536
(Figure 2D), and GSE37892 (Figure 2E) cohorts.

Comparison of predictive accuracy between
our signature and previous signatures

Multiple prognostic signatures for stage II/III CRC recurrence risk
stratification were established, and we wondered whether our

signature outperformed the published signatures in risk prediction.
An AUC value analysis was adopted, and a high AUC value indicated
high predictive accuracy. In addition to the second highest predictive
accuracy in the GSE17536 cohort (AUC = 0.744, Figure 3A), the
proposed signature showed the strongest prediction precision for
2 year RFS in the GSE17538 cohort (AUC = 0.777, Figure 3B),
GSE37892 cohort (AUC = 0.719, Figure 3C), GSE39582 cohort
(AUC = 0.747, Figure 3D), and GSE161158 cohort (AUC = 0.789,
Figure 3E).

Superiority evaluation of the 9-gene signature
compared with clinical factors

The results of the univariate Cox regression analysis demonstrated
that the 9-gene signature was associated with unfavorable survival in
five independent cohorts (Figure 4A). To investigate the superiority of
our signature in predicting RFS, time-dependent ROC analyses were
performed to assess the accuracy of each predictor. The 9-gene
signature exhibited higher dynamic AUC values than the clinical
predictors over time in all the GSE17536 (Figure 4B), GSE17538
(Figure 4C), GSE39582 (Figure 4E), and GSE161158 cohorts
(Figure 4F), except for the GSE37892 cohort (Figure 4D). These
findings suggest that our signature outperformed clinical indicators
for recurrence prediction.

FIGURE 4
Superiority evaluation of the 9-gene signature compared with clinical factors (A) Univariate Cox regression analyses identified independent prognostic
factors in each cohort. (B–F) Time-dependent AUC values of prognostic factors in GSE17536 (B), GSE17538 (C), GSE37892 (D), GSE39582 (E), and
GSE161158 (F) cohorts, respectively.
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Differences in immune infiltration between
two risk groups

The immune infiltrative differences between the low- and high-
risk groups were determined by ssGSEA analysis in each cohort
(Figures 5A–E). The intersecting differences with the same
alternative trends in these five cohorts were regarded as signature-

related immunological changes. The results showed that eight immune
cells, including γδ T cells, immature dendritic cells, macrophages,
mast cells, natural killer T cells, regulatory T cells, T follicular helper
cells, and Type 1 T helper cells, were upregulated in the high-risk
group. Correlation analyses illustrated that in the GSE17536 and
GSE17538 cohorts, the risk score was negatively associated with the
infiltrative level of activated CD8+ T cells, whereas it was positively

FIGURE 5
Differences in immune infiltration between two risk groups. (A–E) The immune infiltrative differences between two risk groups in GSE17536 (A),
GSE17538 (B), GSE37892 (C), GSE39582 (D), and GSE161158 (E) cohorts, respectively. (F) The heatmap of correlations between immune infiltration and risk
signature in each cohort. The blue color indicated negatively related and the red indicated positively related. *p < .05.
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associated with the infiltrative level of regulatory T cells in all five
cohorts (Figure 5F). We then investigated the association between the
risk score and several immune checkpoints, such as CD274,
CTLA4 and IDO1. As shown in supplementary Figures 1A–E, a
substantial increase in the expression of HAVCR2 was found in
the high-risk group in each CRC cohort. In addition, a significant
decrease in the expression of GZMB was observed in the high-risk
group in multiple cohorts.

Functional analyses of the 9-gene signature

To elucidate why high-risk scores lead to poor prognosis,
biological process and KEGG enrichment analyses were performed
on the top 1000 genes that were positively or negatively correlated with
risk scores, respectively. In the biological process analyses, genes with
positive correlations were found to be related to extracellular matrix
organization, cell adhesion, and angiogenesis (Figure 6A), while
negatively correlated genes were primarily associated with cell

division, DNA repair, and cell cycle (Figure 6C). In the pathway
enrichment analyses, genes with positive correlation were principally
involved in ECM-receptor interaction, focal adhesion, and PI3K-Akt
signaling pathways (Figure 6B), whereas genes with negative
correlation were mainly enriched in the cell cycle and DNA
replication (Figure 6D).

Expression profile of the nine genes in TCGA
cohort

We subsequently explored the differences in the expression of nine
genes between normal and CRC tissues by analyzing TCGA data using
the TIMER website (Li et al., 2016). Information about CTB-113P19.1.
is not available on the website. As protective prognostic genes,
MRPL41 and RBM38 were significantly downregulated, while
FGD3 was upregulated and SPINK1 was not differentially
expressed in CRC tissues. Among the risk prognostic genes,
DKK1 and INHBB were markedly upregulated, while

FIGURE 6
Functional analyses of the 9-gene signature. (A) Top 10 terms of GO-BP analysis for genes with positive correlation. (B) Top 10 terms of KEGG analysis for
genes with positive correlation. (C) Top 10 terms of GO-BP analysis for genes with negative correlation. (D) Top 10 terms of KEGG analysis for genes with
negative correlation.
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GAL3ST4 and FAM214B were markedly downregulated in CRC
tissues (Figure 7).

Experimental validation of MRPL41 and
RBM38 expression patterns

From the above analyses of public RNA-sequencing data, we
discovered that mRNA expression levels of MRPL41 and
RBM38 were significantly decreased, whereas mRNA expression
levels of DKK1 and INHBB were markedly elevated in CRC
tissues. Protein expression levels of DKK1 and INHBB were also
increased in CRC patients according to the literature (Sui et al., 2021;
Zhou et al., 2022), but protein expression patterns of MRPL41 and
RBM38 have rarely been reported. By analyzing the results of IHC
staining assays from the Human Protein Atlas database (Uhlén et al.,
2015), we found that protein expression levels of MRPL41 and
RBM38 were dramatically decreased in CRC tissues (Figures 8A,
B). The IHC assay further validated the downregulation of
MRPL41 and RBM38 in CRC samples from our center (Figures
8C–F). These findings indicated that MRPL41 and RBM38 may
play suppressive roles in CRC progression.

Discussion

The high rates of postoperative recurrence and mortality after
recurrence emphasize the importance of improving individual
recurrence risk prediction for patients with stage II/III CRC (Ju
et al., 2019). To date, multiple efforts have been made to develop
reliable predictors of postoperative recurrence in CRC (Wang et al.,
2015; Yang et al., 2020; Zhang et al., 2020). However, CRC features

high degrees of genomic and transcriptional heterogeneity, and the
suitability of current biomarkers for individual patients remains
debatable (Kyrochristos and Roukos, 2019). As cancer treatment
enters the area of precision medicine, efficacious recurrence
assessment that considers genetic and genomic features is of great
importance to guide clinicians in individualized follow-up and
therapeutic strategies.

Accumulated evidence has proved that prognostic gene signatures
have vast capabilities to aid clinical decision-making (Yu et al., 2019;
James et al., 2022; Oliveira et al., 2022). We constructed and verified a
prognostic 9-gene signature to predict the response of stage II/III CRC.
In multiple cohorts, the risk model exhibited significant predictive
performance. Univariate Cox regression analyses, together with the
Venn diagram, initially screened 347 credible genes with the capacity
to predict RFS. A 9-gene signature was developed using these genes.
Survival analysis demonstrated the impressive predictive ability of this
risk model. ROC curves together with time-dependent AUC values
confirmed that our model was superior to previous models and clinical
predictors in terms of predicting recurrence.

We then investigated the immunological correlation and
biological function of the 9-gene signature. The results showed that
the 9-gene signature was negatively associated with the infiltrative
values of CD8+ T cell while positively correlated with those of
regulatory T cell. Furthermore, high risk score was indicative of
decreased GZMB expression and elevated HAVCR2 expression.
These findings suggested that the 9-gene signature might be able to
predict the response of stage II/III CRC patients to immunotherapy.
To clarify the mechanism of gene signature’s effect on cellular
immunology, we performed function analyses of genes correlated
with this signature. Multiple signaling pathways related to the gene
signature played fundamental roles in immune cell function. For
example, overexpression of calcium-permeable channels at various

FIGURE 7
Expression profile of the nine genes in TCGA cohort. *p < .05, **p < .01, ***p < .001, ns: not significant.
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locations of T cells is necessary for T cell activation, maturation and
secretion of cytokines (Trebak and Kinet, 2019; Vaeth et al., 2020).
Moreover, the PI3K-AKT pathway have long been considered to play
an important role in the regulation of immune cell metabolism,
growth, or survival (O’Donnell et al., 2018; Weichhart and
Säemann, 2008; Hand et al., 2010). Above findings might partly
explain how this signature influences the infiltration of immune
cells and expression of immune checkpoint genes.

Among these nine genes, RBM38, SPINK1, DKK1, and INHBB are
implicated in CRC tumorigenesis. RBM38 is downregulated in CRC
cell lines and inhibits colorectal cancer cell growth and stemness by
competitively binding to PTEN (Guan et al., 2021). However, the

function of SPINK1 in CRC development remains unclear. Several
studies have reported that SPINK1 is overexpressed in CRC and
contributes to cell proliferation, migration, and invasion (Gouyer
et al., 2008; Ida et al., 2015; Tiwari et al., 2015; Chen et al., 2022).
However, some studies have found that SPINK1 is downregulated in
CRC and indicates a favorable prognosis (Koskensalo et al., 2012;
Koskensalo et al., 2013; Chen et al., 2016). Moreover, SPINK1 can
reduce cetuximab resistance in CRC cells by effectively preventing
PRSS1 from cleaving cetuximab (Tan et al., 2020). DKK1 is a well-
known oncogene that fosters CRC cell growth, metastasis,
chemotherapy resistance, and immune evasion (Qi et al., 2021; Sui
et al., 2021; Zhao et al., 2021). INHBB is an unfavorable prognostic

FIGURE 8
Experimental validations of MRPL41 and RBM38 expression patterns. (A) Representative IHC staining images of MRPL41 retrieved from the HPA database.
(B) Representative IHC staining images of RBM38 downloaded from the HPA database. (C) Representative IHC staining images of MRPL41. (D) The quantitative
H-scores of MRPL41 staining. (E) Representative IHC staining images of RBM38. (F) The quantitative H-scores of RBM38 staining.
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biomarker for CRC (Yuan et al., 2020). However, the specific
biological functions of MRPL41, FGD3, GAL3ST4, CTB-113P19.1,
and FAM214B in CRC remain largely unknown.

Accurate prediction of recurrence risk can help determine the
applicability of adjuvant therapy, reduce overtreatment-related
adverse effects, and avoid unnecessary medical expenses (Chan
et al., 2021). The suitability of gene expression profiles for
identifying patients with a high risk of recurrence has been proven
in human cancers. The U.S. Food and Drug Administration (FDA) has
approved a successfully developed genetic test called MammaPrint to
evaluate the recurrence risk in stage I/II breast cancer patients (van ’t
Veer et al., 2002). Our study is the first to establish a recurrence
predictive signature for stage II/III CRC patients via credible RFS-
related genes. Validation in five independent public cohorts, including
American and French populations, enhances clinical compatibility.
We hope to translate this gene signature into a commercial kit for easy
clinical application.

Based on the retrospective data, the current study has several
limitations. First, all cohorts used for survival analyses had a relatively
small sample size, and the prognostic performance of the 9-gene
signature needs larger cohorts and prospective studies to confirm the
results. Second, patient treatment data were not available for several
cohorts. The individual therapeutic benefits for patients in different
risk groups are unclear. Third, the biological function and clinical
relevance of the five genes in this signature remain largely unknown,
and further in vivo and in vitro experiments are required.

In conclusion, we proposed a recurrence prediction model for
patients with stage II/III CRC and comprehensively assessed the
predictive capacity of this model. Therefore, it is desirable to guide
personalized treatment and prolong patient survival.
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