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Introduction: Of all the cancers that afflict women, breast cancer (BC) has the

second-highest mortality rate, and it is also believed to be the primary cause of

the high death rate. Breast cancer is the most common cancer that affects

women globally. There are two types of breast tumors: benign (less harmful and

unlikely to become breast cancer) andmalignant (which are very dangerous and

might result in aberrant cells that could result in cancer).

Methods: To find breast abnormalities like masses and micro-calcifications,

competent and educated radiologists often examine mammographic images.

This study focuses on computer-aided diagnosis to help radiologists make

more precise diagnoses of breast cancer. This study aims to compare and

examine the performance of the proposed shallow convolutional neural

network architecture having different specifications against pre-trained deep

convolutional neural network architectures trained on mammography images.

Mammogram images are pre-processed in this study's initial attempt to carry

out the automatic identification of BC. Thereafter, three different types of

shallow convolutional neural networks with representational differences are

then fedwith the resulting data. In the secondmethod, transfer learning via fine-

tuning is used to feed the same collection of images into pre-trained

convolutional neural networks VGG19, ResNet50, MobileNet-v2, Inception-

v3, Xception, and Inception-ResNet-v2.

Results: In our experiment with two datasets, the accuracy for the CBIS-DDSM

and INbreast datasets are 80.4%, 89.2%, and 87.8%, 95.1% respectively.

Discussion: It can be concluded from the experimental findings that the deep

network-based approach with precise tuning outperforms all other state-of-

the-art techniques in experiments on both datasets.
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1 Introduction

Cancer affects several body organs, including the lungs,

pancreas, blood, and breasts, making it more than simply a

typical sickness. These cancer forms are similar in some ways,

yet they differ in their modes of development and dissemination.

Breast cancer affects women mostly and is thought to be the

second-deadliest illness in women, according to the International

Agency for Research on Cancer (IARC) study released by the

World Health Organization (WHO) in 2012 (Boyle and Levin,

2008). According to the Indian Council of Medical Research

(ICMR), 2018 in India, breast cancer accounts for the biggest

percentage of malignancies and is the second most prevalent

disease overall that affects women, with 87,090 fatalities on

average (Mathur et al., 2020). With an anticipated 2.3 million

new cases, or 11.7% of all cancer cases, it now overtook lung

cancer as the most common kind of cancer worldwide in 2020

(Sung et al., 2021). Cancer develops in the human body as a result

of the tumor cells’ aberrant development and invasion of the

surrounding tissues. Tumors are often divided into benign and

malignant categories. In contrast to malignant tumor cells, which

are thought to be cancerous, benign tumor cells are not

carcinogenic. The benign tumor’s cells proliferate only in that

area of the body and are unable to invade nearby tissues to

spread. On the other hand, malignant tumor cells can develop

out of control, infiltrate nearby tissue, and eventually spread to

different areas of the body (Prusty et al., 2022). To diagnose

breast cancer, a variety of screening techniques are utilized,

although mammography is by far the most effective. In

mammography, several perspectives, such as the craniocaudal

(CC) and medial-lateral oblique (MLO), are utilized to better

comprehend the breast abnormalities that are present.

Radiologists employ any of these MLO or CC views to

examine breast lesion indicators such as masses and micro-

calcifications to differentiate between benign, normal, and

malignant classifications of breast abnormalities (Bick, 2014).

It takes a lot of time and knowledge from a radiologist with

extensive training and experience to interpret mammographic

images (Hubbard et al., 2011). These problems have led to an

increase in the need for computer-aided diagnosis and detection

(CAD) technologies, which automate medical image processing

(Das et al., 2022).

Deep learning has made significant strides in research over

the past 10 years (Das et al., 2021), and the subject of healthcare is

no exception (Das et al., 2020). In the research on breast cancer,

which produced encouraging findings as well, several deep

architectures (Hamidinekoo et al., 2018) are investigated and

effectively applied. The use of computer-aided diagnostics to

diagnose breast cancer is still being studied by a sizable number

of researchers. In a hybrid Convolutional Neural Network

(CNN) approach presented by Arevalo et al. (2016),

handmade image-based features are learned using supervised

learning techniques. Huynh et al. (2016) used transfer learning to

the pre-trained AlexNet model for the classification of

mammographic tumors without fine-tuning, and the Support

Vector Machine (SVM) technique is utilized for classification at

the back end. Recent advances in deep learning technology have

the potential to improve the standard of treatment in the

healthcare sector (Carneiro et al., 2015). Fine-tuned ImageNet,

a pre-trained CNN, to discriminate between masses and micro-

calcification. The Breast Imaging-Reporting and Data System

(BI-RADS) score is particularly helpful for identifying the kind of

breast cancer. In their study, the authors used the BI-RADS score

to distinguish between various forms of breast cancer. For the

classification of mammographic images, Levy and Jain (2016)

used transfer learning on two pre-trained models, such as

AlexNet and GoogleNet. AlexNet was found to have the

greatest results when they compared the two networks. Ting

et al. (2019) created a brand-new network named Convolutional

Neural Network Improvement for Breast Cancer Classification

network (CNNI-BCC). The proposed model was created from

scratch and trained for BC classification. The experiment used

the MIAS database, and the model was provided with the area of

interest (ROIs) identified using a one-shot detector. After

training with all CNN, (Rampun et al., 2018) used the three

top-performing model predictions in an ensemble and modified

version of the AlexNet model. Tsochatzidis et al. (2019)

conducted a thorough analysis of several designs, including

Inception-BN (v2) from scratch, GoogleNet, ResNet50,

ResNet101, ResNet152, AlexNet, VGG16, and VGG19. Both

the Digital Database for Screening Mammography (DDSM-

400) and Curated Breast Imaging-Digital Database for

Screening Mammography (CBIS-DDSM) datasets might use

some fine-tuning. Arora et al. (2020) proposed a high

TABLE 1 Mammography datasets for breast cancer.

Dataset Type No. of images View Format Classes

CBIS-DDSM Digital mammogram (DM) 10,239 MLO/CC DICOM Benign and malignant

INbreast Digital mammogram (DM) 410 MLO/CC DICOM Benign and malignant
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ensemble transfer learning model to differentiate between benign

and malignant tumors. A neural network classifier is then used to

do auto-feature extraction. In the literature, several deep learning

models have been proposed. To identify and classify benign and

malignant lesions included in digital mammography images,

authors (Duggento et al., 2019) employed the CNN model.

Deep Convolution Neural Network and AlexNet were used by

(Ragab et al., 2019) for feature extraction and classification of

mammographic images from the DDSM dataset. Another deep

CNNwas used by Ting et al. (2019) to classify BC-lesion from the

MIAS dataset. BreastNet is another CNN-based deep learning

model that has been put up by authors (Toğaçar et al., 2020) and

beats AlexNet, VGG-16, and VGG-19. The authors (Wang et al.,

2020) have also developed bilateral residual GANs (BR-GANs),

which are based on the cycle GAN idea, for the job of segmenting

mammograms for the INbreast dataset. Mohiyuddin et al. (2022)

have suggested modified YOLOv5 for the identification and

categorization of breast tumors of the DDSM dataset. Al-

Antari et al. (2018) are using AlexNet, a second CNN-based

classifier, in addition to YOLO for multiclass classification for the

INbreast dataset. U-Net is renowned for its effectiveness in the

segmentation of medical images. For the segmentation challenge,

Zeiser et al. (2020) applied an architecture based on U-Net to a

variety of publicly and privately accessible datasets. The

segmentation of masses on mammography images is the focus

of their work. Authors (Abdelhafiz et al., 2020) have also

presented the Vanilla U-Net, another form of U-Net, for

segmenting mass in mammography images obtained from

three separate publicly accessible datasets. For breast density

segmentation, Saffari et al. (2020) suggested a conditional form of

the GAN (cGAN) and U-Net-based cGAN-UNET model. Later,

CNN was applied for classification purposes for the INbreast

dataset. The efficiency of transfer learning for breast cancer

categorization was demonstrated by Rahman et al. (2020). For

the DDSM dataset, the authors tested the transfer learning-based

models. Similar transfer learning principles were applied by

Saber et al. (2021) for the categorization of breast cancer

using a variety of pre-trained deep learning models, including

Inception V3, ResNet50, Visual Geometry Group networks

(VGG)-19, VGG-16, and Inception-V2. Another method for

classifying breast cancer using multi-DCNNs was proposed by

Ragab et al. (2021), who similarly employed the idea of transfer

learning for feature extraction and SVM for final classification on

the MIAS-DDSM datasets. Lotter et al.’s annotation-efficient

deep learning strategy for mammograms and digital breast

tomosynthesis image-based breast cancer diagnosis has been

proposed by Lotter et al. (2021). Malebary and Hashmi.

(2021) suggested an ensemble-based technique for classifying

breast masses. In the proposed study, they have employed, pre-

trained CNN and RNN-LSTM-based deep learning models to

extract both the low-level and high-level features. Finally, the

classification was completed by combining the random forest

approach with high gradient boosting. Deep learning techniques

based on attention have also proven effective in classifying

images. Sun et al. (2020) presented the attention-guided deep

learning network known as AU-Net, which segments breast mass

using an attention-guided upsampling block. Multi-scale

attention-based network MSANet was created by Xu et al.

(2021) for the categorization of mammograms for the DDSM

FIGURE 1
Sample full-mammogram images (A,B) from CBIS-DDSM and (C,D) from INbreast.

TABLE 2 Distribution of data for full-mammogram images.

Dataset Type Train Test Total

CBIS-DDSM Full mammogram 2138 566 2704

INbreast Full mammogram 328 82 410

Grand total 2466 648 3114
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dataset. Su et al. (2022) introduced the YOLO-LOGO

segmentation model, which combines the YOLO and LOGO

architectures with a deep learning technique based on

transformers for the identification and segmentation of breast

masses for DDSM-INbreast datasets.

The Curated Breast Imaging Subset of the Digital Database for

Screening Mammography (CBIS-DDSM) and INbreast datasets are

used to train several convolutional neural network architectures in this

paper’s effort to construct an automated system employing

mammographic images. Investigations are carried out in this study

to classify breast cancer into benign and malignant categories. In the

first technique, three different types of shallow convolutional neural

networks have been trained from scratch; in the second approach,

various pre-trained convolutional neural networks have also been

tested using transfer learning via fine-tuning. Convolutional neural

network variations such as VGG19, ResNet50, MobileNet-v2,

Inception-v3, Xception, and Inception-ResNet-v2 respectively, have

each been taken into consideration for this work. The accuracy of

various breast cancer datasets for different algorithms as well as with

various proposed strategies is themain focus of prior research studies.

However, the major focus of this work is on how various deep-

learning models behave for complete mammography images. The

following are this paper’s key contributions:

• To compare and analyze the performance of shallow

convolutional networks against deep convolutional

neural networks.

• To analyze the usefulness of various proposed models

while working with only full-mammogram images.

• Impact of transfer learning approach on the pre-trained

convolutional neural networks using fine-tuning and

regularization techniques.

The organization of the paper is as follows: Section 2 explains

the database along with the proposed mechanism. Section 3

explains the experimental results of the proposed approaches,

followed by the discussion in Section 4. Finally, the conclusion of

the paper is presented in Section 5.

2 Materials and methods

This section explains the databases that are used for this

study. It also briefly describes the proposed model along with the

comparative approach of the shallow network against deep

convolutional pre-trained networks with their set parameters.

2.1 Database description

2.1.1 CBIS-DDSM
It is a section of the DDSM (Lee et al., 2016) database, which

contains 6775 studies altogether. The qualified and experienced

radiologists who choose the mammographic images from DDSM

represent them in an updated and standardized version of CBIS-

DDSM. After lossless decompression, all of the images are

transferred to the DICOM format. The segmented region of

interest (ROI) for training data is also included in the database

along with information on pathologic diagnosis. While the

information may be generally categorized based on the sorts

of anomalies, such as bulk and calcification, it can also be divided

into subclasses based on malignant and benign tumors.

2.1.2 INbreast
The INbreast dataset contains 410 different digital

mammographic images from 115 patients. The mammography

images were interpreted by experienced radiologists, and

following the analysis, the lesions identified by the scans were

given a standard score known as BI-RADS (Orel et al., 1999). The

six BI-RADS scores represent the various stages of abnormalities

that can be found in the breasts; score 0 denotes an inconclusive

examination; score 1 suggests no findings; score 2 indicates

benign; score 3 denotes probably benign findings; score

4 denotes suspicious findings; score 5 ensures a high

probability of malignancy, and score 6 denotes breast cancer.

The INbreast dataset is not accessible to the general public,

although it may be requested from (INbreast Dataset, 2012).

The comprehensive description of both datasets can be found

in Table 1. Table 2 gives insights into the distribution of data for

full-mammogram images that have been taken into

consideration for the proposed work. Figure 1 shows examples

of some sample images from both datasets.

2.2 Proposed methodology

Deep learning architectures’ main contribution is their

capacity to autonomously extract low-level to high-level

properties (Das and Roy, 2021). CNNs are the best models for

identifying detailed properties in images. CNNmay learn feature

representation automatically as opposed to manually constructed

features. Various requirements have been the subject of an

extensive investigation in this research. All mammogram

images first went through a pre-processing stage in which

they were converted from DICOM images to the portable

network graphics (PNG) format. The DICOM format is being

converted to PNG to prevent loss in image quality. After that, the

pixel values between “0” and “1” are normalized to ensure that

the higher pixel values have no impact on the investigation’s

findings. Thereafter, we have to adjust the labels for the binary

classification problem, so that “0” corresponds to “benign” and

“1”maps to “malignant.” Then the mammographic images from

both datasets are resized to 224 × 224 image size; split the training

data are into “training” and “validation” subsets; build Keras

generators for training and validation data. The paper consists of

two different approaches. A very small CNN with only two
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convolutional layers has been used for simulation in the first part

of the first approach. A dropout layer has been added in the

second part to mitigate hard overfitting, and in the third part,

data augmentation, another regularization technique, is applied

to the previous model to further mitigate overfitting. The second

method involves testing a variety of pre-trained CNN networks

using a fine-tuning strategy, including VGG19, ResNet50,

MobileNet-v2, Inception-v3, Xception, and Inception-ResNet-

v2 respectively. Figure 2 provides a concise summary of the

suggested methods.

FIGURE 2
Proposed architecture of classification of breast cancer.
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2.3 Classification model

Finding the approximate size of the model is the first stage. A

model with too many parameters may learn slowly and overfit,

whereas a network that is too tiny will not be able to generalize

well. Starting with a tiny, naïve model and progressively

increasing its size until it begins overfitting while learning is a

useful technique to determine the right size. At that point, the

model is adaptable enough to suit the training data and may be

generalizable to additional data with the right training. Of course,

the model may be improved later on to produce better

performances by adding new layers, changing the existing

ones using regularization techniques, or adjusting the

hyperparameters. As mentioned, the study consists of two

different approaches. Two convolutional layers interspersed

with max-pooling make up a very tiny CNN used in the first

part of the first approach. The output is produced at the very end

by a single neuron with sigmoid activation following a completely

connected layer (binary classification). The loss function is the

binary cross-entropy, which is particularly suitable for this kind

of problem (binary classification). The optimizer is RMSprop, an

adaptive optimization algorithm that is considered quite efficient.

Since the validation set is where the model often performs at its

best, we keep an eye on how the loss changes there as well

throughout training and store the relevant model weights when

that loss is minimal. The top objective right now is to lessen the

harsh overfitting that was shown in the previous part since it

keeps the network from discovering a useful broad set of weights.

The second part is identical to the first, with the exception that

there is a dropout layer added after the last fully-connected block.

Dropout is a potent regularization method that’s frequently used

to cut down on overfitting. Every iteration during the training

phase involves disregarding a randomly selected portion of the

neurons from the preceding layer; this drives the network to

identify redundant and alternative representations for the inputs,

ultimately improving performance. The dropout rate is set at .5,

which is experimentally found to be the ideal number. Data

augmentation is used to further regularize the prior model before

modifying the architectural arrangement to reduce overfitting.

When using data augmentation, specified changes are applied to

the original data to produce a greater variety of samples for the

network to train on. Image flipping, shifting, rotation, scaling,

distortion, and noise injection are common approaches. The

Keras image generator has to be reinitialized with the appropriate

inputs in order to take use of data augmentation. We apply the

augmentation techniques using the following settings: Flipping

(horizontal and vertical), Rotation (angle between 0° and 180°),

Shear (10 deg), and Scale (.2).

2.3.1 VGG19
VGG19: At the Oxford Robotics Institute, the Visual

Geometry Group Network (VGG) was created based on the

convolutional neural network architecture (Hemdan et al., 2020),

and (Simonyan and Zisserman, 2014) unveiled it. The ImageNet

data cluster has shown particularly strong performance from

VGGNet. To calibrate 138 million weight parameters, this

network underwent more than 370,000 iterations of training

on more than 1 million pictures in 1000 classes. Particularly, in

the Large-Scale Visual Recognition Challenge, a worldwide

image recognition competition, in 2014 (Simonyan and

Zisserman, 2014; Sukegawa et al., 2020), VGG19 took first

place in a classification and localization competition. VGG11,

VGG13, VGG16, and VGG19 are some of the transfer learning

networks that make up the VGG. These network architectures all

share the trait of having several convolution-layer modules

coupled to three complete connection layers (Wan et al.,

2021). VGG19 is composed of five components. There are two

convolutional layers and one pooling layer in the first and second

building blocks, respectively. The third and fourth blocks each

contain one pooling layer and four convolutional layers. There

are four convolutional layers in the final block. There are also 3 ×

3 tiny filters (Arshad et al., 2022).

2.3.2 ResNet50
The most crucial component of ResNet-50 is the residual

building block (RBB). The foundation of RBB is the concept of

employing shortcut connections to skip whole convolutional

layer blocks. In order to avoid the vanishing/exploding

gradients problem, these shortcuts help optimize trainable

parameters in error backpropagation, which can help to build

deeper CNN structures to enhance overall performance for fault

detection. Convolutional layers, batch normalizations, the

Rectified Linear Unit (ReLU) activation function, and one

shortcut make up the RBB (Wen et al., 2020).

2.3.3 MobileNetV2
A widely used CNN-based model for classifying images is

called MobileNetV2. The key benefit of adopting the MobileNet

architecture is that the model requires far less computing work

than the traditional CNN model, making it appropriate for use

with mobile devices and personal computers with limited

processing power. The MobileNet model is a convolution

layer-based simplified structure that can be used to distinguish

between the finer details that depend on two controllable

characteristics that switch between the parameter’s accuracy

and latency efficiently. The MobileNet approach has the

benefit of shrinking the network (Srinivasu et al., 2021).

2.3.4 InceptionV3
It takes at least a few days to train the deep neural network

model Inception-v3 (Szegedy et al., 2016), which is highly

challenging for us to train directly on a low-configured

machine. We can use transfer learning to retrain Inception’s

final Layer for new categories using lessons from Tensorflow

(Abadi et al., 2016). We employ the Inception-v3 (Szegedy et al.,

2016) model’s last layer, which is removed while keeping the
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parameters from the layer before it. The last layer is then

retrained. In the final layer, there are as many output nodes

as there are categories in the dataset. For instance, the final layer

in the original Inception-v3 model contains 1,000 output nodes

since the ImageNet dataset has 1,000 classes. During the fine-

tuning stage, the model has been tuned as per the number of

classes as well as the number of tuned layers.

2.3.5 Xception
Numerous structured models utilizing CNN have been

developed as a result of the widespread use of CNNs in

computer vision. LeNet-style models (LeCun et al., 1995) were

first introduced in 1995, after which several models were

developed for use in classification and recognition issues.

Inception is one such example. Szagedy et al. developed the

Inception architecture, also known as Inception-v1(Szegedy

et al., 2015), in 2014. Inception-v2, Inception-v3 (Szegedy

et al., 2016), and Inception-ResNet (Szegedy et al., 2017) were

later updated. An explanation of the Inception modules may be

found in the Xception network (Chollet, 2017) that was

employed in this investigation. “Extreme inception” is also

where the word Xception originates. A brief overview of

Inception will be conducted initially to better understand the

Xception design. The item that has to be recognized in object

recognition or picture classification may appear little or huge

depending on the image. To put it another way, the size of the

item may vary across images. It might be challenging to choose

the right filter size for the convolution process due to the different

object sizes. For an object that seems enormous in the images, a

high filter size should be recommended, while a small filter size

should be used for little things. The problems caused by objects of

different sizes can be resolved, according to the Inception design,

by placing several filters of varying sizes at the input.

Additionally, it recommends forwarding this module’s output

to yet another inception module.

2.3.6 Inception-ResNet-V2
Szegedy’s Inception-Resnet (Szegedy et al., 2017) design

combines the Resnet and Inception network backbone

systems. The Inception module is a network with good local

topology, which enables it to conduct simultaneous convolution

or pooling operations on the input image. It does not limit itself

to a single convolution kernel, but rather employs all convolution

kernels of various sizes simultaneously, merging the output of

each convolution to create a more detailed feature

map. Benefiting from it may result in improved visual

representation (Wu et al., 2017). Kaiming He, submitted

Resnet (He et al., 2016), a residual neural network

architecture of 152 layers, in the ImageNet competition. The

neural network’s shortcut architecture was introduced by him.

2.4 Transfer learning

Typically, a large dataset is needed to train the CNN (at

least thousands of samples if not available in millions). Due

to the restricted time and effort of professionals to provide

labeled sample datasets on medical images, it is challenging

to use CNN trained from scratch. Methods based on the CNN

typically overfit and are unable to extract the image features

in good quality when the training dataset is short, as is the

situation in this area of medical image analysis. Transfer

learning is a technique that allows a CNN to be initially

trained on a large-scale labeled image dataset to learn

standardized image properties before being used to obtain

comparable features from a smaller dataset. It has already

been effectively used in many image-processing applications

and clinical studies for diseases. For all assessments and

comparisons, Table 3 shows the fine tweaking done with the

pre-trained models.

3 Results and discussion

To detect BC from mammography images, the authors

used two distinct methods. The comparison and analysis of

the performance of shallow CNN and deep CNN models that

have already been trained is the main objective. On the CBIS-

DDSM and INbreast datasets, we put the suggested ways into

practice and evaluated them to determine how well they

performed in comparison to the existing methodologies.

These models were produced using the Tensor Flow

backend and Keras deep learning framework provided by

Google Colab.

3.1 Performance metrics for evaluation of
classification task

A classification model’s performance assessment parameters

are based on the model’s accurate and wrong predictions of test

records. For the test dataset for all classes, the confusion matrix

provides information on how predicted values compare to real

values that may be seen. The confusion matrix includes the four

measurements true positive (TP), false positive (FP), true

negative (TN), and false negative (FN). These four metrics

can be used to assess effective parameters for comparing

various categorization systems. Table 4 explains the most used

performance metrics based on the confusion matrix. When

assessing the effectiveness of our proposed approaches in this

study, accuracy, precision, recall, and F1 score were taken into

account.
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3.2 Evaluation of classifier performance

Figure 3 and Figure 4 display the performance of the

shallow convolutional neural network in various scenarios

on the CBIS-DDSM and INbreast datasets. For breast cancer

detection, our proposed comparison reflects that experiment

on the shallow network in the first aspect where only a two

convolution layer-based model is proposed which obtained

77.4%, 78.8%, and 77.8% accuracy, precision, and recall for the

CBIS-DDSM dataset, and 84.1%, 86.4%, and 84.4% accuracy,

precision, and recall for INbreast dataset respectively; for the

second aspect where to reduce the impact of overfitting,

TABLE 3 Pre-trained CNNs with fine-tuned parameters.

Models Number of layers added Number of nodes added Dropout rate (%)

VGG19 Simonyan and Zisserman, (2014) 3 2048, 1024, 1024 0.5%

ResNet50 Akiba et al. (2017) 2 1024, 512 0.5%

MobileNet-v2 Howard et al. (2017) 2 2048, 1024 0.5%

Inception-v3 Xia et al. (2017) 1 1024 0.6%

Xception Chollet., 2017 2 1024, 512 0.5%

Inception-ResNet-v2 Szegedy et al. (2017) 1 1024 0.7%

TABLE 4 Performance measures for the evaluation.

Measures Formula Description

Accuracy Urban et al. (2018), Zhang et al. (2016), Bandyopadhyay et al.
(2013), Bedrikovetski et al. (2021)

|TP|+|TN|
|TP|+|TN|+|FP|+|FN| The ratio of the number of correct predictions with respect to total

observations

Precision (Urban et al. (2018), Zhang et al. (2016), Bandyopadhyay et al.
(2013), Bedrikovetski et al. (2021)

|TP|
|TP|+|FP| The ratio of the number of correct positive predictions with respect to

total positive predictions

Recall/Sensitivity (Urban et al. (2018), Zhang et al. (2016),
Bandyopadhyay et al. (2013), Bedrikovetski et al. (2021)

|TP|
|TP|+|FN| The ratio of the number of correct positive predictions with respect to

actual positive observations

F1 score/Dice-coefficient (Urban et al. (2018), Zhang et al. (2016),
Bandyopadhyay et al. (2013), Bedrikovetski et al. (2021)

2 × Recall × Precision
Recall+Precision F1 score is the harmonic mean of both precision and recall

FIGURE 3
Confusion matrices of shallow network for CBIS-DDSM dataset.
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FIGURE 4
Confusion matrices of shallow network for INbreast dataset.

FIGURE 5
Confusion matrices of pre-trained CNNs for the CBIS-DDSM dataset.
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dropout strategy has been taken into account has obtained

80.4%, 82.3%, and 79.8% accuracy, precision, and recall for

CBIS-DDSM dataset, and 87.8%, 88.9%, and 88.9% accuracy,

precision, and recall for INbreast dataset respectively; and for

the third aspect where again to reduce the effect of overfitting

due to less number of images, augmentation technique has

been applied which resulted into 79.0%, 80.7%, and 78.8%

accuracy, precision, and recall for CBIS-DDSM dataset, and

85.4%, 90.7%, and 83.0% accuracy, precision, and recall for

INbreast dataset respectively.

Figure 5 and Figure 6 display the performance of the pre-

trained deep convolutional neural networks on the CBIS-DDSM

and INbreast datasets. We have also analyzed the other aspect

where pre-trained deep convolutional neural networks have been

executed with the help of transfer learning via fine-tuning on

VGG19, ResNet50, MobileNetV2, InceptionV3, Xception, and

Inception-ResNet-V2 respectively. From the above-mentioned

experimental analysis on the CBIS-DDSM dataset, we obtained

77.9%, 79.9%, and 77.4% accuracy, precision, and recall for

VGG19; 83.2%, 84.6%, and 83.2% accuracy, precision, and

recall for ResNet50; 78.3%, 81.1%, and 76.4% accuracy,

precision, and recall for MobileNetV2; 87.6%, 89.5%, and 86.5%

accuracy, precision, and recall for InceptionV3; 89.2%, 91.3%, and

87.9% accuracy, precision, and recall for Xception, and 85.7%,

87.8%, and 84.5% accuracy, precision, and recall for Inception-

ResNet-V2 respectively.

When the same fine-tuning-based experiment is

performed on the INbreast dataset, we obtained 85.4%,

88.4%, and 84.4% accuracy, precision, and recall for

VGG19; 91.5%, 93.2%, and 91.1% accuracy, precision, and

recall for ResNet50; 86.6%, 87.0%, and 88.9% accuracy,

precision, and recall for MobileNetV2; 92.7%, 97.6%, and

88.9% accuracy, precision, and recall for InceptionV3; 95.1%,

91.8%, and 100.0% accuracy, precision, and recall for

Xception, and 93.9%, 95.5%, and 93.3% accuracy,

precision, and recall for Inception-ResNet-V2 respectively.

These observed results indicated that the proposed deep

CNN with fine-tuning-based approach performed better

than the shallow classifier in various conditions for both

classification tasks.

FIGURE 6
Confusion matrices of pre-trained CNNs for INbreast dataset.
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We want to keep both the FP and FN low since they are

essential to achieving the work’s purpose. First, our suggested

system warns that patients with malignant cases who are

mistakenly classified as benign instances may result in

misclassification marked as a false negative (FN). Another

possibility is that people who are diagnosed with cancer but

do not have it might result in a false positive (FP). Both FNs and

FPs have a large effect on misclassification, which results in

incorrect diagnosis and poses health risks to people. We

prioritized FP and FN equally by taking into account the

F1 score and other performance assessment metrics. We

observed that in the first approach we obtained 78.3%, 81.0%,

and 79.7% for CBIS-DDSM and 85.4%, 88.9%, and 86.7% for the

INbreast dataset respectively. Whereas in the second approach

for the CBIS-DDSM dataset, we obtained 78.6%, 83.9%, 78.7%,

88.0%, 89.5% and 86.1% for VGG19, ResNet50, MobileNetV2,

InceptionV3, Xception, and Inception-ResNet-V2 respectively.

For the INbreast dataset, we obtained 86.4%, 92.1%, 87.9%,

93.0%, 95.7% and 94.4% for VGG19, ResNet50, MobileNetV2,

InceptionV3, Xception, and Inception-ResNet-V2 respectively.

Our proposed fine-tuning method for the Xception model gives

the highest F1 score of 89.5% and 95.7% for breast cancer

detection. Experimental results in terms of precision, recall,

and F1 score conveys that the proposed model has a

negligible rate of misclassification.

3.3 Discussion

According to the findings, the fine-tuned Xception

classifier is a reliable model for the detection of breast

cancer. The difference in the performances amongst the

models because of the selected hyperparameters for each

model which are learning rate, number of layers added

after the last max-pooling layer of each model, number of

hidden units for each layer added in fully-connected layers,

and dropout rate respectively. The fine-tuned parameters are

described in Section 2.2, Section 2.3, and Table 3 for reference.

The main element influencing the outcome of the

performances for the CBIS-DDSM and INbreast datasets

may be due to the sharp fall in dimensions. The INbreast

dataset has higher-quality mammograms as compared to the

CBIS-DDSM dataset. The produced feature’s ability to

discriminate is destroyed by dimensions that are too small.

When deep-learning-based features are applied, the

overfitting issue also appears in the INbreast dataset.

Despite the lack of training samples in the INbreast

dataset, the overfitting issue is not as severe as it is in the

CBIS-DDSM dataset. This may be mostly due to the excellent

mammograms in the INbreast dataset. Along with that

because of the fine-tuned parameters, all models performed

much better for the INbreast dataset even with lesser sample

size. For this work, rigorous experiments have been carried

out, such as when the models were tested on the INbreast

dataset after being trained on the CBIS-DDSM dataset and

vice versa. Obtained results were not promising compared to

the results obtained when trained and tested on the same

dataset, but it will lead to the future scope of research. Though

the suggested strategy performs better, this study does not take

into account other clinical data, such as other medical

problems, geographic location, etc. Future research that

takes these parameters into account might enhance

TABLE 5 Comparison of the proposed approach with the state-of-the-art techniques.

Dataset Author Year Accuracy (%)

CBIS-DDSM Shams et al. (2018) 2018 75

CBIS-DDSM Tsochatzidis et al. (2019) 2019 89

CBIS-DDSM Falconi et al. (2020) 2020 84.4

CBIS-DDSM Ansar et al. (2020) 2020 74.5

CBIS-DDSM Zhang et al. (2020) 2020 87.05

CBIS-DDSM Proposed (Xception classifier with fine-tuning) 2022 89.2

INbreast Dhungel et al. (2017) 2017 90

INbreast Carneiro et al. (2017) 2017 90

INbreast Shi et al. (2019) 2019 83.9

INbreast Zhang et al. (2020) 2020 87.93

INbreast El Houby and Yassin. (2021) 2021 93.04

INbreast Proposed (Xception classifier with fine-tuning) 2022 95.1

Bold values are the significant results achieved for the proposed work.
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computer-aided methods for early breast cancer diagnosis and

tailored medicine treatment. The transfer-learned features are

more reflective of the natural image properties and may not

always represent the delicate qualities of medical images since

the vast dataset used for transfer learning incorporates natural

images. As a result, it is anticipated that transfer learning from

a big dataset in the same domain would result in the creation

of a breast cancer detection system that is more effective. The

proposed models have been put through a performance

comparison with cutting-edge methods. Table 5 compares

the performance of our suggested classifiers on the CBIS-

DDSM dataset as well as the INbreast dataset. These outcomes

demonstrate that our suggested fine-tuned Xception classifier

outperforms other classifiers.

4 Conclusion

In this article, we compared shallow convolutional neural

networks to deep convolutional neural networks and

introduced pre-trained models that have been fine-tuned to

classify full-mammogram images as benign or malignant.

ROI-based mammography images can produce better

outcomes, but grinding up a sufficient degree of precision

for full-mammogram images is a laborious process. Our

suggested trained CNNs can pick up various information

included in individual images. The improved CNN models

produce a more effective image categorization method than

the individual CNNs that are trained from scratch. Due to

Xception’s optimization of ResNet, which allows it to inherit

not just ResNet’s benefit of residual connection but also its

capability to extract objects when occluded by occlusions

using depth-wise separable convolution, it obtains the

greatest performance when extracting features. When

compared to the other classifiers, the comparison analysis

shows that the performance of the improved Xception

classifier is quite significant. As a result, among all of our

suggested methods, the improved Xception classifier performs

the best at detecting breast cancer, with acceptable levels for

all performance metrics in the range of .87–.91 for the CBIS-

DDSM dataset and .91 to 1.00 for the INbreast dataset

respectively.
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