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A lot of bioinformatics tools were released to detect structural variants from the

sequencing data during the past decade. For a data analyst, a natural question is

about the selection of a tool fits for the data. Thus, this study presents an

automatic tool recommendation method to facilitate data analysis. The optimal

variant calling tool was recommended from a set of state-of-the-art

bioinformatics tools by given a sequencing data. This recommendation

method was implemented under a meta-learning framework, identifying the

relationships between data features and the performance of tools. First, the

meta-features were extracted to characterize the sequencing data and meta-

targets were identified to pinpoint the optimal caller for the sequencing data.

Second, ameta-model was constructed to bridge themeta-features andmeta-

targets. Finally, the recommendation was made according to the evaluation

from the meta-model. A series of experiments were conducted to validate this

recommendation method on both the simulated and real sequencing data. The

results revealed that different SV callers often fit different sequencing data. The

recommendation accuracy averaged more than 80% across all experimental

configurations, outperforming the random- and fixed-pick strategy. To further

facilitate the research community, we incorporated the recommendation

method into an online cloud services for genomic data analysis, which is

available at https://c.solargenomics.com/via a simple registration. In addition,

the source code and a pre-trained model is available at https://github.com/

hello-json/CallerRecommendation for academic usages only.
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1 Introduction

In genomics and bioinformatics, calling structural variants

(SVs) from sequencing data is a somewhat straightforward topic

(Handsakeret al., 2011; Northcott et al., 2012; English et al., 2014;

Cao et al., 2014; Guan and Sung, 2016; Chiang et al., 2017). Tens

of review papers (Seo et al., 2016; Fang et al., 2019; Kosugi et al.,

2019; Amarasinghe et al., 2020; Luan et al., 2020; Zhao et al.,

2020; Zook et al., 2020; De Coster et al., 2021; Guo et al., 2021)

highlight SVs as important biomarkers and routinely identify

them in various fields. Therefore, many SV callers have been

developed to detect SVs (Stancu et al., 2017; Gong et al., 2018;

Sedlazeck et al., 2018; Wenger et al., 2019; Jiang et al., 2020).

These callers used different strategies. Read pairs and depth

approaches (Kosugi et al., 2019) primarily use the discordant

alignment and depth features of paired-end reads that encompass

or overlap an SV. The split read approach (English et al., 2014)

primarily uses split alignment features of single- or paired-end

reads that span an SV breakpoint. The assembly approach (Seo

et al., 2016) detects SVs primarily by aligning assembled contigs

with entire or unmapped sequencing reads to the reference

sequence.

In summary, different strategies investigate various variant

signals (values and/or distributions) in sequencing data and can

deal with diverse sequencing data with different signals and their

distributions. Furthermore, some empirical studies (Luan al.,

2020; Kosugi et al., 2019; Guo et al., 2021) have been

conducted to validate this phenomenon. A set of popular

callers is compared on some benchmarking datasets in these

studies, and the results showed that most callers have an edge for

specific data.

In such instances, using the signal distributions in a given

sequencing data to select the proper caller for diverse sequencing

data makes sense. However, these signal distributions are usually

ambiguous. When faced with a practice SV calling problem, it is

difficult for users, especially non-experts, to decide which caller

to use. Three simple approaches are commonly used in practice.

First, choose one at random (random-pick strategy). Second,

select one that is familiar or popular (fixed-pick strategy). Finally,

consult an expert who will analyze the relationship between the

sample and the SV caller’s performance and make a

recommendation based on their experience. The first two

approaches are straightforward, but their efficacy cannot be

guaranteed. The last one can sometimes boost effectiveness.

However, there are very few such experts available to meet

real-world demands.

Consequently, selecting appropriate SV callers becomes an

urgent issue. As different SV callers explore different

distributions (or patterns in some approaches) in sequencing

data tomake decisions, these distributions in sequencing data can

affect the caller’s performance. It is logical to use some signal

distributions for SV caller selection. Thus, this study proposes an

automatic SV caller recommendation method. The SV caller

selection problem is established under a meta-learning

framework in the method, with calling SVs from the

sequencing data as the learning problem and caller selection

as the meta-learning problem (Rendell and Cho, 1990; Ilchenkov

and Pendryak, 2015; Morais et al., 2016; Sousa et al., 2016; Cruz

et al., 2017; Vilalta and Drissi, 2022). The goal is to use meta-

learning to improve the performance of the learning problem.

Specifically, the meta-features are collected to reflect the

sequencing data’s features, which attempt to reflect the hidden

distributions or patterns in the sequencing data. Themeta-targets

are identified to indicate the most appropriate SV caller for the

given data, and a meta-model is then built to mine the

relationship between the meta-features and meta-target. When

confronted with an SV caller section problem for a given

sequencing data, the meta-features of the data are collected

and fed into the constructed meta-model, and the meta-model

specifies the final decision on the recommended a SV caller.

Since third-generation sequencing is becoming the major

sequencing technology for SV detection (Luan al., 2020;

Amarasinghe et al., 2020; Zook et al., 2020; Fang et al., 2019),

this study focuses on the SV caller recommendation method on

the third-generation sequencing data. A series of experiments are

conducted on both simulated and real sequencing data to validate

the performance of the recommendation. Compared to the

random- and fixed-pick strategies, this recommendation

method always selects a better caller, with an average

recommendation accuracy of more than 80%. To the best of

our knowledge, this study is one of the first automatic

recommendation methods for bioinformatics tools for

analyzing sequencing data. It can accurately recommend the

best caller fits for the available sequencing data. This model is

thought to be quite valuable for data analysts. To further facilitate

the research community, we incorporated the recommendation

method into an online cloud services for genomic data analysis,

which is available at https://c.solargenomics.com/via a simple

registration. In addition, the source code and a pre-trained model

is available at https://github.com/hello-json/

CallerRecommendation for academic usages only.

2 Methods

2.1 Overview of the methods

The historical datasets in this specific meta-learning problem

are the sequencing datasets with benchmarks, while the new

dataset is the sequencing data to be detected. This meta-learning

problem mines the potential relationship between meta-features

and meta-target (appropriate callers) from sequencing datasets

with benchmarks and recommends appropriate callers for the

sequencing data to be detected based on this relationship.

A function f is created to map meta-features of the

sequencing datasets to appropriate callers. The best function
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f* � argmin f{ } L f( )( ) (1)

is obtained by minimizing the loss function L based on caller

performance on historical SVs calling problems. L is a function

that measures the difference between the recommended and

appropriate callers. Thus, the meta-learning function for the SV

caller selection problem P can be formalized as follows: find the

meta-learning function f(m(x)) to the caller space C for a given

sequencing data x ∈ P with meta-features m(x) ∈ M. The chosen

caller c maximizes the performance mapping y(c(x)) ∈ Y. That is,

f m x( )( ) → C: max y c x( )( ){ } ∈ Y x ∈ P, m x( ) ∈ M( ) (2)

where P, M, C, and Y represent the problem space (sequencing

dataset), meta-feature space (meta-feature set), caller space (SV

caller set), and performance space (caller performance interval),

respectively. Furthermore,m(x) and c(x) are themeta-features and

the appropriate callers of x, respectively. Usually, themost important

element is determining which caller outperforms the others. Thus, f

can be improved further to map the features of P to the best caller.

Figure 1 shows an abstract model of the SV caller selection problem.

According to the above analysis, a classification algorithm can

build the meta-model in the SV caller recommendation method.

This classification algorithm learns the relationship between the

meta-features of each sequencing data in historical datasets and the

optimal caller and then applies this relationship to map the detected

sequencing data to its optimal caller. Consequently, the framework

created in this study for the recommendationmethod is divided into

three sections, namely, extracting data features and identifying the

optimal caller, modeling the relationship between data features and

the optimal caller, and recommending the optimal caller. Figure 2

shows the framework of this method.

2.2 Metadata collections

As shown in Figure 2, the first step of the SV caller

recommendation method is metadata collection, which is

FIGURE 1
Abstract model of the SV caller selection problem.

FIGURE 2
Computational pipeline for automatically recommending the optimal SV caller according to the features of sequencing data.
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divided into two stages, i.e., meta-feature extraction and meta-

target identification.

2.2.1 Meta-feature extraction
The meta-features in this context are those sequence

alignment and map (SAM)/binary alignment and map

(BAM)files features that can effectively differentiate the

performance of SV callers. The SAM/BAM file in

sequencing data analysis is a sequence text file that

contains the sequencing reads with information aligned to

the reference genome. The statistical and information theory-

based method is currently the most widely used meta-feature

extraction method, which extracts meta-features such as

dataset sizes, attribute types, numbers of attributes, mean,

and variance (Brazdil et al., 2003; Pise, 2013; Ali et al., 2018;

Wang et al., 2019). However, sequencing data is a unique type

of data in that a single read or statistical information about

reads contains little information, and the set of sequencing

reads is mapped to a region that contains the most

information. Therefore, this method does not perform well

with sequencing data. For example, even if SAM/BAM files are

very close in size or even have the same number of reads, the

information they contain may be completely different due to

the different bases of reads.

According to bioinformatics research, read length,

sequencing depth, base quality, mapping quality, and insert

size significantly impact caller performance (Kosugi et al.,

2019; Wang et al., 2019; Zook et al., 2020; Chen et al., 2021).

However, these features are used to call SVs, whereas meta-

features are now required to effectively differentiate the

performance of SV callers. As a result, there are several

useless features here. According to this study’s testing, some

features, such as read length and sequencing depth, are useful,

while others are not. Furthermore, some review studies have

proposed some sequencing data features, such as the size of SVs

and the proportion of SVs in tandem repeat regions, which have

been shown to differentiate the performance of SV callers

(Kosugi et al., 2019; Zook et al., 2020; Guo et al., 2021).

For example, Picky (Gong et al., 2018) uses an assembly

approach to produce read alignment by stitching the segments

from LAST with a greedy seed-and-extend strategy and can thus

handle large SVs by assembling them as distinct contigs.

However, when the sequencing depth is low, the assembly

junctions are ambiguous, i.e., some of the haplotype sequences

(particularly contigs of SV alleles) are missing, which may affect

SV calling recall. Sniffles (Sedlazeck al., 2018) uses a split read

approach to identify SVs by putative variant scoring using several

features based on NGMLR alignment results and thus can

identify SVs even when the sequencing depth is low.

However, due to the lack of assembly, it is difficult to identify

large SVs from ambiguous alignments for Sniffles.

Therefore, based on this study’s experiments and review

papers, features that can effectively differentiate the

performance of SV callers while eight avoiding over-

fittings were ultimately chosen. In this context, these are

known as meta-features. They were distributed on the

SAM/BAM file levels (datasets levels) and the variant

signature levels (instance levels). The average length of

reads and the average sequencing depth are SAM/BAM

file-level meta-features. The proportion of SVs in tandem

repeat regions, the proportion of short SVs (50–200 bp), the

proportion of middle SVs (200–1,000 bp), the proportion of

large SVs (>1,000 bp), read variant burden (the number of

SVs that one read can traverse), and the proportion of regions

with high read variant burden are among the variant

signature level meta-features. Table 1 summarizes the

selected meta-features.

This study creates a new meta-feature extraction method,

called the variational signature-based meta-feature estimation

algorithm, to extract the above features from the sequencing

datasets. This is a fast scanning algorithm. It simply needs to

estimate the features described above rather than accurately

detect the SVs. Thus, while the proposed algorithm may be

slightly inaccurate, it has been experimentally proven to affect

caller recommendations. The algorithm can extract

information from the SAM/BAM file level and variant

signature levels. Meta-features, such as sequencing depth,

can be obtained from SAM files using samtools. Meta-

features were extracted for variant signatures by setting a

sliding window and grabbing softclip reads with breakpoint

information. Specifically, the loci with variant signatures and

the size of SVs can be estimated as follows:

1) Cluster all the reads from the input SAM/BAM file with

softclips.

2) Divide the reads with softclips into two categories based on

whether the softclip is at the beginning or at the end of the

reads.

3) Determine the variant loci of each category according to the

cigar value of each read.

TABLE 1 Meta-features extracted to characterize sequencing data.

Level Meta-features

SAM/BAM file level Average length of reads

Average sequencing depth

Variant signature level Proportion of SVs in tandem repeat regions

Proportion of short SVs

Proportion of middle SVs

Proportion of large SVs

Read variant burden

Proportion of regions with high read variant burden
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4) Determine the distance between pairs of breakpoints as an

estimated value of the size of SVs.

Algorithm 1 presents the pseudocode of meta-feature

extraction. The algorithm’s input was the SAM/BAM file F,

while the output was the meta-feature, MF. The tandem

repeat regions used in this study were annotated in the

hg19 annotation file, which can be downloaded from UCSC

Genome Browser (http://hgdownload.soe.ucsc.edu/goldenPath/

hg19/database/rmsk.txt.gz) (Zook et al., 2016).

Algorithm 1. Meta-feature extraction

Lines one to six of Algorithm 1 initialize the f, tr, softclips,

breakpoint arrays, and readlen_sum. The f array saves the reads in

the SAM/BAM file, the tr array saves regions in the tandem repeat

regions file, the softclips array saves softclip reads, the breakpoint

array saves softclip reads breakpoints, and the readlen_sum is used

to save the total length of reads. In pseudocode lines six to seven,

SAM/BAM file F and the tandem repeat regions file TR are read in

and saved in arrays f and tr, respectively.

In pseudocode line 8, the depth function calculates the

sequencing a depth, which is then assigned to depth. The

pseudocode lines 9–18 traverse each read length separately,

update the readlen_sum value, save softclips in the softclips

array, and calculate the average length of softclip reads. The

pseudocode lines 19–22 traverse each softclip reads separately,

calculate breakpoints, and save them in the breakpoint array. The

pseudocode lines 23–27 calculate the short_sv, middle_sv, large_

sv, rvb, high_rvb, and sv_tr using the caculateSVSize,

caculateRVB, caculateHigh_rvb, and caculateSv_tr functions,

respectively, where short_sv, middle_sv, large_sv, rvb, high_

rvb, and sv_tr denote the proportion of short SVs, the

proportion of middle SVs, the proportion of large SVs, read

variant burden, the proportion of regions with high read variant

burden, and the proportion of SVs in tandem repeat regions,

respectively. Finally, the meta-feature, MF, is saved on line 27 and

returned on line 28.

2.2.2 Meta-target identification
This step involves tagging meta-targets representing the

best of the callers. In turn, each caller was run on each

sequencing data and then ranked based on their

performance, and the best was chosen as the meta-target

for that data. Algorithm 2 provides the pseudocode of

meta-target identification. The algorithm’s inputs include

the long-read sequencing dataset as D, the set of SV callers

as C, and the caller performance evaluation metric M. The

algorithm’s output is the meta-target set as T.

Algorithm 2. Meta-target identification
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In Algorithm 2, the Eval_Metric and rank arrays are used in

lines 1 and 2. The Eval_Metric array is used to save the

performance evaluation values, whereas the rank array is used

to save the ranks of callers based on their performance evaluation

values. In pseudocode lines 3–15, the meta-target T is identified

for each long-read sequencing dataset in D. For a long-read

sequencing dataset di , its label is saved in li and then removed

from di lines 4 and 5. In lines 6–10, each caller ci, di is called

using the SV caller ci. And the calling results are evaluated in

terms of the metric M. The evaluation result is added to Eval_

Metric. Eval_Metric is sorted in descending order in line 11.

Ranks of SV callers according to their performance in terms of

Eval_Metric are saved in rank. The meta-target is then obtained

and saved in T in lines 12–14. Finally, the meta-target set T is

returned at line 16. The meta-feature and meta-target are saved

after the above meta-feature extraction and meta-target

identification. Users can specify different meta-targets based

on their requirements.

2.2.3 Meta-model construction and
recommendation

The features of each data were obtained, and the best caller

for that data using the steps outlined above was determined. That

is, the meta-features and meta-targets are available. In this case,

one meta-feature is a vector pi (mf1 , mf2 , mf3 ,... mfn ), and

corresponding to this meta-feature, there is a meta-target, where

i = 1, 2,..., m, and m is the number of training samples. All

samples constitute a dataset that can be used to train a

classification model. Therefore, the classifier was used to learn

the relationship between the meta-features and meta-targets, and

then the meta-model was built as the recommendation model.

Finally, the RandomForest algorithm was used to build the

classifier after considering the relevance of the features and

effectiveness of the model.

This step above results in the automatic recommendation

model. When users need to make caller recommendations based

on the new long-read sequencing data, they first extract the data’s

meta-features from the SAM/BAM file. They then determine

whether the number of data in the historical dataset with meta-

features similar to the new long-read sequencing data is greater

than 100. If not, they generate 100 semi-simulated data based on

the meta-features of the real new long-read sequencing data and

add them to the historical dataset to retrain the recommendation

model. If yes, the extracted meta-features are fed into the

recommendation model. Finally, the model will output the

recommendation results of the new long-read sequencing data

based on the meta-targets that users have specified.

3 Results

This section conducts experiments to verify the necessity and

efficacy of the proposed recommendation method:

Question 1. Necessity: Does the matching degree between

the SV caller and the signal distributions significantly impact SV

caller performance?

This is an important question. The influence of the matching

degree between the detection strategy and the signal distributions

determines the necessity of the research on the recommendation

method. A fixed or randomly selected SV caller can be used if it

exerts minimal influence on the SV caller performance.

Question 2. Effectiveness: How effective is the proposed

caller recommender?

This is also an important question. Suppose the matching

degree between the SV caller and the signal distributions exerts a

non-negligible influence on the SV calling performance. In that

case, the performance of the proposed SV caller recommendation

method determines whether it can be used in practice.

3.1 Experiment setup

3.1.1 Benchmark datasets and candidate long-
read sequencing data SV callers

The small number of real long-read sequencing datasets with

benchmarks that can be analyzed is insufficient to construct a

historical dataset. Using the PBSIM simulator, 768 simulated

long-read sequencing datasets were generated (Yukiteru al., 2013)

(https://github.com/yukiteruono/pbsim2). Specifically, various SVs

were planted on chromosome 1, and reads ranging in lengths from

1,000 to 25,000 bps with varying sequencing depths were generated

(10–150 X). For each sample, the density of the SVs was varied by

varying the distance between the SVs. Furthermore, the proportion

of variations in the tandem repeat region was altered by varying the

number of SVs within the tandem repeat region of the genome. True

called SVs are defined as the called SVs that significantly overlap

with the reference SVs by proportions (≥80%).
Five state-of-the-art SV callers, namely, NanoSV (Stancu

et al., 2017) (https://github.com/mroosmalen/nanosv), Picky

(https://github.com/TheJacksonLaboratory/Picky), Sniffles

(https://github.com/fritzsedlazeck/Sniffles), PbSV (Wenger

et al., 2019) (https://github.com/PacificBiosciences/pbsv), and

CuteSV (Jiang et al., 2020) (https://github.com/tjiangHIT/

cuteSV), were implemented on the simulated datasets as the

candidate callers. Each of these callers has advantages due to their

different strategies. For example, Picky can handle large SVs well

by assembling reads as distinct contigs due to the assembly

approach it adopts, while the assembly approach performs

poorly when the sequencing depth is too low due to the lack

of reads. However, due to the split read approach (alignment-

based approach), NanoSV, PbSV, Sniffles, and CuteSV can detect

SVs even at a low sequencing depth, but they cannot handle large

SVs due to lack of read assembling. As another example, Sniffles

and CuteSV are appropriate for dense SVs and SVs in repeat-rich

regions. Because the sequencing data contain many sequencing

errors, particularly for long reads, they have also designed error
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event filtering mechanisms in their algorithms, which greatly

improve the detection of SVs in repeat-rich regions and dense

SVs or even nested SVs. However, Picky, NanoSV, and PbSV

cannot handle these SVs due to the lack of an error event filtering

mechanism. Each caller in the experiments used the default

parameters and the alignment tool recommended by the caller

developer.

3.1.2 Metrics to evaluate the performance of SV
callers

F-measure, precision, and recall are important metrics for

evaluating bioinformatics analysis methods, and they are

frequently discussed in bioinformatics methodology studies

(Kosugi et al., 2019). Therefore, these three metrics were

chosen to evaluate the performance of SV

callers. Precision, recall, and f-measure are calculated as follows:

precision � TP

Call
(3)

recall � TP

Ref
(4)

f −measure � 2 × precision × recall

precision + recall
(5)

where TP, Call, and Ref are the numbers of true positives, called

SVs, and the corresponding reference SVs, respectively.

3.1.3 Evaluating the performance of the
recommendation method

The performance of the recommended SV caller is an

important evaluation metric (Song et al., 2012). Therefore,

recommendation accuracy (RA) is used to evaluate the RA of

the proposed recommendation method, reflecting the difference

in performance between the recommended optimal SV caller and

the real optimal SV caller. During the implementation of the

experiments, a leave-one-out cross-validation method was used

to calculate RA values.

For a given long-read sequencing data s, let CallerR be the

recommended SV caller, CallerO the most optimal SV caller, and

CallerW the worst caller. RA is defined as follows:

RA s( ) � PCallerR s( ) − PCallerW s( )
PCallerO s( ) − PCallerW s( ) (6)

Where PX(Y) denotes the performance of SV caller X on long-

read sequencing data Y.

3.2 Necessity of the proposed
recommendation method

The f-measure, precision, and recall values of the five SV

callers were compared on different long-read sequencing data to

evaluate the extent of performance differences between them, as

shown in Figure 3.

As shown in Figure 3, the standard deviation values are non-

negligible compared to the expected values for any meta-targets,

indicating a significant difference in the performances of SV

callers.

FIGURE 3
Differences between the various SV callers. In (A), (B), and (C),
the values of the three performance evaluation metrics,
i.e., f-measure, precision, and recall, were calculated for each of
the five callers on 768 long-read sequencing datasets. For
each dataset, expectation values for one of the three performance
evaluationmetrics were calculated and shownwith red lines, while
the standard deviation values are shownwith blue lines in the three
subfigures, where the abscissa denotes the number of the long-
read sequencing datasets and the ordinate denotes the
corresponding performance evaluation metric value.
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Although the performance of SV callers varies significantly,

this recommendation method of research is unnecessary if there

is one SV caller who always has the best performance. Therefore,

the number of long-read sequencing datasets that each SV caller

ranks as top one was further compared, as shown in Figure 4.

As shown in Figure 4, the different SV callers rank top one on

a certain number of long-read sequencing datasets, and the best

performing SV caller can only account for about half of the

overall, indicating that the optimal SV caller varies for different

long-read sequencing datasets.

3.3 Effectiveness of the proposed
recommendation method

This section presents the proposed method’s

recommendation results regarding RA. Furthermore, it also

presents the recommendation performance on real long-read

sequencing datasets.

3.3.1 Recommendation accuracy
In this subsection, the recommendation method’s potential

usefulness was demonstrated in real practice by comparing the

RA values of the recommended SV caller with those of fixed and

randomly selected SV callers. The RA describes the performance

of the recommended SV caller compared with the best and worst

SV caller, which is important in evaluating the usefulness of the

SV caller recommendation method. Figure 5 shows the

experimental results for the RA value.

As shown in Figure 5, the fixed-pick strategy performs

differently for different SV callers. The random-pick strategy has

poor performance. The recommended SV caller methods are better

and more stable than the random-pick and fixed-pick strategies.

3.3.2 Hypothesis test for recommendation
accuracy

The above analysis discovered that the proposed SV caller

recommendation method improves the RA values of the

random- and fixed-pick strategies. To test whether the

FIGURE 4
Number of long-read sequencing datasets that each SV caller
ranks as top 1. The number of times each caller achieved the top
one in the three performancemetrics of f-measure, precision, and
recall for 768 long-read sequencing datasets was calculated
in (A), (B), and (C). In each subfigure, the sectors of different colors
represent different callers, and the sector’s size indicates the
proportion of different callers achieving the top 1. The number
marked in each sector is the number of long-read sequencing
datasets on which the performance of the SV caller in terms of the
performance evaluation metric value ranks top 1.

FIGURE 5
Recommendation accuracy values for three different
performance evaluation metrics. The results of the three different
performance evaluation metrics are displayed on three different
colored bars. The abscissa indicates the five fixed SV callers, a
randomly selected SV caller, and the recommended SV caller in
order. The ordinate is the recommendation accuracy value.
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improvement is statistically significant, the Scott-Knott effect size

difference test (Chakkrit al., 2017) was applied (https://github.

com/klainfo/ScottKnottESD), allowing the RA values of different

methods to be divided into different groups with non-negligible

differences. Figure 6 shows the Scott-Knott effect size difference

test results.

Figures 6A, B show that the SV caller recommendation

method has superior and more stable performance advantages,

whereas Figure 6C shows that in the recommendation scheme

with recall as the meta-target, the difference between the

recommendation method’s performance and that of fixed with

NanoSV is insignificant. Therefore, the following WinDrawLoss

analysis experiments were conducted to compare the winners

and losers between the different methods.

3.3.3 WinDrawLoss analysis for
recommendation accuracy

From the above experiments, the difference in performance

between the recommendation method and that of fixed with a

specific SV caller is insignificant in the recommendation scheme

with recall as the meta-target. Therefore, as presented in Table 2,

the WinDrawLoss analysis of the different methods was

conducted, showing the number of wins, draws, and losses of

different methods on different datasets.

As presented in Table 2, in each case, the number of wins for

the recommended method is much higher than the number of

losses. In other words, the proposed SV caller recommendation

method has significant advantages over other methods.

3.3.4 Evaluating the recommendation accuracy
on real long-read sequencing datasets

To further test the performance of the proposed method on real

data, all publicly available triple sequencing data were used with

benchmarks. Specifically, the real long-read sequencing data from

the well-studied NA12878 individual were used by the Ashkenazim

Jewish andChinese trios to assess the recommendation performance

of the proposed SV caller recommendation method (Gong al., 2018;

Zook al., 2016). Subreads datasets of the NA12878 individual

(HG001), the Ashkenazim Jewish trio son (HG002), the

Ashkenazim Jewish trio father (HG003), the Ashkenazim Jewish

FIGURE 6
Hypothesis test results of RA values. In (A), (B), and (C), X1-X7 denote the five fixed SV callers, a randomly selected SV caller, and the
recommended SV caller in that order. The ordinate represents the recommendation accuracy values. Subfigures (A), (B), and (C) represent the
recommendation schemes with f-measure, precision, and recall as meta-targets, respectively. The points on the bar graph give the average
recommendation accuracy values. The length of the bars reflects the method’s stability. The greater the average recommendation accuracy
value, the better the recommendation method; the shorter the bars, the more stable the recommended method. Furthermore, no statistical
difference existed between bars of the same color, whereas a significant difference existed between bars of different colors.
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trio mother (HG004), the Chinese trio son (HG005), the Chinese

trio father (HG006), and the Chinese trio mother (HG007) were

downloaded from GIAB (https://ftp-trace.ncbi.nlm.nih.gov/giab/

ftp/data/).

The experimental results showed that the proposed SV caller

recommendation method achieved the RA values of 86.05%,

64.28%, and 95.92% for meta-targets f-measure, precision, and

recall, respectively, and the RA remained above 80% on average.

3.3.5 Threats to validity
A possible threat to the validity of this study lies in whether

the simulated data used in the empirical study are representative

of the broader datasets. Preferring to choose as many real datasets

with benchmarks and well-known published simulator pbsim as

possible is the primary way for this study to avoid sample bias.

3.4 The online recommendation tool

To further facilitate the research community, we incorporated

the recommendation method into an online cloud services for

genomic data analysis. This cloud system supports user-friendly

online Web UI operation, eliminating the heavy work of setting up

the running environment. More than 40 bioinformatics analysis

tools are integrated on this, with functions covering eight categories

including data statistics, data processing, format conversion, data

comparison, visualization, table processing, plotting, and advanced

tools to meet individual analysis needs.

After logged into the cloud system at https://c.solargenomics.

com/, users can search for this recommendation tool in the

frequently used tools search box. Then, input the fastq file to be

analyzed in the file input box and click the submit button, as

shown in Figure 7. After the program is finished, you can see the

recommended variant calling tool for that data in the task menu,

as shown in Figure 8. Currently, the cloud system is collaborated

with a PacBio Partner in China, and we are seeking for further

collaborations on the cloud systems with English services. In

addition, the source code and a pre-trained model is available at

https://github.com/hello-json/CallerRecommendation for

academic usages only.

4 Discussion

Other options for selecting meta-features and the

classification algorithm may be available in the proposed

recommendation method. Thus, these issues are discussed

here. Two widely used classification evaluation metrics,

i.e., f-measure and area under the receiver operating

characteristic (AUC), were used to evaluate the classification

accuracy of the method. Furthermore, a tenfold cross-validation

method was used to fully utilize the dataset for the experiments.

First, the recommendation performance of recommendation

models built from meta-features extracted using this study’s

variational signature-based meta-feature estimation algorithm

was compared to the traditional meta-feature extraction method

and a combination of the two meta-feature extraction methods,

as shown in Figure 9. As shown in Figure 9, the performance of

recommendation methods built with different meta-features

varies with the recommendation model built with this study’s

variational signature-based meta-features having the best

performance and being the most stable.

Next, the recommendation performance of recommendation

models built using different classification algorithms was

compared, as shown in Figure 10. As shown in Figure 10, the

TABLE 2 WinDrawLoss Analysis on RA Values.Subtables (A), (B), and (C)
represent the recommendation schemes with f-measure, precision, and
recall as meta-targets. In each subtable, each line represents the
recommended SV caller being compared with the five fixed SV callers and a
randomly selected SV caller, and each column represents the number of
wins, draws, and losses, respectively.

(A)

f1score Win Draw Loss

fixed-pick_nanosv 596 134 38

fixed-pick_picky 735 6 27

fixed-pick_sniffles 701 35 32

fixed-pick_pbsv 233 491 44

fixed-pick_cutesv 590 137 41

random-pick 579 157 32

(B)

Precision Win Draw Loss

fixed-pick_nanosv 727 22 19

fixed-pick_picky 721 16 31

fixed-pick_sniffles 483 189 96

fixed-pick_pbsv 153 550 65

fixed-pick_cutesv 478 249 41

random-pick 533 185 50

(C)

Recall Win Draw Loss

fixed-pick_nanosv 71 654 43

fixed-pick_picky 669 77 22

fixed-pick_sniffles 736 28 4

fixed-pick_pbsv 385 371 12

fixed-pick_cutesv 672 93 3

random-pick 500 247 21
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FIGURE 7
The online recommendation tool input page.

FIGURE 8
The online recommendation tool output page.
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recommendation performance of the models built using different

multi-classification algorithms differs significantly. Among these,

the RandomForest algorithm achieves optimal values for

f-measure and AUC performance evaluation metrics. The

experimental results are consistent with the theoretical

analysis in the method section.

5 Conclusion

Many bioinformatics approaches provide powerful algorithmic

tools to investigate sequencing data in greater depth. However,

quickly selecting the tool that best fits the data form among these

state-of-the-art approaches becomes a real and practical level

problem. An automatic recommendation method is designed and

presented to facilitate the data analysts in selecting the best SV caller

based on the sequencing data available. To the best of our

knowledge, this is among the first recommendation methods for

bioinformatics tools for analyzing sequencing data, and it has the

potential to aid the research community.

The proposed method is designed under a meta-learning

framework. This is acceptable because identifying the

relationships between the data features and the performance

of callers is a meta-learning problem. Eight data features

distributed at the file and signature levels were selected. The

relationship between the features and the optimal caller was then

identified through a classification algorithm, RandomForest, and

this relationship was used for the caller recommendation. A

series of experiments validated the performance and advantages

of the automatic recommendation, whatever it takes to

recommend the optimal caller with the highest f-measure,

precision, or recall. The experimental results also confirmed

that different SV callers often fit different samples (sequencing

FIGURE 9
Recommendation performance of different
recommendation models constructed with different meta-
features. (A) and (B) show the comparison results of different
meta-features on f-measure and AUC performance
evaluation metrics, respectively, where “Statistical” denotes the
traditional meta-features, “MutationInfo” denotes the variational
signature-basedmeta-features, and “All” denotes the combination
of two meta-features. The ordinate indicates the values of the
corresponding performance evaluation metrics.

FIGURE 10
Recommendation performance of recommendation models
constructed by different classification algorithms. (A) and (B) show
the comparison results of different classification algorithms on
f-measure and AUC performance evaluation metrics,
respectively. The abscissa represents ten commonly used multi-
classification algorithms based on different principles. The
different colored bars for each multi-classification algorithm
indicate their recommendation performance for each SV caller
and overall. The ordinate is the performance evaluation metric
values.
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data). The RA was maintained above 80% on average, which was

much better than the random-pick and fixed-pick strategies.
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