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Skin cutaneous melanoma (SKCM) is the skin cancer that causes the highest

number of deaths worldwide. There is growing evidence that the tumour

immune microenvironment is associated with cancer prognosis, however,

there is little research on the role of immune status in melanoma prognosis.

In this study, data on patients with Skin cutaneousmelanomawere downloaded

from the GEO, TCGA, and GTEx databases. Genes associated with the immune

pathway were screened from published papers and lncRNAs associated with

themwere identified.We performed immunemicroenvironment and functional

enrichment analyses. The analysis was followed by applying univariate/

multivariate Cox regression algorithms to finally identify three lncRNAs

associated with the immune pathway for the construction of prognostic

prediction models (CXCL10, RXRG, and SCG2). This stepwise downscaling

method, which finally screens out prognostic factors and key genes and

then uses them to build a risk model, has excellent predictive power.

According to analyses of the model’s reliability, it was able to differentiate

the prognostic value and continued existence of Skin cutaneous melanoma

patient populations more effectively. This study is an analysis of the immune

pathway that leads lncRNAs in Skin cutaneousmelanoma in an effort to open up

new treatment avenues for Skin cutaneous melanoma.
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Introduction

Melanoma can occur in the skin, mucosa and ocular choroid, with SKCM accounting

for 91% of cases (Dunn et al., 2016; Yang et al., 2016). The disease is closely associated with

Sun exposure; it is partly associated with trauma, immune deficiency and viral infections

(Carr et al., 2019). It has a low incidence, is prone to early metastasis and has a very high

mortality rate. Analysis of global cancer statistics has shown a significant increase in the
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incidence and mortality of SKCM in recent years (Sung et al.,

2021), which accounts for only 5% of all cutaneous malignancies

but is willing to take responsibility for 75 percentage points of

skin tumor-related deaths (Siegel et al., 2021). The incidence of

SKCM is estimated to be about 1/10th that of Non-Melanoma

Skin Cancer (NMSC), but its death toll is 8 times higher than that

of NMSC (Liu-Smith et al., 2017), with approximately

55,000 deaths from SKCM worldwide each year (Lodde et al.,

2020). Metastases, which are difficult to treat and have a poor

prognosis, occur in approximately 20% of patients diagnosed

with early SKCM. The 5-year survival rate for patients with

metastatic SKCM is only 15%–20% (Keilholz et al., 2020; Patel

et al., 2020). In order to diagnose and treat early, the search for

novel SKCM biomarkers and the establishment of risk modelling

are necessary to improve early diagnosis, predict prognosis and

guide clinical treatment. There are more treatment options for

SKCM, of which surgery is the primary treatment, but complete

surgical resection is required as residual cancer cells are the main

cause of tumour recurrence and metastasis (Testori et al., 2016;

Wen et al., 2020). In addition the tumour microenvironment

(TME) is thought to have a huge impact on the behaviour and

characteristics of cancer. The TME consists of non-cellular

components such as the extracellular matrix and signalling

molecule types and non-tumour cell components such as

epithelial cells, smooth muscle cells and immune cells in the

tumour ecological niche, and Zhang’s study found that crosstalk

between tumour and non-tumour cells played an active role in

regulating cancer development and treatment response (Zhang

et al., 2020). In recent years, with the development of targeted

therapies and immunotherapy, some progress has been made in

the treatment of malignant SKCM (Emens et al., 2017; Zaremba

et al., 2020; Korn et al., 2021), such as immune checkpoint

inhibitors (Herbst et al., 2019), peripatetic cell therapy and

tumour vaccines (Qi et al., 2015), which have achieved better

efficacy in clinical trials, bringing new hope for the treatment of

SKCM patients, in which tumour-infiltrating immune cells are

expected to be a new prognostic marker (Goeppert et al., 2013;

Kirilovsky et al., 2016), While studies in zebrafish by Elena

Gómez-Abenza et al. showed that SPINT1 can try to control

changes in the cellular immune microenvironment (TME) of

SKCM (Gómez-Abenza et al., 2019), Min Yan et al. (2021).

Actually pointed to a unique role for T cells in SKCM based on

single-cell sequencing results. As a result, the current study will

look into changes in the immune response of SKCM patients.

Previous studies on the composition of immune cells have

mostly been done by flow cytometry or immunohistochemistry.

Flow cytometry requires the breakdown of tissue into single cell

suspensions, which can lead to the loss of important samples, and

has many steps and high operating conditions, all of which can

affect the results of the analysis; immunohistochemistry is

susceptible to factors such as antibody incubation time and

antibody concentration.

The maturation of gene microarray and sequencing

technologies has generated biological big data, which has

enabled a further leap in the understanding of diseases from

traditional pathology to the genetic level, facilitating the birth and

development of precision medicine. In this study, based on the

microarray data of SKCM and normal skin transcriptional gene

expression profiles from TCGA, GTEx, and GEO databases,

bioinformatics was applied to explore the differential gene

expression characteristics in SKCM and provide ideas for

clinical precision treatment.

In this study, we aimed to develop a transcriptomics-based

approach to reveal the state of immune cell activation and predict

survival outcomes of SKCM patients. We collected three sets of

transcriptional profiling data and corresponding clinical

information from TCGA, GTEx, and GEO databases, explored

the level of immune cell activation in melanoma by obtaining

differential genes at the expression level, constructed a prognostic

model for SKCM, and identified multiple differential genes

associated with immune activation as potential biomarkers. In

addition, we performed a comprehensive analysis of the risk

model, including functional enrichment, immune activation, and

immune infiltration. In short, our findings reveal a critical role

for immune activation in melanoma, and we propose a

convenient approach to help diagnose and predict survival

outcomes in melanoma patients.

Materials and methods

Data collection

Gene expression data for SKCM were downloaded from

the TCGA database (http://portal.gdc.cancer.gov/) for a total

of 472 cases and 807 normal skin tissue samples. Clinical data

of SKCM samples including age, sex, survival time, survival

status, tumour stage and TNM stage were also downloaded.

Two microarray datasets exploring the gene expression profile

of human SKCM, GSE15605 and GSE46517, were obtained by

searching the GEO (https://www.ncbi.nlm.nih.gov/geo/)

database for “Skin Cutaneous Melanoma.” The microarray

data for GSE15605 is based on the GPL570 platform and

includes skin biopsies from 58 SKCM patients and

16 normal controls, while the microarray data for

GSE46517 is based on the GPL96 platform and includes

skin biopsies from 104 SKCM patients and eight normal

controls. The immune pathway gene set was retrieved from

previous relevant studies (Galon et al., 2013; Nirmal et al.,

2018). The data were preprocessed as follows: the downloaded

dataset was firstly, the probes corresponded to the genes, the

null probes were removed and multiple probes corresponded

to the same gene we then selected the median of them as the

expression level of the gene.
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Extraction of relevant differentially
expressed genes (DEGs)

Integrate the TCGA-SKCM and GTEX SKIN datasets,

remove batch effects from both sets of data using the

COMBAT function, and then do differential analysis on

tumour samples from TCGA-SKCM and normal samples

from GTEX SKIN and datasets GSE15605 and

GSE46517 using the R package edgeR; online analysis tool

geo2r to screen for differential genes using the geo database

(https://www.nvbi.nlm.nih.gov/geo/Geo2r/). The limma package

in R (Smyth et al., 2005) was used to screen DEGs. A threshold of

FDR <0.1 was set, and to visualize gene expression, all genes in

the two datasets were plotted separately as volcano plots. For the

three datasets, Venn Diagrams of two sets of differential genes

were drawn according to the screening criteria using the software

Draw Venn Diagram (http://bioinformatics.psb.ugent.be/

webtools/Venn/) to screen from the three datasets for

common DEGs and to draw in R visualised heat map.

Consensus clustering of subtypes based
on DEGs in SKCM

Up-regulated gene molecules were analysed using the

Consensus Cluster Plus package to identify SKCM subtypes

(Gravendeel et al., 2009). NMF hierarchical clustering has

been conducted on an adapted uniform dataset with k values

ranging from 2 to 9, and the k value with the best cluster stability

was chosen based on the clustering effect. Consensus matrices

(CM) and CDF curves of consensus scores were used to

determine the optimal number of clusters. The t-distributed

stochastic neighbor embedding (t-SNE) method was used to

validate the isoform assignment of mRNA expression

information corresponding to immune-related genes (Zhou

et al., 2018). Box plots and heat maps depicting the

expression levels of these 16 genes in the two subtypes were

used to investigate the differences in survival data between these

two groups with survival curves.

Estimation of the immune
microenvironment in two groups of
melanomas

Gene expression data from 472 melanoma tissues were

extracted from mRNA expression data, data corrected using

the R software limma package, and the abundance of

infiltrating immune cells in each sample was estimated by

single sample gene set enrichment analysis (R package GSVA)

(Zhang et al., 2021; Xu et al., 2022a) and the MCPcounter

algorithm. M1 macrophages, M2 macrophages,

M0 macrophages, follicular helper T lymphocytes, unactivated

CD4+ memory T lymphocytes, activated CD4+ memory T

lymphocytes, γδ T lymphocytes, CD8+ T lymphocytes,

regulatory T lymphocytes, naive CD4+ T lymphocytes,

unactivated natural killer cells, activated natural killer cells,

unactivated mast cells, activated mast cells, resting dendritic

cells, activated dendritic cells, neutrophils, eosinophils. Box

plots showing trends in the abundance of different immune

cell infiltrates between the two groups, based on a p <
.05 screening sample.

Assessment of DEGs and functional
enrichment in two groups of SKCM

On the two SKCM datasets, differential gene expression

analysis was performed using the statistical software R4.1.3.

Differentially expressed genes (DEGs) were identified using a

p-value adj. p-value .05 as a screening condition and visualized as

a heat map in R. The DAVID (Database for Annotation,

Visualisation, and Integrated Discovery) database (https://

david.ncifc.rf.gov/) was used to perform GO functional

annotation and KEGG pathway analysis on the

aforementioned common DEGs. The DAVID database

combines biological data and analysis techniques to provide

researchers with gene and protein annotation capabilities. GO

is a bioinformatics tool that is used to analyze and annotate

biological processes in genes. GO is divided into three parts:

molecular function, biological processes, and cellular

components. KEGG analysis allows one to analyze signaling

pathways from large scale molecular datasets generated by

high throughput experimental techniques, including multiple

protein interactions and processes that together regulate

cellular function and metabolic activity. For threshold

screening, an adjusted p .05 is used, and the results are

visualized using the R language ggplot2 package.

Multi-factor cox prognostic regression
model

A multi-factor cox regression analysis was used to screen

variables for significant prognosis, and a multi-factor cox

regression analysis was built to model the risk of

immunogenesis, with each patient receiving a risk score based

on the discovered formula.

Statistical analysis

R was used for all statistical analyses. Cox regression analyses

were carried out using the R packages survival and survminer for

one-way and multi-way cox regression, with p-value .05 set as the

prognostic significant variable.
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Results

Identification of DEGs in melanoma
patients

After screening the inclusion conditions, DEGs were

identified in SKCM and normal control skin using the

GSE15605, GSE46517, and TCGA datasets. The same

methods and thresholds were used to analyse the differences

between tumour and normal samples from GSE15605 and

tumour and normal samples from GSE46517, and to plot the

volcanoes. The tumour samples from GSE15605 had

156 upregulated genes; 564 downregulated genes; and the

tumour samples from GSE46517 had 1,634 upregulated genes;

FIGURE 1
DEG identification and analysis. (A)Volcano plot of DEGs in TCGA-SKCM, GSE15605, and GSE46517 datasets. (B) Venn diagram: Venn plots of
DEGs in the TCGA-SKCM, GSE15605, and GSE46517 datasets, with the overlapped part representing the 16 common DEGs in the three data sets. (C)
The 16 overlapping parts portray the DEGs that are shared by the three data sets.
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FIGURE 2
Identification of immune-related SKCM subtypes in the TCGA cohort. (A) The heatmap depicts the consensus matrix at k = 2 in the TCGA
group. (B)The cumulative distribution function (CDF) curves in consensus cluster analysis. Consensus scores for different subtype numbers (k = 2–9)
are presented. (C)The stratification into three subtypes validated by t-SNE in TCGA cohorts. Each dot represents a single sample, and each color
denotes a subtype. (D)Box figure:the 16 overlapped part represents the commonDEGs in the two TCGA cohorts.(E) heatmap:the 16 overlapped
part represents the common DEGs in the two TCGA cohorts.(F) Survival analysis of patients with the three diffuse glioma subtypes (IM-Hot and IM-
Cool) in TCGA cohorts. The log-rank test was conducted to determine the significance of the differences.
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FIGURE 3
Immune characteristics of the two subtypes in TCGA cohort. (A,B) The heatmap showing the abundance of immune-cell populations
calculated byGSVA andMcpcounter in the two subtypes. (C,D) Box plots show trends in the abundance of different immune cell infiltrations between
the two subtypes in TCGA cohort.
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1894 down-regulated genes. All genes in the three datasets are

plotted as volcanoes (Figure 1A), with blue representing

upregulation and red representing downregulation. To better

understand the distribution of DEGs, a Venn diagram was

plotted separately from the visualised heat map using the

online software Draw Venn Diagram (Figures 1B,C).

Differentiation of two subtypes of
cutaneous melanoma

Based on 16 overlap genes, 472 SKCMpatients were classified

into different subtypes (K = 2, 3, 4, 5, 6, 7, 8, and 9) using

unsupervised consensus clustering analysis. Molecular typing

was performed on the TCGA-SKCM samples to obtain the

results shown in Figure 1. The best division (k = 2) was

selected as the optimal number of clusters based on the CDF

curve (Figures 2A,B), and two Immune-related Clusters were

identified, including the IM-Hot Cluster and the IM-Cool

Cluster. t-SNE was performed to reduce the dimensionality in

order to verify the assignment of subtypes. The two-dimensional

t-SNE distribution pattern was confirmed to be robustly

consistent with the CDF curve (Figure 2C), a result that

suggests that the two sets of samples have been successfully

separated. Among the two Immune-related Clusters, the IM-Hot

Cluster upregulated most of the immune-related genes and

showed significant immunoreactivity, while the IM-Cool

Cluster showed relatively low immunoreactivity (Figures

2D,E). We also explored the differences in survival

information between the two groups; the survival curves

showed a significant difference in overall survival between the

two groups (p < .0001); with the IM-Cool group having a

significantly worse prognosis; suggesting that the immune

response in the IM-Hot group favoured the onset of anti-

tumour activity and thus the patient’s prognosis, while the

IM-Cool group was not as active due to the immune response

or was suppressed by tumour cells. The IM-Cool group had a

significantly worse prognosis because the immune response was

not active or was suppressed by the tumour cells (Figure 2F).

Acquisition of immune pathway gene sets
related to immune pathway gene

Given the significance of TME in tumour growth and

treatment, we investigated it using a variety of immune

assessment algorithms. First, GSVA enrichment analysis

revealed that SKCM patients in the IM-Hot group have been

strongly associated with the Activated B cell pathway, Activated

CD4 T cells, Activated CD8 T cells, Eosinophil, Immature

dendritic cell, Mast cell natural killer cell, Plasmacytoid

dendritic cell, CD56bright natural killer cell, Macrophage, and

other immune pathways and functions (Figure 3A). We then

used theMcpcounter (R package IOBR) algorithm to evaluate the

differences in immune cell intrusion between the two groups, and

the heatmap depicts the results. Compared to the IM-Cool

Cluster, the IM-Hot Cluster had higher expression levels of

T_cells, Cytotoxic_lymphocytes, B_lineage, NK_cells,

Monocytic_lineage, Myeloid_dendritic_cells, and Neutrophils

expression levels were significantly higher in the IM-Hot

group than in the IM-Cool group (Figure 3B), consistent with

the findings of the GSVA analysis The IM-Hot group’s strong

immune response was affirmed. The CIBERSORT algorithm was

then used to analyze the classes and ratios of the 30 immune cells.

Violins were used to represent the relative proportions of the

30 immune cells in the IM-Cool Cluster and IM-Hot Cluster, and

the results revealed significant differences in immune cell

distribution according to the risk model. Furthermore, when

compared to IM-Hot Cluster, we concluded that, with the

exception of CD56dim natural killer cells, which did not vary

statistical significant between both the two groups (p > .05), the

remaining immune cells such as T-cells, B-lineage, cytotoxic-

lymphocytes, and NK-cells showed high expression in the IM-

Hot Cluster (p < .05) (Figures 3C,D). The results showed that

immune cell infiltration was significantly richer in the IM-Hot

group than in the IM-Cool group.

Differential analysis and functional
enrichment analysis between the IM-Hot
and IM-Cool groups

We performed differential analysis of the two melanoma

subtypes to identify specific differentially expressed genes and

signalling pathways. The genes were significantly differentially

expressed when absolute |logFC| > 0 and FDR <0.1. (Figure 4A).
We further performed GO functional enrichment analysis and

KEGG pathway enrichment analysis for the up-regulated genes

in the IM-Hot group and the IM-Cool group, respectively. As

shown in the figure, the up-regulated DEG in the IM-Hot group

compared to IM-Cool, GO BP was mainly enriched in peptide

cross-linking, keratinocyte differentiation, epidermal cell

differentiation, skin development, epidermis development,

keratinization, cornification. KEGG: Nicotine addiction, Taste

transduction, GABAergic synapse, Morphine addiction,

Retrograde endocannabinoid signaling, Neuroactive ligand-

receptor interaction (Figure 4B). IM-Hot group compared to

the down-regulated DEG in the IM-Cool, GO BP was mainly

enriched in T cell activation, regulation of lymphocyte activation,

lymphocyte differentiation, regulation of T cell activation,

leukocyte cell-cell adhesion, regulation of leukocyte cell-cell

adhesion, T cell differentiation, positive regulation of

leukocyte cell-cell adhesion. KEGG: Cytokine−cytokine

receptor interaction, Chemokine signaling pathway, Viral

protein interaction with cytokine and cytokine receptor,

Hematopoietic cell lineage, Cell adhesion molecules, T cell

Frontiers in Genetics frontiersin.org07

Shen et al. 10.3389/fgene.2022.1095867

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1095867


receptor signaling pathway, Natural killer cell mediated

cytotoxicity, Th17 cell differentiation, Primary

immunodeficiency, Intestinal immune network for IgA

production (Figure 4C).

Construction of a risk model for copper
immunoreactivity-related genes in
cutaneous melanoma

Although the results of this study can predict the prognosis of

SKCM patients, these studies are based on patient populations

and therefore cannot accurately predict the immune activation

status of individual patients. Therefore, we constructed a

prognostic model for SKCM by basing it on the expression

levels of immune activation-related genes.

Univariate Cox regression combined with multifactorial cox

regression was used to analyse 16 genes (Figures 5A,B), and three

genes (CXCL10, RXRG, SCG2) were finally screened. Based on

the expression of these three genes and their corresponding

regression coefficients, Risk score = 0.924583*exp (RXRG) +

0.885278*exp (SCG2) − 0.155031*exp (CXCL10).

SKCM patients were divided into high-risk and low-risk

groups based on the critical value of the median risk score

(Figure 6A). k-M survival analysis showed that the prognosis

of SKCM patients was significantly correlated with the risk score,

and the survival curves demonstrated a significant difference in

overall survival between the two groups (p < .0001, R package

survivor (Figure 6B); survminer); with the high-risk group

having a significantly worse prognosis. The ROC curve was

used to assess the accuracy of the prediction model. The area

under the ROC curve at 1, 3, and 5 years was 0.6447, 0.6932, and

6,864 respectively, indicating that the risk score can be used to

reliably predict the prognosis of patients with SKCM (Figure 6C).

Discussion

Despite significant progress in SKCM security check,

diagnosis, and therapeutic interventions, the prognosis of

FIGURE 4
GOand KEGG analysis results of genes. (A) The heatmap showing theDEGs in the two subtype TCGA cohorts. (B)Up-regulated genes in the IM-
Hot group GO function enrich-ment results, and KEGG pathway enrichment results. (C) Up-regulated genes in the IM-Cool group GO function
enrichment results, and KEGG pathway enrichment results.
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FIGURE 5
Regression analysis. (A) Forest plots depicting the univariate Cox regression analysis. (B)multivariate Cox regression analysis.

FIGURE 6
Prognostic value of the proposed subtyping for SK CM. (A) Risk Score, and expression of 3-gene in TCGA training set. (B) KM survival curve
distribution of 8-gene signature in training set. (C) ROC curve of 3-gene signature classification and AUC.
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advanced malignant SKCM remains poor (Zhao et al., 2019).

Given that the lack of quick and efficient diagnostic tools and

early metastases characteristics is the primary cause of this poor

prognosis and mortality rates, we decided to use bioinformatics

analysis to find effective biomarkers for early diagnosis.

Changes inside the cellular immune microenvironment

(TME) have been discovered to play a critical role in

regulating the progression of various cancers and can affect

the prognosis of SKCM in recent years. In yang’s study, lower

immune cell activity was linked to a worse prognosis in SKCM

(Yang et al., 2022). Furthermore, Su’s research demonstrated that

increased immune activity can successfully inhibit tumor

progression (Su et al., 2022) and is an extremely promising

cancer strategy for treating. Meanwhile, a growing number of

studies have revealed that the immune cell transcriptome is

important in the biology of SKCM as a starting to emerge

molecular and genetic biomarker (Wang et al., 2020). There

have been no studies on the link between immune signalling

pathway genes and the prognosis of SKCM. We decided to

investigate how immune activation-related genetic traits

regulate the immunologic process and thus influence tumour

growth and patient prognosis in SKCM based on the scientific

backstory described above.

Bioinformatic analyses were performed on normal skin

samples and SKCM samples based on the datasets GSE15605,

GSE46517, TCGA, and GTEx databases. In this study,

differential analysis of tumour samples from TCGA-SKCM

and normal samples from GTEX SKIN; yielded

10,917 upregulated genes in tumour samples;

10,734 downregulated genes; 156 up-regulated genes in

tumour samples from GSE15605; 564 downregulated genes;

1,634 upregulated genes in tumour samples from

GSE46517.1894 downregulated genes; doing intersection of

upregulated genes in tumor samples from the three data sets,

16 overlap genes were obtained, including CXCL13, BCL2A1,

CXCL10, AIM2, SNX10, RXRG, IL12RB2, IRF4, SPP1, MIA

SCG2, TFEC, C2, FCGR1B, TNFSF4, and S100A1, all of these

16 genes were upregulated in tumour samples in different

datasets, indicating that these 16 genes are widely activated in

tumours and significantly enriched for biological processes

related to the immune response, suggesting activation of the

immune response in SKCM tumours.

Consensus clustering (R package ConsensusClusterPlus) was

done on TCGA-SKCM samples using 16 overlap genes to

molecularly typify SKCM for tumours; all samples were

divided into a total of two phenotypes. tSNE plots show that

the two class curves are the flattest curves, indicating that class

2 is the optimal classification. tSNE plots show that the two

phenotypes we divided phenotypes are clearly distinguishable in

the low-dimensional space, indicating the robustness of the

typing (R package Rtsne). The box plots show a consistent

expression trend for most of the 16 genes in the two

typologies, i.e. significantly higher in one group than in the

other; we therefore named the two typologies Immune-Hot

and Immune-Cool; IM-Hot significantly upregulates most of

the immune-related genes, indicating activation of immune

activity, while IM-Cool Cool; we explored differences in

survival information between the two groups; survival curves

showed significant differences in overall survival between the two

groups (p < .0001, R package survivor; survminer); with the IM-

Cool group having a significantly worse prognosis; suggesting

that the immune response in the IM-Hot group favours anti-

tumour activity, which in turn favoured patient prognosis;

whereas the IM-Cool group had a worse patient prognosis

due to an inactive immune response, or suppression by

tumour cells.

Immune cell infiltration in both groups was assessed by both

single sample enrichment analysis (R package GSVA) as well as

Mcpcounter (R package IOBR); the heat map shows the trend of

different immune cell infiltration abundance between the two

groups; the results indicate that immune cell activity and

infiltration abundance were significantly higher in the IM-Hot

group than in the IM-Cool group; further confirming the high

immune response in the IM-Hot group; further confirming the

high immune response in the IM-Hot group. Box plots show the

trend of different immune cell infiltration enrichment between

the two groups; the results are consistent with the immune heat

map for differential analysis, GO functional enrichment analysis

and KEGG pathway enrichment analysis (R package

clusterProfiler, adjust p-value < .05) between the IM-Hot and

IM-Cool groups. Upregulated genes in the IM-Hot group were

enriched in T cell immunity and immunochemokine-related

pathways and functions, indicating extensive activation of

T cell antitumour immunity in the IM-Hot group.

Finally, using univariate Cox, LASSO, and multivariate Cox

regression analyses, three protective innate immune genes were

identified to build a risk predictive model. This stepwise

downscaling approach to ultimately screen out prognostic

factors critical genes and then use them to build a risk model

has been noted in many great articles and is reliable (Jiang et al.,

2022). Subsequent studies have confirmed the risk model’s

outstanding predictive power. In addition, we developed a

precise trend line to better predict SKCM patients’ 1-, 3-, and

5-year survival rates. We were shocked to learn that all three

immunologic activation genes (CXCL10, RXRG, and SCG2) have

been linked to cancer progression. According to previous

research, nanoparticle shipment of CXCL10 plasmids helps

promote T cell incursion in tumors and synergizes with anti-

PD1 immunoglobulin activity (Ma et al., 2022). Kawaguchi et al.

(2022) discovered a significant rise in CXC motif chemokine

ligand 10 (CXCL10) mRNA levels as well as CTL infiltration in

tumors. Liu et al. (2022), showed that upregulation of Li et al.

(2017) showed that CXCL10/CXCL11 levels significantly

enhanced CD8+ TIL recruitment in tumour tissue. High

concentrations of CXCL10 were deposited in HCM identified

by antibody arrays, whichmay help to predict clinical outcome in
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HCC patients. In addition, Schulten et al. (2015) showed that

RXRG was significantly upregulated in follicular FVPTCs of

papillary thyroid carcinoma. Smetannikova et al. (2019)

reported that results of differential expression in DNA

samples from lung cancer versus normal lung tissue showed

that RXRG had high sensitivity and specificity and possessed

good diagnostic potential. This is consistent with our findings,

indicating that RXRG is essential in the advancement of SKCM.

Notably, SCG2 has been implicated in the progression of colon

cancer and straightforward cell carcinoma of the kidneys. Wang

et al. (2022) proved that SCG2 is a significant predictor forecaster

of colorectal cancer using several functional assays (CRC). In

CRC patients, high SCG2 utterance was associated with poor

survival and advanced clinical stage. SCG2 may start regulating

numerous cancer and immune-related pathways in CRC,

influencing tumor immunity by trying to regulate immune

cell infiltration and monocyte polarization. SCG2 was

identified as a particular antigen for straightforward cell renal

cell carcinoma (ccRCC) and not only was associated with a poor

prognosis but was also strongly associated with immune cells and

immune roadblocks, according to Xu’s research (Xu et al.,

2022b). Roudi et al. evaluated the genomic expression profile

of D10 melanoma cells. In CD133 (+) D10 cells, many genes

related to tumor aggressiveness were upregulated, including

some of the genes in this study (Roudi et al., 2015). Our

results suggest that CXCL10 may play a protective factor in

lowering the risk of SKCM and trying to improve prognosis,

while RXRG, SCG2 was affiliated with a poor prognosis in

SKCM, a trying to find in line with previous reports of similar

research, with resulting methods to be investigated further. We

discovered that the lymphocytes and immunity in the IM-Hot

group were greater than the intrusion status in the IM-Hot group,

and the diagnosis was better. It is recommended that the greater

standard of immune penetration may be related to the better

prognosis of patients in the low-risk group. These findings imply

that the reporting tool we developed is heavily influenced by the

immune landscape of the SKCM micro—environment. This also

implies that immune cell descriptor and organ function

activation could indeed influence tumor prognosis. More

research is required to discover the molecular mechanisms

underlying SKCM immunity.

This research investigated the prognostic role of

immunological pathways in the prognosis of SKCM tumour

cells. We built a model for predicting the prognosis of SKCM

based on immune pathway genes and TCGA data from SKCM

patients, which gives promise for SKCM therapy and diagnosis.
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