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Introduction: Recurrent implantation failure (RIF) is a distressing problem in assisted
reproductive technology (ART). Immunity plays a vital role in recurrent implantation
failure (RIF) occurrence and development, but its underlying mechanism still needs
to be fully elucidated. Through bioinformatics analysis, this study aims to identify the
RIF-associated immune cell types and immune-related genes.

Methods: The differentially expressed genes (DEGs) were screened based on RIF-
associated Gene Expression Omnibus (GEO) datasets. Then, the enrichment analysis
and protein-protein interaction (PPI) analysis were conducted with the DEGs. The
RIF-associated immune cell types were clarified by combining single sample gene
set enrichment analysis (ssGSEA) and CIBERSORT. Differentially expressed immune
cell types-relatedmodules were identified by weighted gene co-expression network
analysis (WGCNA) and local maximal quasi-clique merger (lmQCM) analysis. The
overlapping genes between DEGs and genes contained by modules mentioned
above were delineated as candidate hub genes and validated in another two external
datasets. Finally, the microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) that
interacted with hub genes were predicted, and the competing endogenous RNA
(ceRNA) regulatory network was structured.

Results: In the present study, we collected 324 DEGs between RIF and the control
group, which functions weremainly enriched in immune-related signaling pathways.
Regarding differential cell types, the RIF group had a higher proportion of activated
memory CD4 T cells and a lower proportion of γδ T cells in the endometrial tissue.
Finally, three immune-related hub genes (ALOX5AP, SLC7A7, and PTGS2) were
identified and verified to effectively discriminate RIF from control individuals with
a specificity rate of 90.8% and a sensitivity rate of 90.8%. In addition, we constructed a
key ceRNA network that is expected to mediate molecular mechanisms in RIF.

Conclusion: Our study identified the intricate correlation between immune cell
types and RIF and provided new immune-related hub genes that offer promising
diagnostic and therapeutic targets for RIF.
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1 Introduction

As a recognized global public health issue, infertility is estimated to
affect at least 186 million people (Inhorn and Patrizio, 2015).
Encouragingly, assisted reproductive technologies (ARTs) are
considered safe medical interventions, with approximately eight
million children born (Faddy et al., 2018; Fauser, 2019). However,
recurrent implantation failure (RIF), which generally refers to a
woman’s inability to conceive after at least three transfers of
quality embryos in vitro fertilization (IVF) (Coughlan et al., 2013),
has emerged as a challenging clinical dilemma in ART, frustrating
clinicians and patients alike (Hill, 2021). Approximately 10%-15% of
couples experienced RIF during in vitro fertilization-embryo transfer
(IVF-ET) (Busnelli et al., 2020). The underlying mechanisms of RIF
are complex and related to various factors, such as the maternal
immune system, embryonic and parental genetics, anatomical
characteristics, hematological factors, reproductive tract
microbiome, and endocrine milieu (Franasiak et al., 2021).
Numerous studies have suggested that immune factors, especially
the immune microenvironment of the endometrium, play a crucial
role in the process of pregnancy (Larsen et al., 2013; Sebastian-Leon
et al., 2018; Robertson et al., 2022). Both flow cytometry and tissue
immunostaining studies showed that human decidual leukocytes in
the first trimester are predominantly natural killer (NK) cells (~70%)
and macrophages (~20%) (Trundley and Moffett, 2004; Bulmer et al.,
2010). The proportion of T cells is highly variable (10%–20%), while
dendritic cells (DCs), B cells, and NKT cells are rare (Erlebacher,
2013). The tolerance of decidual T cells to fetal alloantigens (especially
HLA- C allotypes) expressed in the extravillous trophectoderm has
been reported to be critical for a successful pregnancy (Moffett and
Shreeve, 2022). Nevertheless, the function of decidual T cells is
currently largely unknown (Erlebacher, 2013). In humans, decidual
changes occur to some extent throughout the entire endometrium
during the secretory phase of the menstrual cycle, even in the absence
of implantation (Erlebacher, 2013). Thus, the endometrium taken
from the mid-luteal phase in this study can characterize the immune
cellular changes in the decidua of early pregnancy.

In recent years, with the development and widespread use of high
throughput “omics” approaches, bioinformatics analysis can be
applied to mine these published data to identify novel genes and
biomarkers for many diseases (Segundo-Val and Sanz-Lozano, 2016;
Xu et al., 2022). For instance, Lin et al. used bioinformatics analysis to
identify AXL, SLC7A11, and ubiquilin 1 (UBQLN1) as essential
oxidative stress-related genes with predictive value for the
development of RIF (Lin and Lin, 2022). Although there are many
studies using bioinformatics approaches to study differentially
expressed genes (DEGs) and immune infiltration in RIF and
recurrent pregnancy loss (RPL) (Ticconi et al., 2019; Mrozikiewicz
et al., 2021), few studies on RIF have applied deep bioinformatics
analysis, such as WGCNA and CIBERSORT, which limits insights for
a more comprehensive elucidation of RIF etiology.

Our study aims to explore immune cell types and hub genes that
may be involved in RIF occurrence through multiple transcriptional
microarray datasets by applying deep bioinformatics analysis. This
study will contribute to understanding the mechanisms of immune
dysfunction in RIF and provide therapeutic insights.

2 Materials and methods

2.1 Microarray data acquisition

Gene expression profiles of RIF were screened from the GEO
(http://www.ncbi.nlm.nih.gov/geo) database. Inclusion criteria were as
follows: 1) Homo sapiens expression profiling by the array; 2) samples
were endometrium of RIF patients or control individuals (CON)
during the window of implantation; 3) datasets contained ten or
more samples with at least five patients in each group, and 4) RIF
patients and fertile controls were included in one experiment. This
study ultimately included four datasets sed on the above selection
criteria, including GSE111974, GSE92324, GSE26787, and GSE71835.
Details of all data are shown in Table 1.

2.2 Data preprocessing and study design

We merged GSE111974 and GSE92324 microarray data as test
datasets. Specifically, the first step is to convert the series matrix file
from gene probe IDs to gene symbol codes, averaged for the case of
one gene corresponding to multiple probes. The second step is to
remove the batch effect, we first used limma’s removeBatchEffect
function (Ritchie et al., 2015), yet it failed to eliminate the batch effect
between GSE111974 and GSE92324 (Supplementary Figure S1). We
then used sva’s combat function (Leek et al., 2012) to eliminate the
batch effect between the datasets, and Supplementary Figure S2
showed that the batch effect was successfully eliminated for the
merged data. This may be explained by the fact that the
removeBatchEffect function removes known batch effects from the
data (Ritchie et al., 2015), while sva package not only removes known
batch effects but also adjusts for other potentially unwanted sources of
variation in the data for subsequent analysis (Leek et al., 2012).

The final step is to normalize the expression values through the
limma package to have a similar distribution in a set of arrays. Here,
we have drawn up a flow chart of the analysis process (Supplementary
Figure S3).

2.3 DEGs selection and enrichment analysis

The differentially expressed genes (DEGs) between RIF patients
and CON were selected by using the limma package with the |Log2FC
(fold change) | > 1 and adjusted p-value < 0.05. Analyses of Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) for DEGs were performed by the clusterprofiler package
(Yu et al., 2012), the significantly different GO terms were determined
by thresholds adjusted p-value < 0.05, and KEGG pathways with a
p-value <0.05 was selected. In addition, to discover candidate genes
sets or pathways that likely contribute to RIF, gene set enrichment
analysis (GSEA) (Subramanian et al., 2005) was performed by the
clusterprofiler package to scrutinize the gene expression profile at an
entire level, and C5 (ontology gene sets) was chosen for functional
enrichment analyses. The normalized enrichment score (|NES| >1),
p-value <0.05, and adjusted p-value <0.05 were set as threshold
criteria.
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2.4 Evaluation of immune cell types alteration

In this study, 28 immune cell types and associated 782 marker
gene signatures were first obtained from two previously reported
studies (Supplementary Table S1) (Barbie et al., 2009; Charoentong
et al., 2017). Then, the abundance of these immune cell types in
endometrial samples was calculated by the single sample gene set
enrichment analysis (ssGSEA) method based on the genomic variance
analysis (GSVA) algorithm. Recently, the application of ssGSEA in
deconvolution of bulk gene expression data has been widely
performed (Zhao et al., 2021; Liu et al., 2022).

CIBERSORT is another method to calculate cell composition based
on expression profiles. In the present study, we used CIBERSORT to
assess immune cell infiltration in endometrial tissue between RIF and
CON. The leukocyte signature matrix (LM22) was used as a reference
expression signature with 1,000 permutations (Zhou et al., 2021).
LM22 signature matrix contains 22 infiltrating immune cell
components and the corresponding 547 signature genes
(Supplementary Table S2) (Newman et al., 2015). Then the Wilcoxon
test was conducted to determine significant differences in immune cell
types between RIF and CON.

2.5 Gene co-expression network
construction and modules selection

The weighted gene co-expression network analysis (WGCNA) is an
algorithm that can find modules of a co-expressed gene with high
biological significance (Langfelder and Horvath, 2008). In this study,
to reduce the whole network’s computation size but maintain a scale-free
topological network, we selected the genes in the top 75% based on the
magnitude of the variance. Then we entered them into the WGCNA
package in R to identify the gene modules associated with significantly
altered immune cell types. Briefly, genes with similar expression patterns
were assigned to co-expressionmodules by weighted correlated adjacency
matrices and clustering analysis. Firstly, the weighted adjacency matrix is
constructed by calculating an appropriate soft threshold β that satisfies the
criteria for a scale-free network. Afterward, the weighted adjacencymatrix
was converted to a topological overlap matrix (TOM), and the
corresponding dissimilarity degree (1-TOM) was generated. Then,
module identification was performed using the dynamic tree-cutting
method, and modules with differences less than 0.25 were merged. In
addition, the relationship between module eigengene values and immune
cell types was assessed by Pearson correlation.

Additionally, we performed the local maximal quasi-clique merger
(lmQCM) to network mining (Zhang and Huang, 2014) based on the
merged matrix by the lmQCM package in R. The parameters for

lmQCM were set as follows: gamma = 0.55, t = 1, lambda = 1, beta =
0.4, and minimum cluster size = 10. The lmQCM is a weighted
network mining algorithm that detects weak quasilinear modules in
a weighted graph and applies it to the discovery of functional gene
clusters. The algorithm is characterized by a greedy approach using
hierarchical clustering that does not allow overlap between modules
but allows genes to be shared between multiple modules. This is in
accordance with the fact that genes are often involved in multiple
biological processes (Bichindaritz et al., 2021).

Among the weighted network modules constructed from
WGCNA and lmQCM, we selected the module with the highest or
lowest correlation coefficient as the specific module associated with the
differentially expressed immune cell types. This research defined the
modules most relevant to γδ T cells and activated memory CD4 T cells
as crucial modules. The genes contained in the crucial modules were
defined as differentially expressed immune cell types-related genes
(DE ICTRGs).

2.6 Identification and enrichment analysis of
hub genes

The overlapping genes between DEGs and DE ICTRGs were
identified with the Venn online platform (http://bioinformatics.psb.
ugent.be/webtools/Venn/) and defined as potential hub genes. If too
many genes were overlapping, they would be further filtered according
to the protein-protein interaction information from STRING (https://
string-db.org) with confidence scores ≥0.4. The interaction file
(string_interactions.tsv) was downloaded. Subsequently, ten
algorithms of cytoHubba (Chin et al., 2014) in Cytoscape 3.9.0
(Shannon et al., 2003) were conducted to score each node gene,
namely, MCC (Maximal Clique Centrality), MNC (Maximum
Neighborhood Component), Degree, EPC (Edge Percolated
Component), BottleNeck, EcCentricity, Closeness, Radiality,
Betweenness, and Stress. Lastly, the ten node genes with the
highest scores for each algorithm were examined for hub genes
using the UpSet package in R. Furthermore, GeneMANIA (http://
genemania.org) analyses were performed to examine protein and gene
interactions, pathways, co-expression, co-localization, and protein
domain similarities (Franz et al., 2018).

2.7 Validation and efficacy evaluation of hub
genes

To further validate the accuracy and reliability of the hub genes
selected from test datasets, two external datasets, GSE26787 and

TABLE 1 Basic information of selected datasets.

GEO Platform Samples size Average age (years) Attribute Country/References

RIF/CON RIF/CON

GSE111974 GPL17077 24/24 33/31 Test Turkey (Bastu et al., 2019)

GSE92324 GPL10558 10/8 33/26 Test India (Pathare et al., 2017)

GSE26787 GPL570 5/5 33/32 Validation France (Ledee et al., 2011)

GSE71835 GPL10558 6/6 31/25 Validation India (Pathare et al., 2017)
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GSE71835 microarray data, were downloaded from the GEO database
and combined using the approach mentioned above. Firstly, the
expression of hub genes was extracted from the test sets and
validation sets and analyzed by the Wilcoxon test, with a p-value
of <0.05 defined as statistical significance. Then, we constructed a

prediction model using the differentially expressed hub genes by the
generalized multivariate regression with the test sets. Finally, we
calculated the sensitivity rate and specificity rate of the model,
Receiver Operating Characteristic (ROC) analysis was also
performed to detect the Area Under the Curve (AUC).

FIGURE 1
Functional enrichment analysis of DEGs. (A), volcano plot of DEGs between RIF and CON individuals. There were 223 up-regulated and 101 down-
regulated genes in the RIF group. Besides, two vertical dashed lines represent Log2 (fold change) at -1 and 1; the horizontal dashed line represents the adjusted
p-value at 0.05. (B), the heatmap of DEGs between the RIF and CONgroups. (C), the top eight GO terms in the biological process were shown in the functional
enrichment analysis of DEGs. Adjusted p-value <0.05 was identified as significantly changed GOs. (D), top eight KEGG pathway analysis was conducted
on DEGs, and p-value <0.05 was selected as a significantly changed KEGG pathway. (E), GSEA plot showing the top 5 enriched immune-related gene sets in
the RIF and CON groups based on the adjusted p-value. Abbreviations: DEGs, differentially expressed genes; RIF, recurrent implantation failure; CON, control
individuals; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, gene set enrichment analysis.
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2.8 Construction of competing endogenous
RNA (ceRNA)-regulating network

The multiMiR package in R is a comprehensive collection of
predicted and validated miRNA–target interactions and their
associations with diseases and drugs (Ru et al., 2014), including
14 databases. In the present study, we selected three databases
(DIANA-microT, miRanda, and TargetScan) to predict the targeted
miRNAs of the hub genes. The top 35% of miRNAs in the
prediction scores of these three databases were intersected. The
intersection was used for subsequent analysis. For all long non-
coding RNAs (lncRNAs)-miRNA interaction data were acquired in
the starbase database (https://starbase.sysu.edu.cn/) (Li et al.,
2014), and the target lncRNAs were filtered according to
clipExpNum >4. Eventually, the established network was
visualized by Cytoscape software.

2.9 Statistical analysis

In this study, all data analysis and visualization were performed
using R software (version 4.0.5; https://www.r-project.org/) with
appropriate packages. p-value <0.05 was considered significant.

3 Results

3.1 Data pre-processing

We downloaded GSE111974 and GSE26787 from the GEO
database as test datasets, including 34 RIF and 32 normal
endometrial tissues. Box plots and principal component analysis
shows the data before batch correction (A, C, and E) and after
batch correction (B, D, and F) (Supplementary Figure S2), which
indicates that the batch effect was successfully eliminated from the
combined data.

3.2 DEGs identification and enrichment
analysis

A total of 324 DEGs were identified (223 significantly up-regulated
genes and 101 significantly down-regulated genes) (Figures 1A,B;
Supplementary Table S3). Then, the DEGs were subjected to GO
and KEGG pathway enrichment analyses. The GO enrichment
revealed that these DEGs were mainly associated with carboxylic
acid transport, organic acid transport, and detoxification in the
biological process. Regarding cellular components, the genes were
primarily enriched in the apical plasma membrane, apical part of the
cell, and collagen-containing extracellular matrix. As for molecular
function, the genes were enriched primarily in anion transmembrane
transporter activity, organic anion transmembrane transporter
activity, and active transmembrane transporter activity (Figure 1C;
Supplementary Table S4). Likewise, the KEGG analysis demonstrated
that these DEGs are relevant to immune pathways such as TNF
signaling pathway, Leukocyte transendothelial migration, and NF-
kappa B signaling pathway (Figure 1D; Supplementary Table S4). In
addition, the GSEA results showed that 385 gene sets were significant
at an adjusted p-value <0.05, and most of the enriched gene sets were

related to various immune responses (Supplementary Table S5).
Figure 1E shows the five most enriched immune-related gene sets
based on the adjusted p-value. These were related to leukocyte cell-cell
adhesion, leukocyte migration, T cell activation, positive regulation of
lymphocyte activation, and antigen receptor-mediated signaling
pathway.

3.3 Alterations of immune cells in the
endometrium of RIF and CON

Next, we explored immune cell changes in the test set. First,
ssGSEA identified 16 immune cell subtypes, including activated
CD8 T cells, activated dendritic cells, CD56 dim natural killer cells,
central memory CD4 T cells, central memory CD8 T cells, and γδ
T cells. Their cell-specific marker genes were lower expressed in the
RIF group (Figure 2A). Conversely, the specific marker genes of
three immune cells (CD56 bright natural killer cells, effector
memory CD4 T cells, and eosinophils) were expressed at higher
levels in the RIF group. Furthermore, compared with the CON
group, CIBERSORT analysis demonstrated that activated memory
CD4 T cells had statistically higher abundance. In comparison,
γδT cells had statistically lower abundance in the RIF group
(Figure 2B), which is consistent with the results of ssGSEA. The
above results indicated that γδT cells and activated memory
CD4 T cells were the significantly altered cell types in the RIF
group. In addition, the constituency of the 22 immune cell types in
each sample was plotted as a histogram by performing CIBERSORT
(Figure 2C). Meanwhile, the correlation between these 22 immune
cell types in endometrial tissue from the RIF group was calculated
(Figure 2D). Figure 2D shows a significant positive correlation
between memory resting CD4 T cells and monocytes (R = 0.61).
Also, plasma cells were positively correlated with resting mast
cells (R = 0.57). In contrast, CD8 T cells were negatively
correlated with macrophage M0 (R = -0.71). Likewise,
γδT cells were negatively associated with activated memory
CD4 T cells (R = -0.48). Nevertheless, the association mentioned
above of immune cells was attenuated to null in CON
(Supplementary Figure S4).

3.4 Gene co-expression network
construction and modules selection

InWGCNA analysis, the 13,194 genes in the top 75% based on the
magnitude of the variance were included in theWGCNA analysis, and
the soft power of β = 10 (scale-free R2 > 0.85) was determined as soft-
thresholding to acquire co-expressed gene modules (Supplementary
Figures S5A, B). Then, dynamic hybrid cuts were conducted to
construct hierarchical clustering trees by dividing the dendrogram
at relevant transition points (Supplementary Figure S5C). Of which,
single genes were represented as tree leaves, multiple genes with
analogous expression data were presented as branches of the
dendrogram tree, and branches containing similarly expressed
genes were considered gene modules. Similarly, another
differentially expressed immune cell types co-expression network
was also constructed by lmQCM analysis. Ultimately, we got
14 WGCNA modules (Figure 3A) and 15 lmQCM modules
(Figure 3B).
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Among these, the dark olive-green module (correlation = 0.31,
p-value = 0.01) was the most relevant module identified by
WGCNA for activated memory CD4 cells, and the salmon
module (correlation = -0.29, p-value = 0.02) was the most
relevant module identified by lmQCM for activated memory
CD4 cells. Thus the dark olive-green module was selected as the
activated memory CD4 cell-associated key module for further
analysis. Similarly, the dark turquoise module (correlation =

0.35, p-value = 0.004) was the most relevant module identified
by WGCNA for γδT cells, and the green module (correlation = 0.3,
p-value = 0.01) was the most relevant module identified by lmQCM
for γδT cells. Thus the dark turquoise module was selected as the
key module associated with the γδT cells module for further
analysis. In this study, we defined genes in these two modules
most relevant to γδ T cells and activated memory CD4 T cells as DE
ICTRGs.

FIGURE 2
Immune cell alteration of RIF patients. (A), the result of the cell-specific marker of immune cell types expressed in the two groups. (B), the proportional
distribution of diverse immune cell types between the two groups. (C), histogram presenting immune cell type changes. (D), the correlation matrix of the
changes in the number of 22 immune cell populations in the endometrial tissue of RIF. Red: positive correlation; blue: negative correlation. (ns, no
significance, *p < 0.05, **p < 0.01, ***p < 0.001).
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3.5 Identification and enrichment of hub
genes

We collected shared genes from DE ICTRGs and DEGs using a
Venn diagram. It turned out that two overlapping genes between γδ T
cells-associated genes andDEGs (ALOX5AP, SLC7A7) (Figure 3C), and
213 overlapping genes between activated memory CD4 T cells-
associated genes and DEGs (Figure 3D) (Supplementary Table S6).
Considering there were too many overlapping genes in Figure 3D, the
PPI network was constructed for 213 genes and filtered by cytoHubba in
Cytoscape. The results of the CytoHubba were listed in Supplementary
Table S7, and PTGS2 was determined as the hub gene (Figure 3E).
Finally, we explored three hub genes (ALOX5AP, SLC7A7, and PTGS2)

and their 20 interacting genes using the GeneMANIA database
(Figure 4). The network illustrated that these genes were relevant to
immune processes such as the leukotriene metabolic process, antigen
binding, and regulation of inflammatory response.

3.6 Validation and efficacy evaluation of hub
genes

For validating the identified hub genes, another two datasets,
GSE26787 and GSE71835, were merged after removing the batch
effect (Supplementary Figure S6), including 11 RIF and 11 normal
endometrial tissues. The expression levels of ALOX5AP, SLC7A7, and
PTGS2 were presented in the heatmap (Figure 5A). As shown in
Figures 5B,C, in both the test set and validation set, the expression
levels of ALOX5AP and SLC7A7 were significantly decreased, and
PTGS2 was increased dramatically in the RIF group (p < 0.05). In
addition, we used the datasets GSE26787 and GSE71835 as validation
sets to investigate the predictive effect of hub genes for RIF.
Encouragingly, in the validation set, the prediction model showed a
specificity of 90.8% and sensitivity of 90.8%, and the ROC analysis
showed that the AUC was 0.908 (Figure 5D).

3.7 Construction of the ceRNA-regulating
network

To explore possible interactions between lncRNAs, miRNAs, and
mRNA in RIF, we structured a ceRNA regulatory network. In the
present study, we collected 53 miRNAs, including hsa-miR-3180-3p,
hsa-miR-548p, and hsa-miR-1297 (Figures 6A–C). Next, we mapped
the abovementioned 53 miRNAs into the starbase database and
searched for the target lncRNAs. As a result, 35 lncRNAs that
interacted with 19 of the 53 miRNAs in the starbase database were
selected (Supplementary Table S8). Eventually, the ceRNA regulatory
network was structured, and the visualization was carried out in the
CytoScape software (Figure 6D).

4 Discussion

As a complex clinical disease in the IVF-ET cycle, RIF brings a
tremendous burden to patients and treatment challenges to
physicians. Studies have shown that the endometrial factor is one
of the main factors contributing to RIF (Timeva et al., 2014).
Therefore, identifying essential dysregulated genes in the
endometrium of RIF is clinically relevant for the prevention and
diagnosis of RIF. Most of these GO-enriched terms of DEGs are
related to carboxylic acid transport, amino acid transport, etc. Zeng
et al. found that dietary Arginine supplementation in early pregnancy
in rats enhances embryo implantation by stimulating PI3K/PKB/
mTOR/NO signaling pathway (Zeng et al., 2013). There are two
amino acid transport systems associated with mouse oocytes or
with preimplantation of mouse embryos: 1) sodium-independent
L-transport system; and 2) sodium-dependent A-transport system
(Colonna and Mangia, 1983; Colonna et al., 1984). These studies
suggest an essential role for amino acids in pre- and post-implantation
of the placenta and embryo development. In addition, based on the
results of KEGG and GSEA enrichment, we can conclude that the

FIGURE 3
Identification of crucial modules and common DEGs. (A),
Module–trait relationships in WGCNA modules. (B), Module–trait
relationships in lmQCMmodules. The number in the first row in each cell
represents the Pearson correlation coefficient, and the p-value of
the corresponding module trait is exhibited in parentheses. The color of
each cell indicates the degree of correlation. (Red indicates a positive
correlation, and blue indicates a negative correlation). (C), Venn diagram
of shared genes between DEGs and γδ T cells-associated genes. (D),
Venn diagram of shared genes between DEGs and activated memory
CD4 T cells -associated genes. (E), Ten algorithms were utilized to
screen key genes from the shared genes between DEGs and activated
memory CD4 T cells -associated genes.
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immune response is related to the pathogenesis of implantation
failure.

The definitive etiology of RIF is poorly understood in almost 50% of
cases and yet could be closely linked to abnormalities in maternal
immune regulation (Azizi et al., 2019), especially related to the immune-
tolerant microenvironment at the maternal-fetal interface (Ander et al.,
2019). The primary immune cells that establish and maintain immune
tolerance in the maternal-fetal interface are maternal decidual natural
killer (NK) cells, macrophages, and T cells (Mor et al., 2011). To make
the results more robust, we took the intersection of the results of
CIBERSORT and ssGSEA in the present study. We found that the

mid-luteal phase endometrium of the RIF group had a lower proportion
of γδ T cells and a higher proportion of activated memory CD4 T cells
compared with the control group. Regrettably, we did not observe
significant changes in the proportion of NK cells in the current study.
The results of the present study corroborate that in a systematic review
that included 22 articles suggesting there was no significant difference in
the percentage of peripheral or endometrial NK cells in infertile women
compared with fertile controls (Seshadri and Sunkara, 2014). However,
some reports demonstrated that women with RIF or RPL have a higher
percentage of endometrial NK cells and blood NK cells than controls
(Sacks et al., 2012; Santillan et al., 2015; Zhu et al., 2017). The non-

FIGURE 4
The gene-gene interaction network for hub genes were analyzed using the GeneMANIA database. (A), The gene-gene interaction network of ALOX5AP
analyzed by GeneMANIA. (B), The gene-gene interaction network of SLC7A7 analyzed by GeneMANIA. (C), The gene-gene interaction network of PTGS2
analyzed by GeneMANIA. The 20 most frequently changed neighboring genes are shown. The predicted genes are located in the outer circle, and the hub
genes are in the inner circle.
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consensus definition of NK cells can explain the apparent discrepancy in
the results of these studies (Kolanska et al., 2019). Moreover, in the
presence of sex hormones, the concentration of endometrial immune
cells fluctuates during the menstrual cycle, and their proliferation and
activation depend on locally secreted factors (Wira et al., 2015). Third,
peripheral blood and endometrium-producing immune cells are

heterogeneous (Daussy et al., 2014), and the phenotypes of
peripheral blood and endometrial NK cells differ (Moffett-King,
2002; Mekinian et al., 2016).

Both implantation and placenta formation has been reported to be
pro-inflammatory processes involving multiple cytokines (Ramhorst
et al., 2006; Orsi, 2008). During the peri-implantation period, γδ

FIGURE 5
Validation of hub genes and ROC curves of the hub genes between the RIF and CON group. (A), The Expression of three hub genes was presented by
heatmap in test and validation sets. (B), the expressions of ALOX5AP, SLC7A7, and PTGS2 in test sets (GSE111974 and GSE92324). (C), the expressions of
ALOX5AP, SLC7A7, and PTGS2 in validation sets (GSE26787 and GSE71835). (D), The ROC curve of the combined three hub genes in predicting RIF.
Abbreviations: ROC, receiver operating characteristic curves. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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T cells could express TNF-α and IFN-γ (Fan et al., 2011), two common
pro-inflammatory cytokines, which may exhibit anti-infection activity
against foreign antigens in pregnancy. Similarly, the same results have
been found in mice studies (Arck et al., 1997), suggesting that γδ T cells
play an essential role in early pregnancy, especially during embryo
implantation. In the present study, we found that the abundance of γδ

T cells in the RIF group significantly decreased. To better understand the
potential role of γδ T cells in the pathophysiological process of RIF, we
further identified its closely related hub genes ALOX5AP and SLC7A7.
Notably, the expression levels of ALOX5AP and SLC7A7 were
significantly reduced in the RIF group. ALOX5AP is a crucial enzyme
required for the production of the inflammatory mediator leukotrienes

FIGURE 6
ceRNA-regulating networks. (A), The Venn diagram indicates six miRNAs that interacted with ALOX5AP from the DIANA-microT, miRanda, and
TargetScan. (B), The Venn diagram indicates ten miRNAs interacting with SLC7A7 from the DIANA-microT, miRanda, and TargetScan. (C), The Venn diagram
indicates 38 miRNAs interacting with PTGS2 from the DIANA-microT, miRanda, and TargetScan. (D), the red diamond represents the protein-coding genes,
the blue circle represents miRNAs, and the green rectangle represents lncRNAs. The black lines indicate the interaction of lncRNA–miRNA–mRNA.
Abbreviations: ceRNA, competing endogenous RNAs;miRNAs, microRNAs; lncRNAs, long non-coding RNAs.
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(LTs) via the 5-lipoxygenase (5-LOX) pathway (Mashima and Okuyama,
2015), and the leukotriene metabolite LBT4 is required for γδ T cell
migration during inflammatory reactions (Costa et al., 2010). Therefore,
downregulation of ALOX5AP Expression may lead to a decrease in
leukotriene production, adversely affecting γδ T cell migration and
ultimately leading to embryo implantation failure. As shown in
Figure 4C, SLC7A5-13 and SLC7A15 form the L-type amino acid
transporter protein (LAT) family, Cibrian et al. found that CD69, a
typical marker of γδ T cells, expressed by γδ T cells regulates cellular
activity by controlling the uptake of tryptophan by LAT1 (Cibrian et al.,
2016; Cibrian and Sanchez-Madrid, 2017). Thus, when the expression of
LAT family genes is abnormal, the activity of γδ T cells is also affected,
which is consistent with the results observed in this study. In addition, in
this study, we observed that the abundance of activated memory
CD4 T cells was significantly higher in the endometrium of the RIF
group, and the expression of its associated hub gene PTGS2 was also
significantly upregulated in the RIF group. PTGS2 encodes
cyclooxygenase-2 (COX-2), the rate-limiting enzyme for
PGE2 compounds (Murakami and Kudo, 2004). Napolitani et al.
demonstrate that PGE2 can act directly on memory CD4 T cells
leading to an increase in IL-17 production (Napolitani et al., 2009).
Therefore, when PTGS2 is overexpressed, IL-17 levels are elevated, and
the increased IL-17 expression is reported to participate in maternal
immune rejection of the fetus (Wang et al., 2019), leading to implantation
failure.

In recent years, growing studies suggested that lncRNAs- and
miRNAs-mediated molecular mechanisms were associated with the
occurrence of RIF. The present study predicted a total of 53 miRNAs
associated with hub genes. Among them, Tochigi et al. demonstrated
that miR-542-3p overexpression inhibits the induction of major decidual
marker genes, including IGFBP1,WNT4, and PRL, which suggested that
miR-542-3p plays an important role in endometrial decidualization by
regulating the expression of major decidual marker genes (Tochigi et al.,
2017). In the present study, we found that miR-542-3p interacted with
the hub gene PTGS2, suggesting that miR-542-3p may affect
endometrial decidualization by regulating PTGS2 expression.
Moreover, endometrial decidualization represents a crucial step for
the successful implantation of the embryo, indicating that
dysregulation of miR-542-3p may cause implantation failure. In
addition, we also predicted 35 lncRNAs associated with hub genes,
many of which have been shown to play a critical role in the pregnancy
process. For example, Shi et al. confirmed that LncRNA
MALAT1 promotes decidualization of human endometrial stromal
cells (hESCs) to maintain a successful pregnancy (Shi et al., 2022),
and downregulated MALAT1 relates to RPL (Wang et al., 2018). This
study showed that MALAT1 interacted with the key gene
SLC7A7 through miR-205-5p, miR-22-3p, and similarly,
MALAT1 also interacts with the key gene PTGS2 through miR-1297,
miR-26a-5p, miR-26b-5p, miR-28-5p, miR-3145-3p, miR-508–3. These
lncRNAs and mRNAs could compete for the same miRNA response
elements (MREs) to mutually regulate (Sen et al., 2014). Herein, we
constructed the ceRNA-regulating network to clarify the interaction
between lncRNA and miRNA and its potential role in regulating RIF-
related gene expression. Although our datamay not validate all predicted
lncRNAs and miRNAs, it could provide insights for subsequent studies.

Some limitations should be acknowledged in the current study.
First, the present study was a retrospective analysis of publicly
available datasets. As additional clinical information about the
patients cannot be obtained, we cannot exclude that other factors

may have confounded our analysis. Second, we have not validated this
study’s results through laboratory experiments, and subsequent
confirmatory experiments in vivo and in vitro are required.

In summary, our study not only offered insights into the landscape
of immune cells and identified some hub genes for RIF but also
constructed the ceRNA-regulating network that contributed to the
understanding of the pathophysiological process of RIF by
bioinformatics analysis, which provided the potential diagnostic
and therapeutic targets of RIF.
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