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Understanding the interaction of T-cell receptor (TCR) with major

histocompatibility-peptide (MHC-peptide) complex is extremely important in

human immunotherapy and vaccine development. However, due to the limited

available data, the performance of existingmodels for predicting the interaction

of T-cell receptors (TCR) with major histocompatibility-peptide complexes is

still unsatisfactory. Deep learning models have been applied to prediction tasks

in various fields and have achieved better results compared with other

traditional models. In this study, we leverage the gMLP model combined

with attention mechanism to predict the interaction of MHC-peptide and

TCR. Experiments show that our model can predict TCR-peptide

interactions accurately and can handle the problems caused by different

TCR lengths. Moreover, we demonstrate that the models trained with paired

CDR3β-chain and CDR3α-chain data are better than those trained with only

CDR3β-chain or with CDR3α-chain data. We also demonstrate that the hybrid

model has greater potential than the traditional convolutional neural network.
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Introduction

T cells are key mediators for initiating effective adaptive cell-mediated immune

responses. T cells are required to continuously recognize antigens in lymphoid and

peripheral tissues, such as peptides or lipids displayed by major histocompatibility

complex (pMHC) molecules of other cells. The major histocompatibility complex

(MHC) is to expose the protein antigen fragments inside the cell to the surface of the

cell (Li et al., 2019; Liu et al., 2020). The T-cell antigen receptor binds to theMHC to detect

whether the cell is normal and to determine whether to activate the host’s immune system

to kill infected or malfunctioning cells (Cao et al., 2021; Zhang Q. et al., 2022). TCRmainly

contains two peptide chains: α-chain and β-chain. Each peptide chain is mainly divided

into the V region and C region, etc. The specificity of the TCRmolecule is mainly found in
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the V region, which consists of CDR1, CDR2, and CDR3 rings.

Existing experiments show that CDR1 and CDR2 always bind to

MHC (Feng et al., 2007; Rossjohn et al., 2015; La Gruta et al.,

2018) molecules, and CDR3 binds to antigen fragments.

CDR3 has the greatest specificity and therefore becomes the

decisive factor.

Many studies related to the prediction of TCR-pMHC

interactions have been published (Dash et al., 2017; De Neuter

et al., 2018; Jurtz et al., 2018; Gielis et al., 2019; Jokinen et al.,

2019; Moris et al., 2019; Wong et al., 2019; Fischer et al., 2020;

Springer et al., 2020; Tong et al., 2020; Montemurro et al., 2021).

They provide a wide range of data and modeling techniques.

Most were constructed based on the data from IEDB, VDJdb, and

McPAS TCR. In addition to epitope information, individual

CDR3β sequences (Jurtz et al., 2018; Springer et al., 2020;

Tong et al., 2020), mixtures of CDR3α- and CDR3β sequences

(Moris et al., 2019), or smaller datasets entailing all six

CDR3 sequences and potentially additional cellular

information were utilized. (Jokinen et al., 2019; Fischer et al.,

2020). Glanvolle and Dash et al. (Dash et al., 2017; Lanzarotti

et al., 2019) examined clear features of short amino acid motifs in

the CDR3 region of TCRα- and TCRβ-chains, demonstrating the

specific peptides presented by MHC molecules. Recent studies

have introducedmachine learning algorithms into these motifs to

predict the interaction of peptide molecules with specific TCR

molecules based on the motifs. These algorithms include

similarity distance algorithm (TCRdist) (Dash et al., 2017),

Gaussian process classification methods (TCRGP) (Jokinen

et al., 2019), random forest (TCRex) (De Neuter et al., 2018;

Gielis et al., 2019), k-mer feature spaces in combination with

PCA and decision trees (SETE) (Tong et al., 2020). More

complex machine learning methods include convolutional

neural network (NetTCR, ImRex, NetTCR2.0) (Jurtz et al.,

2018; Moris et al., 2019; Montemurro et al., 2021) and natural

language processing (NLP) methods (ERGO) (Springer et al.,

2020; Matougui et al., 2021). However, recent studies mostly use

machine learning methods or simple deep learning models such

as CNN and LSTM instead of Transformers (Vaswani et al.,

2017), gMLP (Liu et al., 2021), and other models with better

performance. There is still room for improvement in terms of the

prediction performance. On the other hand, most of the publicly

available TCR-pMHC specific data are located in Immune

Epitope Database (IEDB) (Vita et al., 2019), McPas-TCR

(Bagaev et al., 2020), VDJdb (Tickotsky et al., 2017), and

other databases. However, these databases mainly contain

CDR3β-chain data, lacking paired α- and β-chain data.

Esteban Lanzarotti et al. (Dash et al., 2017; Lanzarotti et al.,

2019) recently improved the prediction performance of the TCR

target prediction model by integrating the information of paired

a- and ß-chain, indicating the importance of the information

about paired a- and ß-chain. To study the specificity of pMHC on

paired a- and ß-chains, single cell (SC) technique is required.

However, it costs much more, while much less pair-specific data

is publicly available. This is a critical shortcoming of current

databases, highlighting the urgent need for further development

of cost-effective SC technologies to generate accurate high-

quality paired data (Bentzen et al., 2016).

Although most of the major histocompatibility complex class

I (MHCI) alleles have relatively reliable predictions for binding to

peptides, prediction models for T-cell receptor (TCR)-peptide

interactions remain poor due to the limited training data

available. In this work, we constructed a novel gMLP-based

model combined with attention mechanism to predict the

interaction of MHC-peptide and TCR. It can be applied to

individual T-cell receptor sequences as well as to the entire

T-cell repertoire. Results demonstrate that the patterns

learned from the data can be used to describe and predict the

interactions between the T-cell receptors and peptides.

Methods and materials

Datasets

The data used in this work were primarily collected and

processed by NetTCR2.0, including paired CDR3α-chain data

and ß-chain data, as well as ß-chain only data. The ß-chain data is

from the CDR3β sequence set with the HLA-A*02:01 allele

presented on the Immune Epitope Database (IEDB) on

29 January 2020. This dataset was collected and processed by

NetTCR and consists of 9204 distinct CDR3β-sequences, and
each sequence is labeled as a single pMHC complex. Negative

sample data are generated by creating internal error

combinations of TCRs and peptides, i.e., combining TCR

sequences with peptides that are different from their cognate

targets. An initial negative dataset was constructed from the

HLA-A*02:01-restricted peptides and filtered to only include

TCR-peptide pairs with UMI counts ≤10. This data set

comprised 1,325,949 distinct peptide-CDR3β pairs with

69,847 unique CDR3β sequences and 19 different peptides of

which seven were shared with the IEDB peptides. Positive and

negative training data points were reduced to peptide-TCR pairs

with CDR3β lengths within the range of 8–18 amino acids, and

peptides of length equal to nine amino acids shared between the

two data sets (7 peptides). These combinations were performed

by extracting a list of peptide targets from the positive dataset

(repeated if peptides were found to interact with multiple TCRs),

and then pairing each TCR with a randomly selected peptide

from the list that is different from the cognate target.

The paired positive data of a-and ß-chains were obtained

from IEDB and VDJdb databases on 26 August 2020 and

5 August 2020, respectively. There are 93,859 binding pairs

from IEDB and 2,843 binding pairs from VDJdb in the length

range of 8–18. VDJdb is an open and comprehensive database

containing over 40,000 TCR sequences and over 200 homologous

epitopes as well as specific MHC allotypes obtained by manual
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processing of published studies. Negative sample data from 10X

identified 627,323 distinct binding sites with 0 UMI counts for all

peptides. A total of 33,017 different TCRs and 19 different

peptides were included, 17 of which were identical to the

peptides in the positive sample data. In addition, the

additional dataset generated by using MIRA analysis was

provided by Klinger et al. (Lanzarotti et al., 2019). This

dataset consists of 379 HLA-A*02:01 related data, covering

16 peptides and 379 TCR sequences from five donors. Among

them, the negative data comes from a subset of the above negative

dataset. At the same time, since 62% of IEDB data only used the

allele HLA-A*02:01, and themajority of HLA-A*02:01 alleles had

FIGURE 1
gMLP model framework with attention mechanism. The TCR CDR3 sequences and peptide sequences were encoded by BLOSUM50 matrix as
model input. Firstly, the spatial information was obtained by gMLP, and then Multi-head Attention and Local-Attention were used to extract the
correlation information of TCR CDR3 and peptide sequences. Finally, the output of is obtained by interleaving fully connected layers and Gelu layers.

FIGURE 2
Prediction performance of NetTCR, baseline, and gMLP
models are compared using AUC in the IEDB dataset with four
different thresholds of 90%, 92%, 94%, and 99% similarity,
respectively.

FIGURE 3
Comparing the prediction performance of baseline, NetTCR,
and gMLPmodels on different thresholds of similarity between the
training and test sets in the MIRA dataset.
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peptides of 9-mer length. Therefore, the dataset used all HLA-

A*02:01 and 9-mer peptides.

To avoid overfitting and overestimation of model

performance, the entire dataset was divided into multiple

different sets before model training. TCRs with more than

90% sequence identity determined by BLASTP were stored in

the same data partition. The TCRs were divided into 90% and

95% datasets based on the direct average similarity of the a- and

ß-chains. The three most abundant peptides in the dataset were

NLVPMVATV (NLV) from human herpesvirus 5

(cytomegalovirus), GILGFVFTL (GIL) from influenza A virus,

and GLCTLVAML (GLC) from human herpesvirus 4 (Epstein-

Barr virus). These three represent 99% and 92% of the ß-chain

and paired-chain data, respectively.

Model architecture

Neural network model has powerful performance in

extracting features from data and predicting data (Lv et al.,

2021; Zhang Z. Y. et al., 2022). Its main advantages is the

ability to optimize functions in the network by learning

sequence data so that it can learn the mapping capabilities

required by the task to complete the classification task. In

addition, it also has strong generalization ability, and also has

good prediction ability for untouched and noisy samples (Wang

et al., 2021; Zulfiqar et al., 2021). At the same time, the non-linear

mapping ability of neural networks can greatly simplify the

difficulty of model design.

Some of the latest deep learning models such as

Transformers, gMLP, and other models have achieved fairly

good results in picture classification, masked language

modeling (MLM), NLP, and other tasks (Dao et al., 2021; Jin

et al., 2022; Lv et al., 2022; Wang et al., 2022; Wei et al., 2022).

Therefore, in this paper, we hope to introduce the latest gMLP

model with attention mechanism into the prediction of TCR-

peptide interaction to accurately identify their interaction targets,

extract the similarity between them, and improve the prediction

performance. Our experiments prove that our model has more

advantages than relatively simple traditional deep learning

models such as Convolutional Neural Network (CNN), Long

Short TermMemory (LSTM), etc. The area under the ROC curve

(AUC) is improved by 0.07.

Compared with the usual fully connected neural network, the

structure of convolutional neural networks is characterized by

the convolution layer and pooling layer. The biggest difference

between the convolutional layer and the fully connected layer is

that the neurons in the convolutional layer are not connected to

all the neurons in the next layer, but pass information to the next

layer through a special structural feature map. The feature map is

a matrix composed of multiple neurons that share a set of weights

between neurons, which is the convolution kernel of the

convolutional layer. Meanwhile, the convolutional layer can

contain several feature maps. In the initialization of

convolutional neural networks, the weights of convolutional

kernels are generally initialized by random seeds. The

advantage of this approach is that it can reduce the

connections between layers and prevent the network from

FIGURE 4
Comparison of NetTCR and ERGO-LSTM prediction
performance. The AUC of the model on the three most common
peptides in the IEDB dataset was compared.

FIGURE 5
Comparison of the overall AUC obtained from gMLP,
baseline, and NetTCR on data containing only ß-chains and data
containing paired a-and ß-chains, respectively.
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overfitting. Pooling layer also plays an important role in

convolutional neural networks. It includes both average

pooling and maximum pooling. For example, the maximum

pooling layer prevents the model from overfitting by selecting

the parameters with the maximum information in a certain

range. The specific operation process of the convolution layer

is as follows: the convolution kernel slides to all positions on the

image, and does an inner product with the pixel and its domain

pixels at each position. Convolution is widely used in image

processing. Different convolution kernels can extract different

features, such as edge, linearity, angle, etc. In deep convolutional

neural networks, low-level to complex features of images can be

extracted by convolution operations. The framework of the

model is illustrated in Figure 1.

Feature encoding for TCR and peptide
BLOSUM50 matrix (Henikoff and Henikoff, 1992) was

used to encode a-chain, ß-chain, and peptide sequences into

matrices. That is, each amino acid is represented as the score for

substituting the amino acid with all the 20 amino acids. The

BLOSUM encoding scheme maps a sequence of length l into an

array of dimension l × 20. BLOSUM: First, find the amino acid

pattern, i.e., a meaningful amino acid fragment (e.g. a domain

and its two adjacent amino acid sequence fragments). Amino

acid conservation (data on the substitution of one amino acid

for another) was compared between identical amino acid

patterns, and then BLOSUM50 matrix was generated based

on the comparison data between all 50% conserved amino acid

patterns.

gMLP
Transformers have made many breakthroughs in natural

language processing and have been shown to work well in

computer vision. Due to this success, Transformer has largely

replaced LSTM-RNN as the default architecture for NLP. The

gMLP is one of the most important architectural innovations in

deep learning. They questioned the necessity of the existing

Transformer attention layer and proposed an attention-free

network architecture gMLP with spatially gating units, which

achieved comparable performance to Transformer on both image

classification and masked language modeling tasks. And if a little

bit of attention is added to gMLP—a single-head attention with

size up to 128 is sufficient to make gMLP outperform

Transformers on all NLP tasks. Meanwhile, the future of

gMLP is promising because the spatial filters of gMLP are

simpler and achieve better performance with fewer network

parameters than Transformer’s black-box matrix.

gMLP is composed of many blocks with identical size and

structure. Here we use three identical blocks. The a-chain, ß-

chain and peptide sequences encoded as matrices are input into

the three blocks to extract the features. Each block is expressed as

follows:

FIGURE 6
Performance evaluation of gMLP and TCRdist on the IEDB 95% threshold dataset.
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Z � σ XU( ) (1)
~Z � s Z( ) (2)
Y � ~ZV (3)

where σ is an activation function such as GeLU. U and V define

the linear projections along the channel dimension is the same as

the FFN of Transformer. s is the Spatial Gating Unit. When s is

an identity mapping, the above transformation degenerates to a

regular FFN, where individual tokens are processed

independently without any cross-token communication.

Therefore, the spatial gating unit is mainly designed with a

good capability to capture complex spatial interactions across

tokens. Each block first normalizes the input matrix of a-chains,

ß-chains and peptide sequences using LayerNorm, normalizing

the dimension to stabilize the layer (The reason for not using

BatchNorm is that the normalized statistics of LayerNorm are

independent of the batch size when the batch is small, and the

resulting model is more stable and regularized). After that,

through a layer of channel mapping layer (the simplest fully

connected layer is used here), after passing through the GeLU

activation function, the data is sent to the most critical Spatial

Gating Unit (SGU) in the block to capture the spatial

interactions. Then a channel mapping layer is added to the

original input to obtain the feature output in the sequence.

The output is obtained after the feature extraction of three

identical blocks. Among them, the SGU uses a simple spatial

linear mapping containing operations on spatial dimensions,

enabling it to perform cross-token operations. The spatial

gating unit first divides the input data into two parts from the

channel dimension. One part is linearly mapped to the space, and

then the output is obtained by dot product with the other part.

For training stability, in the initialization parameters, we

uniformly sampled W in the range of [−0.01,0.01] (gMLP was

initialized around 0), and b was initialized to 1. This enables each

block to behave the same as a regular fully connected layer in the

early stage of model training, so that each token is processed

separately, and only cross-token spatial information is gradually

added in the training process.

The overall formulation of spatial gating unit (SGU) is

similar to Gated Linear Units (GLUs), as well as earlier works

FIGURE 7
AUC from the threemost common peptides in IEDB on 90%, 95% partitioned data. (A,B) represent the performance of gMLP andNetTCR on the
90% data. (C,D) represent the performance of gMLP and NetTCR on the 95% data. The partition threshold is based on the similarity between the
training and test sets.
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including LSTM and RNN. A key difference is that gating is

computed based on the projection over the spatial dimension

rather than the channel (hidden) dimension. SGU is also related

to the Squeeze-and-Excite (SE) block in terms of element-wise

multiplication. However, unlike SE blocks, SGU does not contain

cross-channel projections at all, nor does it enforce permutation

invariance (a key feature of the content-based attention module)

because it statically parameterizes the spatial transformation. In

theory, spatial projections in SGU can learn special depthwise

convolutions. Unlike typical depthwise convolutions that include

channel filters, SGU only learns a single transformation shared

across channels. Finally, we note that SGU provides an

alternative mechanism to capture higher-order relations in

addition to self-attention. Specifically, the output of the

equation contains up to 2nd-order interactions, while the

output of self-attention (assuming no non-linearity) contains

up to third-order interactions. In terms of computational cost,

SGU has n2e/2 multiplication and addition, which is comparable

to the 2n2d of dot-product self-attention. The two are linear over

the input channel size.

Local attention
To extract the local potential feature information in the

sequence, we introduce the local attention mechanism (Luong

et al., 2015; Sharma and Srivastava, 2021; Chen et al., 2022).

Local-Attention only pays attention to some hidden states and

does not calculate attention scores for all information. Instead, it

selectively focuses on a custom context window, and only

calculates the attention score for the information in the

window, which can reduce the computational cost. The

window size used in this paper is 2. First, we used the peptide

sequence processed by gMLP as the Query of Local-Attention

after a spatial mapping layer and normalization using

LayerNorm. After that, we use a window of size two to loop

and take the a-chains and ß-chains splicing data processed by

gMLP as the Key and Value of Local-Attention. For the Key and

Value from each window along with the previous Query, we use

the same method as Multi-head Attention to get the attention

information. Finally, the information obtained from all windows

was superimposed. The final attention information was obtained

by passing a spatial mapping layer again and using LayerNorm

normalization to prevent overfitting of the model.

Results

Model performance on CDR3β data

Our model identifies one or more specific peptides

interacting with TCRs from a large uncorrelated TCR dataset.

We selected three of the most common IEDB peptides

(GILGFVFTL, GLCTLVAML and NLVPMVATV) and tested

the possibility of randomly selected TCR-peptide interactions.

The peptides for these test models were obtained from the MIRA

dataset.

We trained our model using data containing only the TCR

CDR3β-chains in our initial model evaluation. One of the key

points to model training and evaluation is the quality of the data.

Therefore, we used the same method as NetTCR2.0 to train and

test the model on different CDR3β datasets by cross-validation.

The datasets were also divided into different thresholds based on

the similarity between the test set and the training set. In

addition, we also used external datasets for performance

evaluation.

We compared three models. One is our deep learning model,

gMLP model with attention mechanism. The other one is

sequence similarity baseline model (a simple similarity-based

method model with kernel score, in which the predicted score for

a given TCR was calculated as the highest score obtained when

scoring CDR3β against a positive CDR3β database. In 5-fold

cross-validation, each of the five partitions in turn represented a

test set, and the positive elements in the remaining four partitions

defined the database. For external evaluation, all positive

elements in the training dataset defined the database. For

analysis of paired a and ß TCR sequences, the similarity

scores were calculated as the highest average of individual a

and ß CDR3 sequence scores for each TCR), The last one is the

CNN-based NetTCR model. We compared these three models to

show the strong advantages of the gMLP model with attention

mechanism over the simple models (see Figure 2). Experiments

showed that our model significantly outperformed the baseline

model and the NetTCR model at different thresholds of 90%,

92%, 94%, 99%, and the AUC was 0.04 higher, which illustrated

the significant advantage and powerful performance of complex

deep learning models for existing classification problems. At the

same time, with the increase of the threshold, the similarity

between the training set and test set increased, and the

performance of the three models also improved.

Afterwards, we evaluated the three models on different

thresholds of 90%, 92%, 94%, 99%, and 100% for the MIRA

dataset (see Figure 3). The results showed that the performance of

the models tested in the MIRA dataset was improved compared

to the IEDB dataset with different thresholds, and the AUC had

increased by 0.1, which indicated the better quality of the data in

the MIRA dataset. Similarly, the performance of the model

improved as the threshold increases.

To further compare other simple deep learning models, we

compared our model with ERGO deep learning model, which is

more complex than CNN. The ERGO model used a more

complex Long Short Term Memory network (LSTM) or

AutoEncoder (AE) model for TCR-peptide interaction

prediction on the VDJdb dataset. We trained ERGO using

LSTM and gMLP with attention mechanism on the IEDB

dataset, respectively. We then compared the prediction

performance of these two models on three different peptides

(see Figure 4). The overall AUC of gMLP model with attention
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mechanism was 0.71, which had a huge advantage over the

ERGO model of 0.66. We then further tested all versions of

ERGO (including ERGO McPAS LSTM, ERGO McPAS AE,

ERGO VDJdb LSTM, ERGO VDJdb AE) on the MIRA

dataset. The AUC of the gMLP model was 0.85, while the

overall AUC of the ERGO was 0.7. The complexity of gMLP

deep learning model is effective in improving the prediction of

TCR-peptide interactions.

Model performance on paired CDR3α and
CDR3β data

Compared with the dataset containing only ß chains, the

dataset using paired a-chains and ß-chains contains more

information. We used the data in NetTCR to divide the

dataset according to the average similarity between a- and ß-

chains, which were the datasets with 90% and 95% threshold,

respectively. We compared NetTCR, baseline, and gMLP model

with attention mechanism on these two datasets (see Figure 5).

The prediction results of three different peptides were also

compared. The experimental results show that using paired

a-chains and ß-chains datasets can significantly improve the

prediction performance of the model. The AUC of the three

models was increased by 0.04, 0.07, and 0.06, respectively, which

illustrated the importance of the information provided by

paired data.

Meanwhile, the gMLP model with attention mechanism had

an AUC of 0.93, which was better than NetTCR with AUC of

0.89 and baseline with AUC of 0.85. The gMLP model also

significantly outperformed the other two models on the single-

chain ß dataset. We also observed that the performance of the

model decreases when the threshold was reduced from 95% to

90%. However, NetTCR was more stable on both datasets, and

the AUC decreased less when the threshold was reduced. In the

interaction comparison of TCR with the three most abundant

peptides in IEDB, we found that the NetTCR did not perform

well in the prediction of relatively small number of NLV peptides.

However, the AUC of gMLP for the prediction of NLV peptides

was still 0.8 or even 0.91, indicating the robustness of our model

in Few-Shot learning.

In general, the gMLP model with attention mechanism we

developed has good performance in predicting TCR-peptide

interactions, and the low performance of several current

models is due to the low quality of the CDR3β data.

Then we compared the performance of gMLP model with

attention mechanism and the TCRdist model. The configuration

of the TCRdist model here is the same as the baseline model, only

utilizing the distance metric proposed in the TCRdist

publication. We compare them on the 95% threshold dataset.

The results showed that the performance of gMLP model far

exceeded that of TCRdist model (see Figure 6). In the comparison

of the three peptides, we found that TCRdist and NetTCR were

similar in predicting the specificity of NLV peptides with a

significant performance degradation compared to the other

two peptides. However, the gMLP model still had good

performance, indicating that the gMLP model can still learn

key features in the data when there were few samples in the

data set.

The model’s capability to determine the proper peptide target

for a particular TCR was next tested using paired predictions of

TCRs bound to GIL, NLV, or GLC with the other two peptides.

For each TCR that was positive to one of the three peptides in this

case, binding to GIL, NLV, and GLC was predicted (using cross-

validation). From the peptide with the lowest rank value, the

anticipated target for each TCR was found. The performance for

each peptide was represented as the percentage of properly

recognized targets for the three models trained on the

CDR3 and CDR3, CDR3 alone, and CDR3 alone in this

investigation. All models here outperformed chance with a

correct target percentage >33%. Additionally, for all three

peptides, the model that was trained on CDR3 and

CDR3 performed much better than either of the other

models. Meanwhile, The optimal single-chain model selection

was peptide-dependent, with gMLP_a outperforming gMLP_b

for the NLV peptide, in line with the findings of other studies.

Conclusion and discussions

Identifying cognate targets of TCRs is a critical step in

immune detection and cancer therapy. In this paper, we

proposed a deep learning-based gMLP model with multiple

Attention mechanisms to solve this problem. We predicted

TCR-pMHC interactions using the amino acid sequences of

the peptide and CDR3 region of the TCR chains. The

performance of multiple models (such as CNN, LSTM, etc.)

was tested using independent datasets. The test results showed

that the gMLP model with attention mechanism significantly

outperformed the NetTCR, baseline, and ERGO models.

At the same time, our experiments showed that the quality of the

dataset is crucial in model training. The paired CDR3α-chain and ß-
chain data contain more important information than only ß-chain

and a-chain data, which can effectively improve the performance of

the model. We trained the models on the paired a-and ß-chain

datasets and the dataset containing only a-and ß-chains,

respectively. The experimental results show that the models

trained on the paired a-and ß-chain datasets outperform the

models trained on the dataset containing only single chains,

reflecting that the paired a-and ß-chain datasets can provide

more effective information. Additionally, in agreement with

earlier research (Jurtz et al., 2018; Moris et al., 2019), the results

of the current study unequivocally affirm the notion that both TCR

chains contribute to TCR specificity (importantly, their relative

importance is pMHC-specific), and that accurate TCR specificity

prediction can only be attained by incorporating this combined
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information. Accordingly, we investigated the TCR-specific

performance of the model and found a high level of predictive

power, with an accuracy of approximately 90% for three peptides

(GILGFVFTL, GLCTLVAML, and NLVPMVATV) (see Figure 7).

This suggests that the model may help to address not only which

TCRs are specific for a particular peptide, but also has the potential

to answer which peptides are specific for a particular TCR, which has

important applications in biomedical T-cell therapy (Yee, 2005;

Jones et al., 2021).

Compared with relatively simple deep learning models

such as NetTCR (CNN) and ERGO (LSTM), our model can

not only map TCR sequences to a high-dimensional abstract

feature space suitable for specific classification, but also the

SGU in gMLP can capture the spatial interaction information

of the data and the Attention mechanism can capture the

potential correlation between TCR sequences and peptide

sequences. Meanwhile, the comparison experiments with

ERGO and NetTCR models showed that complex deep

learning models were very necessary for classification

problems. Our gMLP model can achieve the same or even

higher predictive performance with fewer parameters than

models such as Transformers.

The high performance of our developed gMLP model with

attention mechanism has been demonstrated on pairwise TCR

datasets. Due to the small number of training peptides, the model

can currently only be applied to a limited set of peptides

contained in the training data. Our model was tested on a

dataset containing three HLA-A*02:01 peptides and achieved

a prediction accuracy value of about 75%, greatly surpassing the

performance of both the baseline and ERGO and NetTCR

models. This result confirmed that the development of

accurate prediction models for TCR specificity is contingent

on the availability of paired a-and ß-sequence data and

suggests that a predictive power can be achieved to the extent

of practical biomedical applications. Moreover, as more data

become available, we expect the predictive power of the model to

improve, enabling accurate prediction of unidentified peptides as

in the previous peptide-MHC interaction prediction model

(Hoof et al., 2009). Finally, the presented model framework is

highly flexible and allows for the straightforward integration of

the MHC molecule or TCRα chain in the future when data

become available, to train a truly global prediction method.

Moreover, we provide a new way for application of the

proposed deep learning arthitecture to address other similar

problems, such as protein-protein interaction prediction (Wei

et al., 2017), protein-peptide binding prediction (Wang et al.,

2022), and others (Su et al., 2019a; Su et al., 2019b; Manavalan

et al., 2019; Manayalan et al., 2019; Wei et al., 2020), etc.
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