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Background: Clinical diagnosis and treatment of tumors are greatly

complicated by their heterogeneity, and the subtype classification of cancer

frequently plays a significant role in the subsequent treatment of tumors.

Presently, the majority of studies rely far too heavily on gene expression

data, omitting the enormous power of multi-omics fusion data and the

potential for patient similarities.

Method: In this study, we created a gastric cancer subtype classification model

called RRGCN based on residual graph convolutional network (GCN) using

multi-omics fusion data and patient similarity network. Given the multi-omics

data’s high dimensionality, we built an artificial neural network Autoencoder

(AE) to reduce the dimensionality of the data and extract hidden layer features.

The model is then built using the feature data. In addition, we computed the

correlation between patients using the Pearson correlation coefficient, and this

relationship between patients forms the edge of the graph structure. Four graph

convolutional network layers and two residual networks with skip connections

make up RRGCN, which reduces the amount of information lost during

transmission between layers and prevents model degradation.

Results: The results show that RRGCN significantly outperforms other

classification methods with an accuracy as high as 0.87 when compared to

four other traditional machine learning methods and deep learning models.

Conclusion: In terms of subtype classification, RRGCN excels in all areas and

has the potential to offer fresh perspectives on diseasemechanisms and disease

progression. It has the potential to be used for a broader range of disorders and

to aid in clinical diagnosis.
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1 Introduction

Gastric cancer (GC) is a highly aggressive cancer with

significant heterogeneity in terms of cell types, states, and

subpopulation distribution in the immune microenvironment

(Shao et al., 2021; Kim et al., 2022). According to the

epidemiological survey (Ferlay et al., 2021), the incidence of

GC is the fifth highest among tumor diseases worldwide, and the

mortality rate is the third highest among tumor deaths (Wang

et al., 2021; Dong et al., 2021). Studies have shown that several

variables, including genetics, the immune system, lifestyle

choices, and psychological factors, can affect the development

and occurrence of tumors (Shin et al., 2022). Multiple

pathological processes at various levels and dimensions,

including the genome, transcriptome, and proteome, are

involved in complex diseases like cancer (Menyhárt and

Győrffy, 2021).

With the advancement of high-throughput sequencing and

omics technology, researchers progressively understood the

limits of employing a single omics (Sun et al., 2019; Jia et al.,

2022). To better understand the essence of the disease, it is

required to undertake a joint analysis of various types of data, get

more comprehensive information, construct a perfect body

regulatory network, and thoroughly investigate the regulation

and causal relationships between molecules (Tao et al., 2020).

Consequently, one of the areas of research that is now quite active

is the integration of multi-omics data for cancer subtyping

(Lindskrog et al., 2021; Sivadas et al., 2022). The biological

information contained in multi-omics data is critical for

disease diagnosis and treatment. However, due to its huge

scale, high dimension, high noise, and strong heterogeneity,

data is difficult to handle and analyze, posing significant

obstacles to cancer typing (Duan et al., 2021; Picard et al., 2021).

The Graph Convolutional Network (GCN) (Kipf and

Welling, 2017) is a convolutional neural network that was

built in recent years that can directly act on graphs and use

their structural information, and it is gaining popularity in the

field of bioinformatics (Zhang et al., 2021). It can identify

unlabeled nodes and categorize them using both the node’s

feature vector and network topology data (Li et al., 2022).

Kim et al., (2021) proposes an analytical framework named

DrugGCN based on gene expression data for predicting drug

responses using graph convolutional networks (GCNs). Baul

et al., (2022) offers omicsGAT, a graph attention network

(GAT) model that blends graph learning with attention

processes for cancer subtype identification based on RNA-seq

data. By allocating various attention coefficients to nearby

samples, the multi-head attention mechanism can more

successfully protect the connection between them. However,

such experimental results are neither applicable nor

interpretable when only one set of omic data is considered.

According to studies (Sun and Hu, 2016; Xu et al., 2019),

different forms of data have complementarities, and multi-

omics can fuse the rich information in each type of data to

facilitate categorization. Li et al., (2022) developed a multi-omics

ensemble model, MoGCN, with two-layer graph convolutional

networks for the classification and analysis of cancer subtypes.

Ramirez et al., (2020) constructed a graph convolutional neural

network for classifying tumor and non-tumor samples based on

unstructured gene expression data. Unfortunately, as depth

increases, graph convolutional networks suffer from vanishing

gradients and over-smoothing, which significantly reduces model

accuracy. Zhang et al., (2022) proposes a new method for

detecting liver cancer using a fusion similarity network,

denoising autoencoder, and dense graph convolutional neural

network. Liang et al., (2021) proposed a Consensus Guided

Graph Autoencoder (CGGA) to identify cancer subtypes and

bring fresh insights into the treatment of patients with diverse

subtypes. Wang et al., (2021) introduces a unique multi-omics

integrative approach called the Multi-Omics Graph

Convolutional Networks (MOGONET), which is utilized for

biomedical classification and can find key biomarkers from

various omics data sources. Finally, Dai et al., (2021)

combined GCN with a residual network to build a cancer

subtype classification model, named ERGCN, which

performed well on three different TCGA cancer types,

presenting a new method for precision cancer treatment.

Therefore, we integrated multi-omics data and designed a

model RRGCN based on graph convolution for GC subtype

classification. High-dimensional multi-omics data is integrated

into low-dimensional space using an artificial neural network

autoencoder (AE) to extract hidden layer characteristics. The

Patient Similarity Network (PSN) combines the network

topology generated by each data type and analyzes the links

between patients using the Pearson correlation coefficient

(Benesty et al., 2009). The fused network can collect information

from multiple data sources that are both shared and

complementary. Two residual networks with skip connections

are merged with four GCN layers to collect feature matrices and

patient similarity correlations to discover and classify GC subtypes,

and the classification results are finally output by softmax. The

results of the comparison with random forest (RF), support vector

machine (SVM),MoGCN, and ERGCN reveal that RRGCNhas the

best performance. The classification accuracy of the GC subtype is

0.87, the AUC value is 0.98, and the values of other indicators of

RRGCN are also the highest when compared to other methods. We

believe that RRGCN can provide new and unique insights into the

identification, classification, and clinical diagnosis of GC subtypes.

2 Materials and methods

Proposed method

We designed a GC subtype classification model, namely

RRGCN, which is based on the residual graph convolutional
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network. The input consists of the multi-omics fusion data and

the patient similarity network following AE dimensionality

reduction. The graph nodes are then embedded through two

residual networks with skip connections and a 4-layer GCN, and

the classification results are then output using a softmax layer.

We compared and assessed RRGCN’s performance with several

traditional machine learning models and deep learning methods

in the third chapter of the paper. Figure 1 shows the workflow of

RRGCN.

Datasets and data preprocessing

To train the model, we used information on GC from the

TCGA (https://tcga-data.nci.nih.gov/tcga/). Transcriptomic

data, copy number variations (CNV), and somatic mutation

data are all included in our study. We got 272 labeled samples

and four subtypes of data from the R tool “TCGAbiolinks”

(Colaprico et al., 2016). We download the experimental data

using the R package “TCGA-assembler 2” (Wei et al., 2018). The

transcriptome data is from the Illumina HiSeq_

RNASeqV2 sequencing platform, the CNV data is from the

cna_cnv.hg19 sequencing platform and the somatic mutation

data is from the somaticMutation_DNAseq sequencing platform.

In addition, to make it easier for the model to categorize the input

data, we define four GC subtypes as numbers, Epstein-Barr virus

type (EBV) as 0, Microsatellite instability type (MSI) as 1,

Genetically stable type (GS) as 2, and Chromosome instability

type (CIN) as 3.

The dataset in TCGA has to be preprocessed because it

contains a large amount of zero and missing value data. The

preprocessing step helps to reduce the redundancy and

inconsistency of the dataset, thus improving the accuracy and

speed of the subsequent mining process. From the phenotypic

data, sample information with labels for the various cancer

subtypes was first retrieved, and the features that were absent

from all samples or had a zero-expression level were

subsequently eliminated. So we ended up with 272 samples.

Second, among the genes that have been duplicated, we

FIGURE 1
Workflow of RRGCN. (A) Features extracted by AE network. (B) Patient similarity network constructed by SNF algorithm. (C) RRGCN for GC
subtype classification.

TABLE 1 Overview of the STAD dataset.

Multi-omics Number of features Subtypes Samples

mRNA 20,468 EBV 25

CNV 22,434 MSI 60

Somatic 19,600 GS 51

— — CIN 136

Total 62,502 Total 272
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choose the one whose mean expression across all samples has the

least absolute value. Finally, for the transcriptome data, we

expressed expression levels in units of log2 (FPKM + .1),

where FPKM stands for Fragments Per Kilobase of Exon

Model per Million mapped Fragment. In this study, we

removed the number of zero values and missing values in

mRNA, CNV and somatic cells to be 62, 2,481 and

2 respectively, resulting in 20,468, 22,434 and 19,600 features

for subsequent model construction. Table 1 shows the details of

the dataset.

Autoencoder architecture

The autoencoder (AE) (Hinton and Salakhutdinov, 2006) is

an unsupervised artificial neural network model that belongs to

the deep learning category. AE can extract latent embedding

representations from multi-omics datasets to reduce

dimensionality and computational cost. It can first learn the

hidden features of the input data through encoding, then output

to the next hidden layer, and then decode and rebuild the original

input data with the learned new features (Binbusayyis and

Vaiyapuri, 2021). Figure 2 is the basic framework of

Autoencoder. The formula is:

f x( ) � δ ωx + b( ) � H (1)
g H( ) � δ ω′H + b′( ) � �x (2)

Where x is the input feature in the AE, which is encoded and

decoded to �x.f(x) represents the encoder function,H represents

the hidden unit, g(H) represents the decoder function, �x

represents the output, δ represents the activation function, ω

represents the weight matrix, b represents the bias. We used the

mean square error (MSE) (Sammut and Webb, 2010) as the loss

function to calculate the loss between the predicted value and the

true value, where the predicted value is �x and the true value is x.

The formula is:

mseloss x, �x( ) � 1
n
∑n
i�1

xi − �xi( )2 (3)

Since RRGCN uses three different forms of data, we gave

each omics data a varied weight based on prior knowledge (Li

et al., 2022) to emphasize their contributions to themodel, and all

weights sum up to 1. In light of this, the loss function is

described as:

LAE � apmseloss x1, �x1( ) + bpmseloss x2, �x2( ) + cpmseloss x3, �x3( )
(4)

LAE represents the MSE loss function, and a, b, and c represent

the weights of the input data, respectively for 0.4, 0.3, and 0.3. As

the input data are characterized by multi-omics data types and

represented bymultiple matrices x1, x2, and x3, corresponding to

the mRNA, CNV, and somatic matrices, �x1, �x2, and �x3

correspond to the output of three types of data.

In this study, we took into account high-dimensional

multi-omics data using an AE with three hidden layers.

The three hidden layers were (500, 200, 500), and the

training epoch was set to 100, which ultimately converged

after 20 epochs (Figure 3). All layers employ the sigmoid

function as their activation function. AE is trained by back-

propagation through the Adam (Kingma and Ba, 2015)

optimizer. Additionally, we used grid search to select the

batch size from (32, 64, 128) and the learning rate (LR)

from (0.01, 0.001, 0.0001). The final batch size is 32, and

FIGURE 2
The structure of Autoencoder. The input data is first encoded
by the encoder, then embedded in the hidden layer, and finally
output by the decoder.

FIGURE 3
The loss curve of the AE training process. As the epoch grows,
training tends to converge around epoch 20.
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LR is 0.001. Every model used in our study is built by PyTorch

(v1.8.0) (Paszke et al., 2019). The feature matrix extracted by

the AE hidden layer will be used as the input of the RRGCN.

Patient similarity network

The Similarity Network Fusion (SNF) (Wang et al., 2014)

algorithm is a computational approach that creates a network

of similarities across patients for each type of data to provide

a holistic perspective of a certain disease or biological

process. We used the SNF algorithm to compute and fuse

patient similarity networks from each data type in the GC

dataset to create an overall view of GC patients. The

advantage of PSN is that it enables RRGCN to seek and

obtain important information from the neighbour nodes of

the patient, rather than relying solely on the level of gene

expression. This improves the accuracy and applicability of

the model. The SNF algorithm creates patient-patient

similarity matrices for each data type and construct the

patient adjacency matrix, then builds a network through

the matrix, and lastly fuses various forms of patient-

patient similarity networks to create a fusion network.

SNF can fully exploit the complementarity of various

source data (El-Manzalawy et al., 2018; Picard et al.,

2021), which is far superior to the comprehensive analysis

approach established by employing a single dataset and has

significant advantages in the detection and classification

of cancer subtypes (Wang T.-H. et al., 2021; Franco et al.,

2021).

Assume there are n samples and m various categories of

data (in this study, the data types include mRNA, CNV, and

FIGURE 4
The clustermap of patients. The clustermap shows the clustering relationship among multiple samples, with red representing high correlation
and blue representing low correlation.
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somatic data). We refer to a PSN as a graph G � (V, E), where
the vertex V is a collection of samples made up of

(x1, x2,/xn), and E makes up the edges of the graph. A

similarity matrix defined by the scaled exponential similarity

kernel was computed:

w i, j( ) � exp −ρ
2 xi, xj( )
μεi,j

( ) (5)

Among them, w represents the similarity matrix between

samples, ρ(xi, xj) represents the Euclidean distance between the
patient xi and patient xj, μ is a hyperparameter set by

experience, and the commonly used range is (0.3, 0.8), and

εi,j is a parameter used to eliminate the scaling problem, which

is defined as:

εi,j � mean ρ xi,Ni( )( ) +mean ρ xj,Nj( )( ) + ρ xi, xj( )
3

(6)

where Ni is the set of xi’s neighbors and mean(ρ(xi,Ni)) is the
mean distance from xi to each neighbor. Thus, to compute fusion

matrices frommultiple data types, the similaritymatrix is defined as:

Pi,j �

Wi,j

2∑
k≠i
Wi,k

, j ≠ i

1
2
, j � i

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(7)

Then, the affinity matrix S is calculated:

Si,j �
Wi,j∑
k∈Ni

Wi,k

, j ∈ Ni

0, otherwise

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (8)

In the case of various data types:

P v( ) � S v( ) ∑
k≠v

P k( )

m − 1
⎛⎝ ⎞⎠ S v( )( )T , v � 1, 2,/,m (9)

where the S(v) represents the affinity matrix of vth type of data,

the P(v) represents the similarity matrix of vth type data. The

Pearson correlation coefficient is used to calculate the correlation

(linear correlation) between two variables and has a value

between −1 and 1. We determined how similar patients were

to one another using the Pearson correlation coefficient, and if

their similarity exceeded a predetermined threshold, we

categorized this as a correlation between patients. The patient

similarity network established by the merging of many types of

data (multi-omics) is finally obtained by the continual update

and iteration of the preceding algorithm.

We set the number of neighbours to consider when creating

the affinity matrix to 20 and the scaling factor to 0.5. The

clustermap of patients is shown in Figure 4.

Construction of RRGCN

We use GCN to process non-Euclidean data computed using

the SNF algorithm. The purpose of GCN is to learn latent

FIGURE 5
The structure of RRGCN.

FIGURE 6
The loss curve of the RRGCN training process. Different
colors reflect the loss curves of different cross-validation times.

TABLE 2 Confusion matrix.

Predicted Actual

Positive Negative

Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)
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representations based on the node feature matrix X (input, graph

nodes) and the similarity matrix A (similarities between nodes).

Mathematically, the propagation formula between GCN layers is:

HL � σ ~D
−1
2 ~A ~D

−1
2HL−1WL−1( ) (10)

HL represents the output of the Lth layer, that is, the node

features learned by the Lth layer, WL−1 represents the weight

matrix of the L-1-th layer, and σ represents the non-linear

activation function in the GCN. D is the degree matrix of A,
~A � A + E, E represents the identity matrix.

We use the ResNet (He et al., 2016) concept and add skip

connections between GCN layers to overcome the problem of

model degradation in deep neural network training. The

insertion of skip connections can compensate for the loss of

features between the data of the previous layer and the data of the

following layer, reducing information loss and improving model

performance (Yamanaka et al., 2017). At the same time, to avoid

the inconsistency between the output of GCN and the dimension

of the input data, we add an independent linear layer to the skip

connection. The formula for skip connection can be defined as:

HL+1 � elu HL + linear X( )( ) (11)

HL represents the output of the previous GCN layer. The input

feature matrix is sent to the linear layer, and the result is added to

the GCN layer and then passed to the non-linear activation

function Exponential Linear Units (ELU) (Clevert et al., 2016) to

generate the output HL+1, which is utilized as the input of the

next skip connection.

RRGCN, which has more skip connections than ERGCN,

which only has one, improves model performance by increasing

the information flow between layers, making up for information

loss, increasing the connectivity between the upper and lower

information, and improving the flow of information between

layers. The RRGCN as a whole consists of 2 residual networks

with skip connections, 4 GCN layers, and 1 softmax layer for

generating classification results. To compute the difference

between the classification results and the true labels, we utilize

the cross-entropy loss function:

L � − y · log �y( ) + 1 − y( ) · log 1 − �y( )[ ] (12)

where y represents the true label corresponding to the sample,

and �y is the probability value output by the softmax layer. The

structure of RRGCN is shown in Figure 5.

We set the dimensions of the four graph convolutional

layers to 64, 32, 16, and the number of subtypes, respectively. By

performing grid search on the LR and weight decay in (0.1, 0.01,

0.001, 0.0001) and (0.1, 0.01, 0.001), respectively, the optimal

LR and weight decay are determined to be 0.0001 and 0.01. We

use the Adam optimizer function and set the epoch to 1,200, the

training process finally converges at 600 (Figure 6). RRGCN

employs ELU as the non-linear activation function, and the

FIGURE 7
The effect of different Pearson correlation thresholds on model performance.

TABLE 3 Results of multi-omics data compared with single-dimensional
data.

Omics Accuracy AUC

mRNA 0.7384 0.9339

CNV 0.4766 0.7809

Somatic 0.5190 0.8272

Multi-omics 0.8713 0.9848

Bold values emphasize that the experimental results of multi-omics are better than other

groupings.
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classification results are finally output via the softmax layer. We

used 80% of the multi-omics fusion data as the training set and

reserved 20% for validation. Model performance was evaluated

using 5-fold cross-validation on the training set. Furthermore,

to eliminate the bias introduced by a single trial, we took the

average outcome of ten iterations of the 5-fold cross-validation

test set as the evaluation metric.

Model evaluation metrics

In the classification task, the model produces four main

prediction results: True Positive (TP), False Positive (FP),

False Negative (FN), and True Negative (TN). The confusion

matrix in Table 2 can be constructed based on the four different

prediction outcomes.

Precision refers to the probability that the prediction is

correct in the sample that is predicted to be true. It is defined as:

precision � TP
TP + FP

(13)

Recall, also known as sensitivity, is the measure of how many

samples are selected as being true. It is defined as:

recall � sensitivity � TP
P

(14)

The F1 score is a weighted harmonic average of precision and

recall that is unaffected by imbalanced samples. The F1 score has

a maximum value of one and a minimum value of zero. The

higher the value, the higher the model quality. In most

circumstances, the f1 score can be used directly to evaluate

and pick the model, and some well-known machine learning

competitions do as well. It is defined as:

F1 score � 2pprecisionprecall
precision + recall

(15)

Accuracy is defined as the ratio of accurately predicted

samples to total samples. It is defined as:

Accuracy � TP + TN
TP + TN + FP + FN

(16)

The area contained by the curve with the false positive rate

(FPR) on the abscissa and the true positive rate (TPR) on the

ordinate is known as the area under the receiver operating

characteristic curve (ROC) curve (AUC). The categorization

skill given by the ROC curve is intuitively reflected by AUC.

The AUC value ranges between 0 and 1, and the higher the value,

the better the classifier’s performance. FPR is the likelihood that

the prediction is a positive sample but the prediction is incorrect.

It is defined as:

FPR � FP
TN + FP

(17)

TPR reflects the likelihood that the forecast is a positive

sample and that the prediction is right. It is defined as:

TPR � TP
TP + FN

(18)

The area contained by the curve with recall on the abscissa

and precision on the ordinate is known as PR-AUC, and it is the

mean value of precision calculated for each recall threshold

(Géron, 2017). All model evaluation metrics are based on

Scikit-learn (Pedregosa et al., 2011).

3 Results

Determination of pearson correlation
threshold

We used the Pearson correlation threshold to see if there was

a link between samples. If the Pearson correlation coefficient

between samples is larger than the threshold, we connect the two

samples with an edge and set the corresponding value in the

adjacency matrix to 1. In contrast, there is no edge connecting the

two samples, and the corresponding values in the adjacency

matrix are 0. To examine the performance of the models, we fixed

the threshold to a value ranging from 0.1 to 0.9. Figure 7 shows

that before 0.5, the model’s performance improves significantly

as the threshold is raised. After 0.5, it tends to be flat, and the

model’s performance peaks at the final threshold of 0.8. Our

model RRGCN performed best when Pearson correlation

threshold was 0.8, where the Precision, Recall, F1score, ACC,

AUC and PR_AUC reached 0.862, 0.865, 0.854, 0.871, 0.984, and

0.936, respectively.

Performance of RRGCN in multi-omics

To verify the superiority of multi-omics data, as well as the

validity and contribution of each type of data to the model, we

conduct experiments on different types of data separately. From

the experimental results (Table 3), it can be seen that using a

single omics data training model, the highest performance is the

TABLE 4 Results in comparison to other methods.

Model Accuracy F1 score Precision Recall

RF 0.8363 0.7665 0.8172 0.7471

SVM 0.7455 0.7340 0.7792 0.7460

MoGCN 0.7944 0.8078 0.8034 0.7407

ERGCN 0.7901 0.6826 0.7160 0.6120

RRGCN 0.8713 0.8544 0.8621 0.8654

Bold values are to highlight the performance of our model over other classical models.
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mRNA group with an accuracy of 0.7384, followed by the somatic

group with an accuracy of 0.5190. The CNV group has the lowest

accuracy, only 0.4766. It can be seen that although RNA-seq data

has good performance and is indeed used in most studies, its

effect is still inferior to multi-omics data. Of course, this also

reflects from a certain level that RNA-seq data contains

extremely important biological information, has good

performance in the classification of cancer subtypes, and is

extremely important for cancer diagnosis and treatment (Yang

et al., 2021). It can be verified that there is complementary

information between different omics, which can explain the

nature of cancer from different perspectives and improve the

diagnostic efficiency of cancer.

Comparison with other classical methods

To validate RRGCN’s classification performance, we

compare it to two other classical machine learning methods

and two graph convolution-based classification approaches and

evaluate it using four standard external evaluation measures. We

employ four classification methods: Random Forest (Breiman,

2001), Support Vector Machine (Cortes and Vapnik, 1995),

MoGCN (Li X. et al., 2022), and ERGCN (Dai et al., 2021).

·Random Forest (RF) is essentially a bagging algorithm, which

randomly selects a feature from the most important features

for branching, creates multiple decision trees, and finally votes

on which category the data finally belongs to.

·Support Vector Machine (SVM), a binary classification

model whose basic model is defined as a linear classifier

with the biggest margin on the feature space. The goal is to

build an objective function based on the structural risk

reduction principle that distinguishes between the two

types as much as possible.

·MoGCN is a multi-omics integration model based on GCN.

The model utilizes feature extraction and network

visualization for further biological knowledge discovery and

subtype classification.

·ERGCN is a cancer subtype classification method based on

residual graph convolutional networks and sample similarity

networks for gene co-expression patterns.

To begin, we unified the AE latent layer feature matrix as

input data for each model to ensure the rigor of the compared

tests. Then, we utilized scikit-learn to construct these

algorithms and grid search to optimize the RF and SVM

parameters. The best number of sub-decision trees (n_

esimators) for RF is between 1 and 101, with a step size of

10. Finally, 5-fold cross-validation yielded an optimal n_

esimators of 26. The maximum number of features (max_

features) should ideally be between 1 and 21, with a stride of 1.

Finally, the optimal max_features is selected as 20 through 5-

fold cross-validation. We also use grid search for SVM,

choosing the penalty coefficient (C) from (0.1, 1, 100,

1,000) and the kernel function coefficient (gamma) from

(0.0001, 0.001, 0.005, 0.1, 1, 3, 5), as well as the kernel

function (kernel) from (“linear,” “rbf”). The final optimized

C is 1,000, the gamma is 0.001, and the kernel is “rbf.” For

MoGCN and ERGCN, we use the optimal parameters already

set by their authors. The model comparison results are shown

in Table 4.

From the results, we can see that RRGCN has an excellent

performance in the classification of GC subtypes. The

classification accuracy of RRGCN is as high as 0.8713, which

is 5.49% higher than the best RF among the other four methods,

and 11.47%, 8.83%, and 9.32% higher than the other three

methods, respectively. The F1 score, Precision, and Recall of

RRGCN are 0.8544, 0.8621, and 0.8654 respectively, and the

values are also much higher than other methods. Most crucially,

as compared to ERGCN, RRGCN performs better on each of the

four evaluation metrics by 10.28%, 25.17%, 20.41%, and 41.41%,

respectively. In defining the various subtypes of GC, RRGCN has

more advantages. In the future, it might be used to treat more

diseases, offering novel perspectives on how to diagnose and treat

clinical illnesses.

4 Discussion

Heterogeneity causes cancer to differentiate into different

subtypes, and subtypes with different degrees of

differentiation and malignancy have different sensitivities

to clinical therapeutic drugs, which brings great challenges

to the diagnosis and treatment of the disease (Lin et al., 2021;

Yuan et al., 2022). GC is a highly heterogeneous tumor, and its

average somatic gene copy number changes are much higher

than those of other tumor types (Joshi and Badgwell, 2021).

Therefore, in clinical studies, the progression of GC is the

slowest (Li et al., 2021).

Therefore, by integrating multi-omics data, we propose a

graph convolutional network based on residual networks to

realize the subtype classification of GC. Multi-omics datasets

are dimensionally reduced by AE to extract representative

latent layer features. The SNF algorithm is used to find the

associations existing between patients. Finally, PSN

combined with the feature matrix was input into RRGCN,

and the classification results were output through the softmax

layer. The results show that the accuracy of RRGCN

reaches 0.8713.

The improvement of RRGCN over previous models is that

multi-omics data is used as the basis of research, and the

neglected similarity between patients is combined as the input

of the model. For model selection, we introduce two skip

connections to alleviate the loss of information during

training and solve the model degradation problem.
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To explain the advantage of multi-omics data, we retrain

three different types of data separately and compare the results

with multi-omics data. The results show that the performance of

the model trained withmulti-omics data is much higher than that

of the single-omics data, and the accuracy is improved by about

18.00%. To prove the superiority of RRGCN, we compare

RRGCN with classical machine learning methods and well-

performing deep learning models, respectively. The results

show that the performance of RRGCN is higher than other

methods in all aspects. Most importantly, the accuracy of

RRGCN is 10.28% higher than that of ERGCN.

The model is sensitive to the selection of the Pearson

threshold, and the supervised learning method also brings

inconvenience to the selection of data. In the future, we will

focus on studying the application of graph convolution combined

with other classical convolutional neural networks, considering

the development of new unsupervised learning methods for

cancer subtype recognition and classification.

5 Conclusion

In summary, we proposed a new classification method for

gastric cancer subtypes called RRGCN by borrowing skip

connections in residual networks. Through the deep mining of

GC multi-omics data and the consideration of the relationship

between patients, and comparing RRGCN with other classical

machine learningmethods and deep learningmodels, we verify the

excellent performance of RRGCN in various aspects and improve

the cancer subtype classification method to a higher level. The

development of new models opens up new avenues for precise

treatment. Li J. et al., (2022), Yang et al., (2022), and Hu et al.,

(2021). have tried to combine GCN with spatial transcriptomics

for cell clustering and the identification of cancer subtypes. In the

future, we will look into the spatial coordinate information of

gastric cancer cells and employ unsupervised learning algorithms

to provide more robust support for clinical diagnosis and

treatment of gastric cancer.
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