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Lung Adenocarcinoma (LUAD) is a kind of Lung Cancer (LCA) with high incidence
rate, which is very harmful to human body. It is hidden in the human body and is not
easy to be discovered, so it brings great inconvenience to the treatment of LUAD.
Artificial Intelligence (AI) technology provides technical support for the diagnosis and
treatment of LUAD and has great application space in intelligent medicine. In this
paper, 164 patients with primary LUAD who underwent surgery in Hospital A from
January 2020 to December 2021 were selected as the study subjects, and the
correlation between the imaging characteristics of LUAD and Epidermal Growth
Factor Receptor (EGFR) gene mutation was analyzed. Finally, the conclusion was
drawn. In terms of the study on the correlation between EGFRmutation of LUAD and
the imaging characteristics of Computed Tomography (CT), it was concluded that
there were significant differences between the patient’s sex, smoking history,
pulmonary nodule morphology and the EGFR gene, and there was no significant
difference between the patient’s tumor size and EGFR gene; in the study of the
relationship between EGFR genemutation and CT signs of LUAD lesions, it was found
that there were significant differences between the symptoms of cavity sign, hair
prick sign and chest depression sign and EGFR gene, but there was no significant
difference between the symptoms of lobulation sign and EGFR gene; in the study of
pathological subtype and EGFR gene mutation status of LUAD patients, it was
concluded that the pathological subtype was mainly micropapillary. The mutation
rate was 44.44%, which was the highest; in terms of CT manifestations of adjacent
structures of lung cancer and the study of EGFR gene mutation status, it was found
that there was a statistical difference between the tumor with vascular convergence
sign and EGFR gene mutation, and pleural effusion, pericardial effusion, pleural
thickening and other signs in tumor imaging were not significantly associated with
EGFR gene mutation; in terms of the study of CT manifestations of adjacent
structures of LCA and EGFR gene mutation status, it was concluded that pleural
effusion, pericardial effusion, pleural thickening and other signs in tumor images
were not significantly associated with EGFR gene mutation; in terms of analysis and
cure of LUAD, it was concluded that the cure rate of patients was relatively high, and
only a few people died of ineffective treatment. This paper provided a reference for
the field of intelligent medicine and physical health.
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1 Introduction

The imaging features of LUAD play an important role in the
treatment and research of LCA, and the research on them can provide
reference for intelligent medical treatment and cure of LUAD. With
the rapid development of artificial intelligence technology, intelligent
medical treatment has brought great convenience to the treatment of
LUAD. It has become a general trend to analyze the correlation
between the image characteristics of LUAD and EGFR gene
mutation. At the same time, due to the huge and complex data set
of lung cancer gene expression profile, it is necessary to extract
effective information through artificial intelligence methods.

The imaging features of LUAD have been deeply studied in the
field of intelligent medicine. Yu Lingming used a mountain learning
arrangement based on CT image characterization to predict the
pathological staging of non-small cell LCA (Yu et al., 2019). Yoon
Jiyoung predicted the effect of programmed acellular death ligand one
presentation on advanced LUAD by CT imaging (Yoon et al., 2020).
Koyasu Sho concluded that gradient tree boosting was useful for
forecasting the pathologic subtypes of non-small cell LCA and the
polyester/18F pentafluoromethacrylate interferon for EGFR mutation
status was useful (Koyasu et al., 2020). Pascoe Heather M analyzed the
multifaceted nature of LUAD (Pascoe et al., 2018). She Yunlang
investigated the predictable worth of CT-based radiology in
distinguishing inert LUAD from aggressive LUAD in patients with
lung nodules (She et al., 2018). Gertych Arkadiusz found that
convolutional neural networks could discriminate accurately
between the four tissue growth patterns of LUAD in digital slides
(Gertych et al., 2019). Abdul Jabbar Khalid believed that geographic
immune variability illuminated the differential evolution of LUAD
(AbdulJabbar et al., 2020). There are many researches on LUAD, but
there is no research on artificial intelligence in this field.

EGFR gene mutation has a certain correlation with cancer
treatment, and many scholars have also made achievements in this
field. Li Yajun analyzed the effect of CT slide depth and convoluted
kernels on the performance of radiological models for forecasting
EGFR statuses in non-small cell LCA (Li et al., 2018). Jia Tian-Ying
modeled by using the characteristics of radiology and random forest,
and identified the EGFR mutation of LUAD through non-invasive
imaging (Jia et al., 2019). Mei Dongdong analyzed CT images of lung
adenocarcinoma and explored whether cell characteristics could
become a substitute biomarker for EGFR mutation (Mei et al.,
2018). Tulchinsky Eugene analysed the escape mechanism of
EGFR-targeted treatment in LCA (Tulchinsky et al., 2019). Kazue
Yoneda studied the treatment process and protocols for non-small cell
LCA with EGFR deletions (Yoneda et al., 2019). Cicek Tugba analysed
the adequacy of Endotracheal Ultrasonography-tobronchial Needle
Aspiration (EBUS-TBNA) specimens for mutation analysis in LCA
(Cicek et al., 2019). Vyse Simon elucidated the structure of the crystal
structure of mutant kinases with EGFR exon 20 insertion and
revealing a unique mechanism of kinase initiation and spatial
configuration, which determined the lack of reaction of these
EGFR synapses to commercially approved EGFR injectants (Vyse
and Huang, 2019). Although there are many studies on EGFR and
LCA, the research in this area is not deep enough.

This study retrospectively analyzed 164 patients with primary
LUAD who underwent surgery in Hospital A from January 2020 to
December 2021. The EGFR gene detection results of these patients are
available, which could improve the research speed of LUAD and

accelerate its progress. The purpose of this study is to explore the
relationship between these patients and general clinical features in
order to better guide clinical management.

2 Feature extraction of LUAD image
based on artificial intelligence

2.1 Artificial intelligence and medical health

The wide application of medical imaging is mainly driven by the
progress of computer vision technology. However, there is a serious
shortage of imaging and radiotherapy doctors, and there is a shortage
of doctors with rich and high-quality clinical experience. Due to the
vision and experience evaluation of imaging doctors, there are many
cases of misdiagnosis (Bianconi et al., 2019; Wang et al., 2019). The
speed of medical imaging operators reading films and the speed of
radiation therapists drawing target areas are time-consuming. In
medical imaging, the use of artificial intelligence can help doctors
read films and draw targets, which would save doctors a lot of time and
improve the accuracy of diagnosis, radiotherapy and surgery. With the
support of artificial intelligence technology, feature extraction of lung
adenocarcinoma image has more possibilities.

2.2 Feature recognition algorithm of LUAD
image based on artificial intelligence

The design process of feature recognition algorithm for LUAD
image based on artificial intelligence is recorded in Figure 1.

The multi-scale fractal feature is a fractal parameter change
measurement function (Wu et al., 2020). The multi-scale fractal
feature can be understood as the change degree of D dimension
area (K(x, y, ε)) within the scale range of εmax. The multi-scale
fractal feature is used to highlight the difference in fractal features
between man-made targets and natural background

MFFK x, y( ) � ∑εmax

ε�2
K x, y, ε( ) − 1

ε max − 1
∑εmax

ε�2
K x, y, ε( )⎡⎣ ⎤⎦2 (1)

The threshold value is set to 5, and the binary LUAD image is
obtained by segmentation of the enhanced LUAD image as follows:

θ �
tan−1 2

M11
M00

−xcyc( )
M20
M00

−x2c( )− M02
M00

−y2c( )⎛⎝ ⎞⎠
2

(2)

In the formula, M00 is the zero matrix, and (xc, yc) represents the
centroid of LUAD image.

The n-order m-fold Zernike moment of a discrete image is defined
as follows:

Zn,m � n + 1( )
π N − 1( )2 ∑N−1

x�0
∑N−1

y�0
I x, y( )Rn,m ρ( )ejimθ (3)

In the formula, n = 0,1,2,...; 0≤ |m|≤ n; n − |m| is an even number.
(p,θ) is the polar coordinate representation under the unit circle, and
Rn,m is the radial polynomial.

In order to optimize discrete problems, this paper proposes an
artificial intelligence algorithm to update them:
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vij � v1ij,

v0ij,
{ xij � 0

xij � 1
(4)

In the formula, v1ij and v0ij respectively represent the probability
that the jth position of the ith particle becomes one or 0.

The calculation method of (Eq. 4) still has some defects, so this
paper improves the particle position. The update formulas of particle
position are as follows:

xij t + 1( ) � �xij t( ),
xij t( ),{ rij ≤ vij

′

rij > vij
′ (5)

vij
′ t( ) � sig vij t( )( ) (6)

In the formula, �xij(t) represents the inversion of xij(t) in binary,
and rij is a random number in the [0, 1] interval.

The repetition rate is the ratio of the number of repeated feature
points extracted from two similar images to the total number of
extracted points (Gong et al., 2020). The higher the repetition rate of
feature points, the more stable the extracted feature points are and the
higher the correct matching rate of feature points would be.

The formula for calculating the repetition rate is as follows:

R � N3

min N1, N3( ) × t (7)

In the formula, R is the repetition rate; N1 and N2 are the number
of feature points extracted from the left and right images respectively;
N3 is the number of feature points from the left image projection to the
right image; t is the overlap of similar images.

The ratio k between the number of matches obtained from fine
matching of two images and the average value of feature points
extracted from the two images is the image matching rate.

The matching rate is calculated as follows:

k � N

N1 +N2
× t (8)

In the formula, N1 and N2 are the feature points extracted from the
two images; t is the overlap of similar images.

3 Intelligent medical and biological
information

With the development of technology and the aging of the
population, AI would become a part of many industries in the
future, including medical technology (Ge et al., 2019). Although
computers would never replace humans, they are useful for certain
tasks and can improve the patient’s experience. However, the benefits
are much greater. The combination of artificial intelligence and
medical technology would simplify medical care and create new
opportunities. In the case of declining profits and increasing
government regulations, it saves money and promotes the survival
and development of pharmaceutical enterprises. AI also provides the
possibility to standardize many processes in the field of healthcare. Just

FIGURE 1
AI-based LUAD image feature recognition algorithm.

FIGURE 2
Advantages of smart healthcare.
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as the specific procedures are different, many policies and practices are
the same. Patients often do not understand their rights and
responsibilities in health and safety and the accuracy of their data.

The development of AI medical platform would help medical
institutions improve services and balance medical resources, thereby
reducing the pressure on medical services, especially in areas with
limited medical resources (Zhang et al., 2020). Medical institutions
choose different construction methods to improve their medical
services according to different information technology levels. The
AI platform consists of data, computing power, open source systems
and algorithms, and various technologies. The computing power
ensures the speed of the AI platform. The advantages of AI in
medical care are recorded in Figure 2.

In the field of data driven auxiliary medical diagnostic imaging,
applications include brain tumor segmentation, pulmonary nodule
detection, Alzheimer’s disease detection, lymph node detection,
pulmonary bronchiectasis detection, chest disease detection and
liver ultrasound detection. Each patient has an average of
20–30 images, such as the medical imaging of pulmonary nodules.
Computer vision models, such as residual neural networks, are usually
used to automatically identify pulmonary nodules. It can train neural
networks with dozens or even hundreds of layers, which requires high
computing power. The huge amount of data increases the computing
time. Therefore, the development of a supercomputing platform can
not only reduce computing time, but also improve medical efficiency
and reduce patient waiting time.

Knowledge based design creates high value medical diagnostic
cards. The knowledge map is a typical product of the big data era. The
combination of big semantic network, big data technology and deep
learning technology is becoming the main driving force for the
development of artificial intelligence. The medical knowledge map
mainly uses four technologies: knowledge representation, knowledge
extraction, knowledge fusion and knowledge reasoning.

Artificial intelligence has been applied to LUAD, thyroid cancer,
breast nodules and other tumors, coronary artery plaque, skin cancer,
liver pathology and many other fields. Early LCA is asymptomatic, but
70%–80% of patients with advanced LCA lost the opportunity of
surgery and more and more of them developed into LCA. Although
most pulmonary nodules are benign, the proportion of early LCA is
high and benign.

4 Significance of imaging characteristics
and EGFR gene mutation in LUAD

The research significance of imaging characteristics of LUAD and
EGFR gene mutation is discussed from two aspects: LUAD imaging
and EGFR gene mutation, as shown in Figure 3.

Lung cancer is one of the most common cancers in the world, with
the highest mortality. Lung adenocarcinoma is the most common
histological type of lung cancer. Small cell LCA accounts for 92% of
LCA. EGFR mutation is the main subtype of LUAD. About 45% of
non-smoking Non Small Cell LCA (NSCLC) patients have EGFR
mutation. Although EGFR mutations are more common in women
and non-smokers, there are no reliable clinical features that can
accurately distinguish EGFR phenotype from LCA. In clinical
practice, EGFR phenotype and LCA are distinguished by gene
detection of tissue samples. Gene detection is not only costly and
time-consuming, but also invasive due to tissue sampling. Computed
tomography is the most popular and widely used imaging method in
LCA, because it provides excellent spatial resolution information
about the microstructure of LCA, which may reflect the genetic
phenotype of the tumor.

EGFR has been proved to be abnormally or highly expressed in
many solid tumors and can regulate various biological activities of
tumor cells, which inhibit apoptosis through its downstream signal

FIGURE 3
Significance of LUAD imaging features and EGFR gene mutation study.

Frontiers in Genetics frontiersin.org04

Zhou et al. 10.3389/fgene.2022.1090180

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1090180


transduction. The mutation of EGFR receptor gene may partly predict
the sensitivity and efficacy of targeted therapy. At present, the
mutation status of EGFR receptor is mostly determined by global
amplification detection or mutation based gene sequencing, which
requires expensive and complex surgery or puncture technology to
obtain tissue samples. In recent years, molecular targeted therapy has
become a new hot spot in the treatment of lung cancer, and EGFR gene
mutation has attracted great public attention.

5 Correlation between imaging
characteristics of LUAD and EGFR gene
mutation

5.1 Selection of test objects

From January 2020 to December 2021, 164 patients with primary
LUAD who underwent surgery in Hospital A were retrospectively
analyzed and their basic information was recorded in Table 1.

From January 2020 to December 2021, the average age of
164 patients with primary LUAD who underwent surgery in
Hospital A was (53.5 ± 2.2) years old. Of these patients, 86 were
women and 78 were men. 64 patients were mutated and 100 patients
were wild type. In general, the probability of men suffering from
LUAD is higher than that of women, and the wild type patients are
more than the mutant type patients.

Inclusion criteria: Patients with pulmonary nodules or masses
found on standard chest CT; untreated lesions with clinical anti-
cancer treatment before the study; surgical intervention was carried
out after all chest CT scans, and tissue samples were collected for
pathological classification and EGFR gene analysis.

Exclusion criteria: Chest CT scanning does not meet the inclusion
criteria; chest CT scanning is performed in other institutions. There is
no postoperative tissue available for EGFR gene detection, and the
imaging data are incomplete.

5.2 CTmeasurement and film readingmethod

All patients were placed in supine position with arms raised,
and spiral chest examination was performed with Siemens dual
source CT scanner. Tumor features include tumor size, lung lobe
sign, hair prick sign, pleural traction sign, air branch sign, bilateral
lung metastasis and pleural effusion. The tumor size, lung lobe sign,
hair prick sign, pleural traction sign, air bronchogram sign, the
presence of bilateral lung metastasis and pleural effusion were
recorded one by one on chest CT. During the examination, the size
of the tumor is measured by the diameter of the longest lung

window. If it is multiple lesions, it is measured by the diameter of
the largest lesion.

The film would be read independently by three doctors above
medical level. If the readings differ, the three doctors would discuss
and resolve the issue. The film reading content includes: The lung lobe
where the disease is located, the density of the disease, and the signs of
lobation, cavitation, folding, pleural indentation and lymph node
enlargement.

Lesion density: This is divided into pure ground glass density and
density with solid components.

Lymph node enlargement: In a defined area, lymph nodes with a
short diameter>1 cm are enlarged.

5.3 Correlation between imaging
characteristics of LUAD and EGFR gene
mutation

5.3.1 Correlation between EGFR mutation and chest
CT imaging features in LUAD

In order to thoroughly analyze the correlation between the
imaging characteristics of LUAD and EGFR gene mutation, this
paper studied the correlation between the mutation type, sex,
smoking history and tumor size based on the EGFR mutation and
chest CT imaging characteristics of LUAD, and recorded the results in
Table 2.

In 164 patients, 42 were male patients with mutation type, and the
mutation rate was 48.8 (42/86). 56 female patients were mutated, the
mutation rate was 71.79% (56/78). There was a significance difference
between the both of them (p = .012); 35 patients had no smoking
history, and the mutation rate was 35.35% (35/99). 29 patients had
smoking history, the mutation rate was 44.62% (29/65). There was a
significance difference between the both of them (p = .024); there were
49 patients with tumors ≤ 3cm, and the mutation rate was 44.95% (49/
109). 15 patients had tumors>3cm, and the mutation rate was 27.27%
(15/55). There was no meaningful difference between them (p > .05);
the number of patients with EGFR mutation type pulmonary nodules
with partial solid morphology was 28, and the mutation rate was
36.84% (28/76). There were 36 patients with EGFR gene mutation
whose pulmonary nodules were completely solid, and the mutation
rate was 40.91% (36/88). There was a significance difference between
the both of them (p = .024).

5.3.2 The relationship between EGFR gene mutation
and CT findings in LUAD

Mutation of EGFR gene in lung adenocarcinoma lesions
represents the symptoms of lung adenocarcinoma, which can
analyze the relationship between lung adenocarcinoma
symptoms and CT signs and provide reference for correlation
analysis between imaging features of lung adenocarcinoma and
EGFR gene mutation. The test results of the relationship between
EGFR gene mutation and CT signs of LUAD lesions are
summarized in Table 3.

From January 2020 to December 2021, among 164 patients with
primary LUAD who underwent surgery in Hospital A, 81 patients
showed lobulation sign, with a mutation rate of 37.04% (30/81). There
was no meaningful difference (p > .05); 51 patients showed cavitation
sign, and the mutation rate was 35.29% (18/51). The difference was
statistically meaningful (p = .023); 73 patients showed spicule sign, and

TABLE 1 Basic information about the test subjects.

Basis of classification Subgroup Number

Gender Male 86

Female 78

Genotype Mutant 64

Wild type 100
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TABLE 2 Correlation of EGFR mutations in LUAD with chest CT imaging features.

Group Gender Smoking
history

Tumor size Pulmonary nodule pattern

Male Female No Yes Pulmonary nodules≤3 cm Pulmonary masses>3 cm Partially solid Completely
solid

Genome group 42 56 35 29 49 15 28 36

Wild group 44 22 64 36 60 40 48 52

Total 86 78 99 65 109 55 76 88

Mutation rate/% 48.84 71.79 35.35 44.62 44.95 27.27 36.84 40.91

p 012 024 325 024

TABLE 3 Relationship between EGFR mutations and CT signs in LUAD lesions.

Group Lobar sign Cavity sign Burr sign Pleural depression
sign

No Yes No Yes No Yes No Yes

Genome group 34 30 46 18 33 31 18 46

Wild group 49 51 67 33 58 42 51 49

Total 83 81 113 51 91 73 69 95

Mutation rate/% 40.96 37.04 40.71 35.29 36.26 42.47 26.09 48.42

p 316 023 034 005

FIGURE 4
Pathological subtypes and EGFR mutation status in LUAD patients.
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the mutation rate was 42.47% (31/73). The difference was statistically
meaningful (p = .034); there were 95 patients with chest depression
sign, and the mutation rate was 48.42% (46/95). The difference was
statistically meaningful (p = .005).

5.3.3 Pathological subtypes and EGFR genemutation
in patients with LUAD

All cases of lung adenocarcinoma were classified into
histological subtypes according to the international
multidisciplinary classification of lung adenocarcinoma,
including acinar dominated, adherent dominated, papillary
dominated, micropapillary dominated and solid dominated. The
determination results of pathological subtypes and EGFR gene
mutation status of LUAD patients are recorded in Figure 4.

Among 164 patients with LUAD, 14 patients had acinar
dominant pathological subtype, with a mutation rate of 42.42%
(14/33); the pathological subtype of 15 patients was mainly
adherent type, and the mutation rate was 41.67% (15/36); the
pathological subtype of 16 patients was mainly nipple type, and
the mutation rate was 38.1% (16/42); the pathological subtype of
12 patients was mainly micropapillary type, and the mutation rate
was 41.38% (12/29); the pathological subtype of seven patients was
mainly solid type, and the mutation rate was 29.17% (7/24).

5.3.4 CT manifestations of adjacent structures of
LCA and mutation status of EGFR gene

LUAD belongs to non-small cell carcinoma. The growth of LCA
cells would affect the changes in the structure of surrounding cells, so it

TABLE 4 CT presentation of adjacent structures and EGFR mutation status in LCA.

Parameters Genome group Wild group p

Vascular cluster sign + 21 65 035

Vascular cluster sign- 43 35

Pleural effusion+ 27 21 35

Pleural effusion- 37 79

Pericardial effusion+ 33 48 65

Pericardial effusion- 31 52

Thoracic thickening+ 31 34 64

Thoracic thickening- 33 66

The number of mutations in the tumor group with vascular convergence sign was 21, and the number of mutations in the group without vascular convergence sign was 43. There was a statistical

difference between them (p < 05). In addition, pleural effusion, pericardial effusion, pleural thickening and other signs in tumor images were not significantly associated with EGFR, gene mutation

(p > 05).

FIGURE 5
The relationship between EGFR gene mutations and clinical stages of LCA.
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is of practical significance to investigate it. The CT findings of adjacent
structures of LCA and the investigation results of EGFR gene mutation
status are shown in Table 4.

5.3.5 The relationship between EGFR gene mutation
and clinical stage of LCA in patients with LUAD

According to the symptoms and types of LUAD, the clinic can be
divided into stage I, stage II and stage III. The relationship between EGFR
genemutation and clinical stage of LUAD patients is recorded in Figure 5.

26 patients with clinical stage Ⅰ had mutation, and the mutation
rate was 31.71% (26/82); 22 patients in stage Ⅱ had mutations, and the
mutation rate was 47.83% (22/46); there were 16 cases of mutation in
stage III patients, and the mutation rate was 44.44% (16/36).

5.3.6 Analysis and cure of LUAD
In order to analyze the treatment of patients, 164 patients were

interviewed and investigated to explore whether the image feature
analysis of pulmonary adenocarcinoma based on artificial intelligence
can cure the patients’ pulmonary adenocarcinoma and promote their
health. After excluding the patients who could not be contacted, the
actual number of people in this survey was 140, and the physical
conditions of these 140 people were recorded in Figure 6.

Among the patients in clinical stage I, 58 recovered, 12 were relieved,
one was aggravated and one died; among the patients in clinical phase II,
24 recovered, six were relieved, four were aggravated and two died; among
the patients in clinical phase III, 10 recovered, 12 were relieved, six were
aggravated and four died. In general, the cure rate of patients is high, and
only a few people died of ineffective treatment.

6 Conclusion

In order to analyze the correlation between image features of
LUAD and EGFR gene mutation, and improve the cure rate of

LUAD, this paper designed an artificial intelligence algorithm to
analyze the correlation between image features of LUAD and EGFR
gene mutation. It also designed a test to describe it, and finally
reached a feasible conclusion. There were significant differences
between the EGFR mutation rate and the sex, smoking history,
pulmonary nodule morphology, patients with cavity sign, hair
prick sign, thymus depression sign and tumor with vascular
convergence sign groups of LUAD patients. There was no
meaningful difference between tumor size, lobulated sign,
pleural effusion, pericardial effusion, pleural thickening and
EGFR mutation rate. According to the interview and
investigation of patients, the cure rate of LUAD was greatly
improved, which showed that AI could propose effective cure
measures to improve the treatment plan of patients.
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FIGURE 6
Analysis and cure of adenocarcinoma of the lung.

Frontiers in Genetics frontiersin.org08

Zhou et al. 10.3389/fgene.2022.1090180

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1090180


Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

AbdulJabbar, K., Raza, S. E. A., Rosenthal, R., Jamal-Hanjani, M., Veeriah, S., Akarca, A.,
et al. (2020). Geospatial immune variability illuminates differential evolution of lung
adenocarcinoma. Nat. Med. 267, 1054–1062. doi:10.1038/s41591-020-0900-x

Bianconi, F., Palumbo, I., Fravolini, M. L., Chiari, R., Minestrini, M., Brunese, L., et al.
(2019). Texture analysis on [18F] FDG PET/CT in non-small-cell lung cancer:
Correlations between PET features, CT features, and histological types. Mol. imaging
Biol. 216, 1200–1209. doi:10.1007/s11307-019-01336-3

Cicek, T., Ozturk, A., Yilmaz, A., Aktas, Z., Demirag, F., and Akyurek, N. (2019).
Adequacy of EBUS-TBNA specimen for mutation analysis of lung cancer. Clin. Respir. J.
132, 92–97. doi:10.1111/crj.12985

Ge, X., Li, G. Y., Jiang, L., Jia, L., Zhang, Z., Li, X., et al. (2019). Long noncoding RNA
CAR10 promotes lung adenocarcinoma metastasis via miR-203/30/SNAI axis. Oncogene
3816, 3061–3076. doi:10.1038/s41388-018-0645-x

Gertych, A., Swiderska-Chadaj, Z., Ma, Z., Ing, N., Markiewicz, T., Cierniak, S., et al.
(2019). Convolutional neural networks can accurately distinguish four histologic growth
patterns of lung adenocarcinoma in digital slides. Sci. Rep. 91, 1483. doi:10.1038/s41598-
018-37638-9

Gong, Jing., Liu, J., Hao, W., Nie, S., Zheng, B., Wang, S., et al. (2020). A deep residual
learning network for predicting lung adenocarcinoma manifesting as ground-glass nodule
on CT images. Eur. Radiol. 304, 1847–1855. doi:10.1007/s00330-019-06533-w

Jia, T-Y., Xiong, J. F., Li, X. Y., Yu, W., Xu, Z. Y., Cai, X. W., et al. (2019). Identifying
EGFR mutations in lung adenocarcinoma by noninvasive imaging using radiomics
features and random forest modeling. Eur. Radiol. 299, 4742–4750. doi:10.1007/
s00330-019-06024-y

Koyasu, Sho., Nishio, M., Isoda, H., Nakamoto, Y., and Togashi, K. (2020). Usefulness of
gradient tree boosting for predicting histological subtype and EGFR mutation status of
non-small cell lung cancer on 18F FDG-PET/CT. Ann. Nucl. Med. 341, 49–57. doi:10.
1007/s12149-019-01414-0

Li, Y., Lu, L., Xiao, M., Dercle, L., Huang, Y., Zhang, Z., et al. (2018). CT slice thickness
and convolution kernel affect performance of a radiomic model for predicting EGFR status
in non-small cell lung cancer: A preliminary study. Sci. Rep. 81, 17913. doi:10.1038/
s41598-018-36421-0

Mei, D., Luo, Y., Wang, Y., and Gong, J. (2018). CT texture analysis of lung
adenocarcinoma: Can radiomic features be surrogate biomarkers for EGFR mutation
statuses. Cancer Imaging 181, 52–59. doi:10.1186/s40644-018-0184-2

Pascoe, H. M., Knipe, H. C., Pascoe, D., and Heinze, S. B. (2018). The many faces of lung
adenocarcinoma: A pictorial essay. J. Med. Imaging Radiat. Oncol. 625, 654–661. doi:10.
1111/1754-9485.12779

She, Y., Zhang, L., Zhu, H., Dai, C., Xie, D., Xie, H., et al. (2018). The predictive value of
CT-based radiomics in differentiating indolent from invasive lung adenocarcinoma in
patients with pulmonary nodules. Eur. Radiol. 2812, 5121–5128. doi:10.1007/s00330-018-
5509-9

Tulchinsky, E., Demidov, O., Kriajevska, M., Barlev, N. A., and Imyanitov, E.
(2019). Emt: A mechanism for escape from EGFR-targeted therapy in lung cancer.
Biochimica Biophysica Acta (BBA)-Reviews Cancer 1, 29–39. doi:10.1016/j.bbcan.
2018.10.003

Vyse, S., and Huang, P. H. (2019). Targeting EGFR exon 20 insertion mutations in non-
small cell lung cancer. Signal Transduct. Target. Ther. 41, 5–10. doi:10.1038/s41392-019-
0038-9

Wang, X., Zhao, X., Li, Q., Xia, W., Peng, Z., Zhang, R., et al. (2019). Can peritumoral
radiomics increase the efficiency of the prediction for lymph node metastasis in clinical
stage T1 lung adenocarcinoma on CT? Eur. Radiol. 2911, 6049–6058. doi:10.1007/s00330-
019-06084-0

Wu, G., Woodruff, H. C., Shen, J., Refaee, T., Sanduleanu, S., Ibrahim, A., et al. (2020).
Diagnosis of invasive lung adenocarcinoma based on chest CT radiomic features of part-
solid pulmonary nodules: A multicenter study. Radiology 2972, E282–E458. doi:10.1148/
radiol.2020209019

Yoneda, K., Imanishi, N., Ichiki, Y., and Tanaka, F. (2019). Treatment of non-small cell
lung cancer with EGFR-mutations. J. UOEH 412, 153–163. doi:10.7888/juoeh.41.153

Yoon, J., Suh, Y. J., Han, K., Cho, H., Lee, H. J., Hur, J., et al. (2020). Utility of CT
radiomics for prediction of PD-L1 expression in advanced lung adenocarcinomas. Thorac.
cancer 114, 993–1004. doi:10.1111/1759-7714.13352

Yu, L., Tao, G., Zhu, L., Wang, G., Li, Z., Ye, J., et al. (2019). Prediction of
pathologic stage in non-small cell lung cancer using machine learning algorithm
based on CT image feature analysis. BMC cancer 191, 464. doi:10.1186/s12885-019-
5646-9

Zhang, J., Zhao, X., Zhao, Y., Zhang, Z., Wang, J., and Han, J. (2020). Value of pre-
therapy 18FFDG PET/CT radiomics in predicting EGFR mutation status in patients with
non-small cell lung cancer. Eur. J. Nucl. Med. Mol. imaging 475, 1137–1146. doi:10.1007/
s00259-019-04592-1

Frontiers in Genetics frontiersin.org09

Zhou et al. 10.3389/fgene.2022.1090180

https://doi.org/10.1038/s41591-020-0900-x
https://doi.org/10.1007/s11307-019-01336-3
https://doi.org/10.1111/crj.12985
https://doi.org/10.1038/s41388-018-0645-x
https://doi.org/10.1038/s41598-018-37638-9
https://doi.org/10.1038/s41598-018-37638-9
https://doi.org/10.1007/s00330-019-06533-w
https://doi.org/10.1007/s00330-019-06024-y
https://doi.org/10.1007/s00330-019-06024-y
https://doi.org/10.1007/s12149-019-01414-0
https://doi.org/10.1007/s12149-019-01414-0
https://doi.org/10.1038/s41598-018-36421-0
https://doi.org/10.1038/s41598-018-36421-0
https://doi.org/10.1186/s40644-018-0184-2
https://doi.org/10.1111/1754-9485.12779
https://doi.org/10.1111/1754-9485.12779
https://doi.org/10.1007/s00330-018-5509-9
https://doi.org/10.1007/s00330-018-5509-9
https://doi.org/10.1016/j.bbcan.2018.10.003
https://doi.org/10.1016/j.bbcan.2018.10.003
https://doi.org/10.1038/s41392-019-0038-9
https://doi.org/10.1038/s41392-019-0038-9
https://doi.org/10.1007/s00330-019-06084-0
https://doi.org/10.1007/s00330-019-06084-0
https://doi.org/10.1148/radiol.2020209019
https://doi.org/10.1148/radiol.2020209019
https://doi.org/10.7888/juoeh.41.153
https://doi.org/10.1111/1759-7714.13352
https://doi.org/10.1186/s12885-019-5646-9
https://doi.org/10.1186/s12885-019-5646-9
https://doi.org/10.1007/s00259-019-04592-1
https://doi.org/10.1007/s00259-019-04592-1
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1090180

	Relationship between the image characteristics of artificial intelligence and EGFR gene mutation in lung adenocarcinoma
	1 Introduction
	2 Feature extraction of LUAD image based on artificial intelligence
	2.1 Artificial intelligence and medical health
	2.2 Feature recognition algorithm of LUAD image based on artificial intelligence

	3 Intelligent medical and biological information
	4 Significance of imaging characteristics and EGFR gene mutation in LUAD
	5 Correlation between imaging characteristics of LUAD and EGFR gene mutation
	5.1 Selection of test objects
	5.2 CT measurement and film reading method
	5.3 Correlation between imaging characteristics of LUAD and EGFR gene mutation
	5.3.1 Correlation between EGFR mutation and chest CT imaging features in LUAD
	5.3.2 The relationship between EGFR gene mutation and CT findings in LUAD
	5.3.3 Pathological subtypes and EGFR gene mutation in patients with LUAD
	5.3.4 CT manifestations of adjacent structures of LCA and mutation status of EGFR gene
	5.3.5 The relationship between EGFR gene mutation and clinical stage of LCA in patients with LUAD
	5.3.6 Analysis and cure of LUAD


	6 Conclusion
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher’s note
	References


