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Medicago ruthenica, important forage in the legume family, possesses high
nutritional value and carries abundant tolerance genes. This study used whole-
genome data ofM. ruthenica to perform a genome-wide analysis of the nucleotide-
binding site-leucine-rich repeat receptor (NLR) gene family, which is the largest
family of plant disease resistance genes (R genes). A total of 338 NLR genes were
identified in the M. ruthenica genome, including 160 typical genes that contained
80 coiled-coil (CC)-NBS-LRR (CNL) genes, 76 toll/interleukin-1 receptor (TIR)-NBS-
LRR (TNL) genes, four resistance to powdery mildew 8 (RPW8)-NBS-LRR (RNL)
subclass genes, and 178 atypical NLR genes encoding proteins without at least
one important domain. Among its eight chromosomes, M. ruthenica chromosomes
3 and 8 contained most of the NLR genes. More than 40% of all NLR genes were
located on these two chromosomes, mainly in multigene clusters. The NLR proteins
of M. ruthenica had six highly conserved motifs: P-loop, GLPL, RNBS-D, kinase-2,
RNBS-C, and MHDV. Phylogenetic analysis revealed that the NLR genes of M.
ruthenica formed three deeply separated clades according to the N-terminal
domain of the proteins encoded by these genes. Gene duplication and syntenic
analysis suggested four gene duplication types in the NLR genes of M. ruthenica,
namely, tandem, proximal, dispersed, and segmental duplicates, which involved 189,
49, 59, and 41 genes, respectively. A total of 41 segmental duplication genes formed
23 NLR gene pairs located on syntenic chromosomal blocks mainly between
chromosomes 6 and 7. In addition, syntenic analysis between M. truncatula and
M. ruthenica revealed 193 gene pairs located on syntenic chromosomal blocks of the
two species. The expression analysis of M. ruthenica NLR genes showed that 303
(89.6%) of the NLR genes were expressed in different varieties. Overall, this study
described the full NLR profile of the M. ruthenica genome to provide an important
resource for mining disease-resistant genes and disease-resistant breeding.
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Introduction

Plants are vulnerable to many pathogens during their natural growth, including fungi,
bacteria, viruses, and nematodes (Kourelis and van der Hoorn, 2018). These pathogens affect
the normal growth, reproduction, and physiological metabolism of plants, in addition to
inducing the corresponding diseases. However, as sessile organisms, plants cannot actively
avoid these microorganisms and lack a somatic adaptive immune system as is found in animals
(Chisholm et al., 2006; Fujita et al., 2006). During their long-term interactions with pathogens,
plants have evolved a set of effective self-protection mechanisms to resist pathogen invasion and
harm. The innate defense system of plants consists of two main layers. The first layer is plant

OPEN ACCESS

EDITED BY

Xianzhong Huang,
Anhui Science and Technology University,
China

REVIEWED BY

Zhu-Qing Shao,
Nanjing University, China
Kaijing Zhang,
Anhui Science and Technology University,
China

*CORRESPONDENCE

Fengling Shi,
nmczysfl@126.com

SPECIALTY SECTION

This article was submitted to Plant
Genomics,
a section of the journal Frontiers in
Genetics

RECEIVED 03 November 2022
ACCEPTED 22 December 2022
PUBLISHED 10 January 2023

CITATION

Tong C, Zhang Y and Shi F (2023),
Genome-wide identification and analysis
of the NLR gene family in
Medicago ruthenica.
Front. Genet. 13:1088763.
doi: 10.3389/fgene.2022.1088763

COPYRIGHT

© 2023 Tong, Zhang and Shi. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 10 January 2023
DOI 10.3389/fgene.2022.1088763

https://www.frontiersin.org/articles/10.3389/fgene.2022.1088763/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1088763/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1088763/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.1088763&domain=pdf&date_stamp=2023-01-10
mailto:nmczysfl@126.com
mailto:nmczysfl@126.com
https://doi.org/10.3389/fgene.2022.1088763
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.1088763


pattern recognition receptor (PRR) recognition of relatively conserved
pathogen/microbe-associated molecular patterns (PAMPs/MAMPs)
of the pathogens to stimulate downstream basic defense responses and
hinder further pathogen growth. This reaction is termed PAMP/
MAMP-triggered immunity (PTI) (Lacombe et al., 2010; Zipfel,
2014). At the same time, pathogens also interfere with the PTI
response of host plants and enhance pathogen toxicity through
excretive effectors. Effector-triggered immunity (ETI) is another
plant immune response that recognizes some effectors directly or
indirectly via resistance proteins (R proteins) that are encoded by
resistance genes (R genes) in cells to inhibit further pathogen infection
and reproduction (Thomma et al., 2011; Dou and Zhou, 2012).
Therefore, R genes play an essential role in plant disease resistance
processes.

To date, more than 300 R genes have been cloned from different
plant species since the first R gene Hm1 of maize was cloned in 1992
(Johal and Briggs, 1992). Among them, more than 60% of genes belong
to the nucleotide-binding site (NBS)-leucine-rich repeat receptor
(LRR) (NBS-LRR, NLR) gene family (Kourelis and van der Hoorn,
2018). This gene family is the largest disease resistance gene family in
plants, and some NLR genes are dominant with functions in plant
immunity (Ellis and Jones, 1998; Shao et al., 2016; Kourelis and van
der Hoorn, 2018). The proteins encoded by NLR genes contain three
domains: the variable N-terminal domain, central NBS domain, and
C-terminal domain LRR (Shi et al., 2018). The NBS domain consists of
about 300 amino acid sequences and the C-terminal domain usually
has 10–40 short LRR sequences (Traut, 1994; Jones and Jones, 1997).
The NBS and LRR domains provide the energy required for signal
transduction and recognition of specific pathogens, respectively
(Goyal et al., 2020). According to the N-terminal domains, the
proteins encoded by NLR genes can be further divided into coiled-
coil (CC)-NBS-LRR (CNL), toll/interleukin-1 receptor (TIR)-NBS-
LRR (TNL), and resistance to powdery mildew 8 (RPW8)-NBS-LRR
(RNL) subclasses. Among them, the CNL and TNL subclasses are
commonly used as sensors to detect pathogens, while the RNL subclass
is used in immune signal transduction (Zhang et al., 2020).

With the publication of plant whole-genome data, NLR genes of
many plant species [i.e., Arabidopsis thaliana (Meyers et al., 2003), rice
(Zhou et al., 2004), maize (Cheng et al., 2012), barley (Li et al., 2021),
tomato (Liu et al., 2014), potato (Jupe et al., 2012), pea (Djebbi et al.,
2015), and alfalfa (Shao et al., 2014)] have been identified and
analyzed, which has greatly promoted the understanding of their
structures, mechanisms, and evolution. For example, Li et al.
(2021) identified NLR genes in barely, which contains one RNL
and 468 CNL genes. Qian et al. (2021) identified one RNL and
581 CNL genes in Secale cereale. Similarly, studies have reported
no TNL subclass in monocotyledons, while both TNL and CNL
subclasses have been found in dicotyledons, and RNL has been
detected in angiosperms (Andersen et al., 2018; Zhang et al., 2020).
In other words, NLR genes have differentiated during evolution in
different plants. Moreover, NLR genes existed before the
differentiation of green plants and greatly amplified after plants
occupied land (Shao et al., 2019; Liu et al., 2021). The genetic
diversity analysis of NLR genes based on whole-genome data has
not only provided important resources for the exploration of
functional disease-resistant genes but also has important value for
molecular marker-assisted breeding in plants (Qian et al., 2021). Many
genes or resistance gene analogs (RGAs), such as Rpi-amr3i from
Solanum americanum (Witek et al., 2016), Sm1 from wheat

(Walkowiak et al., 2020), and SRC7 from soybean (Yan et al.,
2022), have been cloned by genome-wide NLR gene identification.
Some of these have become the focus for efforts to improve disease
resistance in plants and have been used in agricultural production.
NLR genes are also widely involved in many other biological processes
such as plant growth, development, environmental adaptation, and
abiotic stress (Chini et al., 2004; MacQueen and Bergelson, 2016; Ren
et al., 2020). Therefore, further studies on NLR genes are needed to
expand the NLR gene database.

Medicago ruthenica (L.) (2n = 2x = 16) is a perennial legume forage
grass species and homologous with M. sativa (Small and Jomphe,
1989). The latter is “the queen of forage crops” and one of the
economically most important forage crops in the world (Brummer,
2004; Liu et al., 2013; Zhou et al., 2019). Because of its strong drought,
cold, salt and alkali resistance and abundant leaves, good palatability,
and high nutritional quality, M. ruthenica has been used not only in
the genetic improvement of alfalfa but also as a high-quality pasture to
provide nutrition for livestock (Wang et al., 2008; Li et al., 2013). M.
ruthenica ‘Mengnong No. 1’ was approved for release by the Grass
Variety Approval Committee of Inner Mongolia in 2019 (No.
2019003). Our previous study reported its average hay yield of
11,000–15,000 kg/hm2 after 3 years of cultivation, 113 first-order
branches, and average crude protein content of 11–13% in Tumote,
Hohhot, Inner Mongolia. However, like other crops, M. ruthenica is
also susceptible to a variety of pathogens and diseases, such as powdery
mildew, rust disease, and anthracnose. These diseases lead to serious
yield and quality losses and further harm the health of livestock (Liu
et al., 1989). Therefore, the study of the composition and distribution
of R genes could help improve the recognition of disease resistance in
M. ruthenica.

Fortunately, the whole genome of wild M. ruthenica has been
sequenced and assembled (Wang et al., 2021). Specifically, PacBio,
Illumina, 10× Genomics, and Hi-C technologies were used to assemble
a 904.13 Mb genome with a scaffold N50 of 99.39 Mb. A total of
49,176 protein-encoding genes were annotated. This genome has
provided information for the study of genome-wide NLR genes and
a foundation for cloning the disease resistance genes of M. ruthenica.
In this study, we made full use of the whole genome data of M.
ruthenica to extract the coding sequences (CDSs) of NLR genes and
analyze the NLR genes, including their classification, chromosome
localization, conserved amino acid sequence, phylogenetics,
duplication type, and synteny analysis. Furthermore, we analyzed
the transcriptomes of powdery mildew resistance and susceptible
varieties and characterized the expression of these NLR genes. The
objective of this study was to provide comprehensive information on
NLR genes in M. ruthenica. The results provide a reference for
research on NLR gene functions and the genetic breeding of M.
ruthenica.

Materials and methods

Data used in this study

The gff3 annotation files and genome sequences of M. ruthenica
(https://doi.org/10.6084/m9. figshare.12726932) and amino acid
sequences and gff3 annotation files of A. thaliana (https://www.
ncbi.nlm.nih.gov/data-hub/genome/GCF_000001735.4/; https://
www.arashare.cn/index/News/info/id/1699.html) and M. truncatula
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(http://plants.ensembl.org/Medicago_truncatula/Info/Index) were
downloaded from public databases. Software “gffread” was used to
extract the CDS sequences of M. ruthenica, and a Perl programming
script was used to convert them into amino acid sequences.

Identification and classification of NLR genes
in M. ruthenica

The NLR genes of M. ruthenica were identified from the whole
genome using hidden Markov models search (HMMsearch) methods.
The HMM profile (accession number PF00931) was downloaded from
the Pfam database (http://pfam.xfam.org/) (Shao et al., 2014). NLR
protein sequences were identified from whole-genome amino acid
sequences of M. ruthenica using the hmmsearch command with an
expectation value (E-value) of ≤0.0001. The obtained protein
sequences were extracted using TBtools (Chen et al., 2020). These
sequences were then compared to the NLR protein sequence from A.
thaliana, and those that did not map onto the NLR protein family were
eliminated. A. thaliana NLR genes were identified and classified based
on whole-genome and gff3 files of A. thaliana, respectively. The

extraction method for the A. thaliana NLR genes was consistent
with that applied for M. ruthenica. Subsequently, the NLR genes
identified in M. ruthenica were renamed according to the naming
principles of Ameline-Torregrosa et al. (2008b).

The Pfam database (http://pfam.xfam.org/search) was used to
scan for remaining proteins to confirm the presence of the NBS
(also named NB-ARC) and TIR domains. Genes that did not
encode a conserved NBS domain were removed from the
subsequent analyses. The non-redundant candidate sequences were
submitted to the NCBI Conserved Domains Database (http://www.
ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) to identify the CC, RPW8,
LRR, and other integrated domains (IDs). Meanwhile, proteins with
no specific domains were compared to the CNL, RNL, and TNL
subclasses in A. thaliana. Those with intact CC-NBS-LRR, TIR-
NBS-LRR, or RPW8-NBS-LRR structures were divided into the
corresponding gene subclass. The results from the two methods
were combined, and the specific domains were selected for
classification when the two results conflicted. Integrated domains
with complete domains and E-value <10−5 were retained. Finally,
the results were saved to Excel 2019 file format and viewed on an
online website for data analysis (https://www.hiplot.com.cn/).

FIGURE 1
Identification and sequence analysis of NLR family genes inM. ruthenica. (A) Domain compositions ofM. ruthenica NLR proteins. (B) Presence of six key
motifs in the amino acid sequence of the NBS domain of M. ruthenica. (C) Amino acid features of the six key motifs in the amino acid sequence of the NBS
domain of M. ruthenica.
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Chromosomal distribution of NLR genes inM.
ruthenica genome

The location information of the NLR genes and the conserved
regions were extracted using TBtools (Chen et al., 2020). The
chromosomal distribution of M. ruthenica NLR genes was
plotted using an online tool (https://hiplot-academic.com). A
sliding window analysis was performed with 1 kb and 250 kb as
the step and window sizes, respectively. The principle of
clustering was that the distance between two NLR genes
should be <250 kb on a chromosome (Ameline-Torregrosa
et al., 2008b).

Motif analysis

MEME (https://meme-suite.org/meme/) was used to predict
the motifs in the NBS domains of the identified NLR proteins. The
maximum motif search value was set at 15, while the other
parameters used the default settings (Bailey et al., 2015). The
subsequent results of MEME were imported into TBtools for
visualization (Chen et al., 2020). Finally, the highly conserved
motifs were extracted and compared to reported amino acid
sequences to confirm the type of conserved amino acid
(Meyers et al., 2003; Ameline-Torregrosa et al., 2008b; Gong
et al., 2021).

Phylogenetic analysis

M. ruthenica NLR proteins encoded by typical NLR genes with
intact CNL, TNL, or RNL domains were selected for sequence
alignment and phylogenetic analysis. MEGA 7.0 and ClustalW
software were used to align and correct the amino acid sequences.
The phylogenetic tree was constructed using Construct/Test
Neighbor-Joining Tree in MEGA with a bootstrap test of
500 times. The image was further processed using the online
software iTOL (https://itol.embl.de/).

Synteny and gene duplication analysis

NLR protein amino acid sequences from M. ruthenica were
used as both a database and query to perform pair-wise all-
against-all BLASTp. The results obtained with the
gff3 annotation file, including chromosome number, gene
identifier, and gene starting and ending positions, were input
into MCScanX to classify the types of gene duplication using
the duplicate gene classifier program (Wang et al., 2012).
Similarly, the file obtained by BLASTp was also used for the
analysis of intra-species collinearity using MCScanX software.
Circos diagrams were drawn using Circos (v. 0.67; Krzywinski
et al., 2009). For cross-species synteny analysis, the NLR proteins
of M. truncatula (using an extraction method for genomic
information consistent with that described for M. ruthenica)
were used as queries and NLR proteins of M. ruthenica were
used as a database for pair-wise all-against-all BLASTp. The
remaining steps were consistent with the intra-species
comparison.

Expression analysis

Two M. ruthenica varieties (‘Zhilixing’ and ‘Mengnong No. 1’)
were used for the disease resistance experiment. Seedlings were
transplanted in 2019 at Inner Mongolia Agricultural University
(111.7°E, 40.8°N), with one plant per hole. The holes in each row
were separated by 0.5 m, and the rows were separated by 0.5 m. Three
replicates of each variety were set, and each replicate was grown in a
4.0 m × 5.0 m plot. The plants were cultivated using conventional field
management. The materials were naturally infected with powdery
mildew. The infection types of different M. ruthenica varieties were
observed and photographed from July to September 2021.

To further characterize the expression patterns of NLR genes in
different varieties of M. ruthenica, leaves of three plants were selected
randomly for gRNA extraction and sequencing. The expression
analysis was as follows. First, the genes related to disease resistance
were selected from the whole-transcriptome data. Then, the NLR
genes were screened out, and the fragments per kilobase of exon per
million reads mapped (FPKM) values representing the expression of
each gene in different samples were extracted (Li et al., 2009; Trapnell,
C et al., 2012; Kim et al., 2019). Finally, genes with large differential
expression in the two samples were selected and submitted to the
online data analysis website (https://www.hiplot.com.cn/) to generate
a heatmap.

Results

Identification and classification of M.
ruthenica NLR genes

A total of 338 NLR genes with high confidence were identified
from the sequenced and assembled genome of M. ruthenica (Wang
et al., 2021). The resulting genes, their corresponding alias names, and
original gene identifiers are listed in Supplementary Table S1. NLR
genes accounted for 0.69% of all annotated protein-coding genes
(49176). The obtained NLR genes were assigned into three
subclasses (RNL, CNL, and TNL) based on the domain component
of the protein analyses. These subclasses included 4, 198, and
136 genes, respectively. The specific information on each NLR
gene, such as gene composition and gene annotation, provided the
basic gene resources for the subsequent analyses.

Domain analysis

The protein sequences encoded by the different subclasses of NLR
genes were further analyzed. The results were visualized according to
the type of domain arrangement (Figure 1A; Supplementary Table S1).
Among the 198 genes in the CNL subclass, 80 encoded intact CNL
domains that simultaneously contained the typical N-terminal CC
domain, the central NBS domain, and the C-terminal LRR domain,
accounting for 40.4% of all CNL genes. A total of 22 genes did not
encode the LRR domain (i.e., CN), 42 genes did not encode the CC
domain (i.e., NL), and 54 genes did not encode either CC or LRR
domains (i.e., N) in the CNL subclass. Similarly, a total of 76 proteins
contained intact domains in the TNL subclass, with some atypical TNL
genes also observed. A total of 28 and 16 TNL proteins did not contain
TIR and LRR domains, respectively (i.e., TN or NL), and 16 proteins
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were missing both LRR and N terminal domains (i.e., N). All four RNL
proteins contained intact domains. Among the 338 NLR proteins, four
had an RPW8 domain, 104 had a TIR domain, 102 had a CC domain,
218 had an LRR domain, and all had an NBS domain. In general,
338 NLR proteins showed high diversity in their domain
arrangements, with 160 (47.3%) typical proteins showing intact
domains, and the rest (178) lacking at least one important domain.
The ratio of typical CNL, TNL, and RNL proteins was 20:19:1. Some of
the 338 NLR proteins also had additional integrated domains, such as
PLN03210, PPP1R42, or CDC6.

Conserved motif analysis

MEME analysis was used to detect the presence of key motifs in
the amino acid sequences of the NBS domains. The results revealed six
motifs (P-loop, GLPL, RNBS-D, kinase-2, RNBS-C, and MHDV) that
were readily detected and highly conserved in M. ruthenica NLR
proteins, as has been reported for other angiosperms (Meyers et al.,
2003; Ameline-Torregrosa, et al., 2008b) (Figures 1B, C). Specifically,
85% of the NLR proteins contained P-loop, GLPL, RNBS-D, kinase-2,
and RNBS-C motifs, while 75% of the NLR proteins contained the

MHDV motif (Supplementary Table S1). Meanwhile, 201 NLR
proteins contained all six motifs simultaneously, accounting for
59.5% of all NLR proteins. Other proteins had lost at least one key
motif in the NBS domain. Two NLR proteins did not contain any of
the six key motifs, accounting for only 0.59% of the total
(Supplementary Table S1). Except for RNBS-B, which was absent
in RNL, the remaining motifs were present in most typical RNL, TNL,
and CNL proteins, indicating that the RNL protein differed from TNL
and CNL in terms of the length and amino acid composition of the
conserved sequences. The NLR proteins of M. ruthenica also showed
some exceptions, including those among the 80 typical CNL proteins,
in which one lacked the GLPL motif, one lacked the RNBS-B motif,
one lacked the Kinase 2 motif, and eight lacked the MHDV motif.
These differences can be used to specifically identify the NLR genes of
M. ruthenica and further distinguish these genes.

Distributions of NLR on the M. ruthenica
chromosomes

Gene families dispersed in different positions generally show
different patterns of expression regulation and perform important

FIGURE 2
Chromosomal distribution of NLR genes inM. ruthenica. (A) Number of NLR genes on the eight chromosomes ofM. ruthenica. (B) Physical locations of
NLR genes on the eight chromosomes of M. ruthenica. (C) Proportions of NLR genes appearing as singletons (blue) and clusters (red) in the M. ruthenica
genome.

Frontiers in Genetics frontiersin.org05

Tong et al. 10.3389/fgene.2022.1088763

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1088763


functions. Our analysis of their chromosomal distribution showed that
all 338 NLR genes of M. ruthenica mapped to specific chromosomes
(Figure 2A). Among them, the highest number of NLR genes mapped
to chromosome 3 (75), followed by chromosome 8 (63). In contrast,
the number was the lowest on chromosome 2 (23), which was only one
less than on chromosome 1 (24). Chromosomes 4 and 7 possessed
similar numbers of NLR genes (38 and 39). Chromosomes 5 and
6 contained 35 and 41 NLR genes, respectively. These results indicated
that NLR genes were not evenly distributed on the eight chromosomes
of M. ruthenica and that 138 (40.8%) of the 338 NLR genes were
mainly distributed on chromosomes 3 and 8.

The physical locations of the 338 NLR genes were extracted and
further mapped on chromosomes (Figure 2B). The results showed the
uneven distribution of these genes and that most were organized into
clusters. A total of 87 clusters including 241 (71.3%) NLR genes were
identified on eight chromosomes (Figure 2C). Chromosome
3 contained the most clusters (19), while chromosomes 1 and
2 had the fewest clusters (6). Three clusters, including seven NLR
genes each, were considered the largest clusters. Overall, each cluster
contained an average of three genes. Most clusters only contained two
genes (47), accounting for 54.0% of all clusters. In addition, 97 NLR
genes existed as singletons, accounting for 28.7% of all NLR genes.

Overall, theNLR genes ofM. ruthenicamainly existed in clusters, with
few singletons. These results indicated that most NLR gene clusters of
M. ruthenicamainly consisted of closely related genes, which shared a
common ancestor, similar structure and function, and encoded similar
protein products. In addition, the genes existing as singletons most
likely evolved independently with new sources of mutation, or had
close homologs elsewhere in the genome and might participate in
more stable protein complexes or long-term protective functions
(Mackey et al., 2003).

Phylogenetic analysis

To understand the separations and evolutionary relationships
among the NLR genes of M. ruthenica, we performed phylogenetic
analyses of amino acid sequences of 160 typicalNLR genes. The results
showed that M. ruthenica NLR genes formed three deeply separated
clades, representing the three major subclasses RNL, TNL, and CNL,
respectively (Figure 3A). The four RNL genes were further separated
into two lineages, namely, RNL-1 and RNL-2.Mru1c19 andMru1c20,
and Mru8c330 and Mru8c334 formed highly supported lineages,
respectively. The domain analysis showed that RNL-1 contained

FIGURE 3
Phylogenetic, gene duplication, and synteny analyses of NLR genes inM. ruthenica. (A) Phylogenetic analysis of typical NLR genes inM. ruthenica. RNL,
CNL, and TNL genes are shown in green, blue, and red, respectively. (B)Numbers of each duplication type of NLR genes. (C) Synteny analysis of NLR genes in
M. ruthenica. (D) Synteny analysis of NLR genes between M. ruthenica and M. truncatula.
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the integrated domain PLN03210, while RNL-2 did not
(Supplementary Table S1).

A total of 80 CNL genes in M. ruthenica formed two clades,
including 21 genes in CNL-1 and 59 genes in CNL-2. CNL-2 was
further divided into two or three lineages, which were more closely
related. This phenomenon was also observed in the TNL clade.
Specifically, a total of 76 TNL genes in M. ruthenica formed two
clades, in which the gene Mru8c327 became a single clade closer to
CNL, while the other genes belonged to another clade. The possible
reasons for this may be related to the PLN03150 domain, which was
not detected in other genes (Supplementary Table S1). In general, the
evolution of NLR genes in M. ruthenica was mainly affected by the
different types of N-terminal domains. In addition, other integration
domains such as PLN03210 and PLN03150 also influenced the genetic
relationship between different genes.

Gene duplication analysis

The duplication types of the 338 NLR genes were analyzed using
MCScanX (Wang et al., 2012). The results revealed four different
duplication types (e.g., tandem array, proximal, dispersed, and
segmental duplicate) in M. ruthenica (Figure 3B; Supplementary
Table S1). The largest group contained 189 (55.9%) tandem array
genes. Proximal, dispersed, and segmental duplicate types included 49
(14.5%), 59 (17.5%), and 41 (12.1%) genes, respectively.

Synteny analysis of NLR genes inM. ruthenica

Pair-wise all-against-all BLASTp of the 338 NLR genes in M.
ruthenica was used to determine and visualize as circle plots the intra-
species genomic synteny (Figure 3C; Supplementary Table S2).
Synteny analysis identified 23 NLR gene pairs located on syntenic
chromosomal blocks. Among the eight chromosomes, the highest
number of syntenic NLR gene pairs was observed between
chromosomes 6 and 7 (12 pairs). In contrast, six and five pairs of
syntenic genes were identified between chromosomes 3 and 8 and
between chromosomes 4 and 7, respectively. Some genes were
associated with two different genes on different chromosomes to
form two different syntenic gene pairs. For example, Mru7c261 and
Mru7c262 located on chromosome 7 were collinear with Mru4c147
and Mru4c148 located on chromosome 4, and Mru6c196 and
Mru6c197 located on chromosome 6, respectively (Supplementary
Table S2). Some genes were associated with two different genes on the
same chromosome to constitute different syntenic gene pairs. For
example, Mru6c196 and Mru6c221 were, respectively, collinear with
Mru7c261 and Mru7c269, as well as Mru7c268 and Mru7c253 located
on chromosome 7. In general, the multiple copies of NLR genes inM.
ruthenica were mainly distributed on chromosomes 6 and 7.

To confirm the homology of NLR genes betweenM. ruthenica and
its related species, the NLR genes from M. truncatula were extracted
for inter-species analysis with pair-wise all-against-all BLASTp
(Figure 3D; Supplementary Table S2). Synteny analysis revealed
193 NLR gene pairs located on syntenic chromosomal blocks of the
two species. Among the eight chromosomes, the highest number (63)
of syntenic NLR gene pairs was located on chromosome 3. However,
chromosome 1 of M. ruthenica and chromosome 3 of M. truncatula
had seven pairs of syntenic NLR genes. These results indicated the

significant synteny relationship between these chromosomes in M.
ruthenica and M. truncatula.

Expression analysis of NLR genes in M.
ruthenica

The transcriptome data ofM. ruthenica ‘Zhilixing’ andM. ruthenica
‘MengnongNo. 1’ (Unpublished) were used to characterize the different
expression levels of the 338NLR genes. ‘Zhilixing’ is more susceptible to
powdery mildew than ‘Mengnong No. 1’ in the initial flowering stage
(Figures 4A, B). Overall, 303 of 338 NLR genes showed differences in
expression levels (Supplementary Table S3). Specifically, 72 NLR genes
of Mengnong No. 1 showed at least 1.5-fold higher expression than
‘Zhilixing’ (Figure 4C). In addition, 22 genes, including Mru3c66,
Mru3c69, and Mru8c295, were not expressed in ‘Zhilixing’ but were
expressed or slightly expressed in Mengnong No. 1 (Supplementary
Table S3). The expression analysis revealed 303 NLR genes with
different expression between the two varieties, which may play an
important role in M. ruthenica powdery mildew resistance responses
in the field.

Discussion

M. ruthenica, a relative species ofM. sativa, is often used as a high-
quality genetic resource to improve the abiotic stress resistance of
alfalfa and other pasture species because of its high tolerance to various
extreme environmental conditions (Campbell et al., 1999; Guan et al.,
2009). Therefore, increasing numbers of studies have focused on the
response mechanisms, resistance breeding, and the screening and
cloning of abiotic stress resistance genes in M. ruthenica (Shu
et al., 2018; Shi et al., 2021; Yin et al., 2021). However, research on
the resistance of M. ruthenica to biological stress is lacking, especially
in disease resistance breeding and cloning disease resistance genes.
The genome-wide identification of the NLR gene family would
accelerate the process of cloning resistance genes and
understanding the corresponding resistance mechanisms (Xue
et al., 2020). The genome-wide identification of NLR genes in
angiosperms has recently been reported. These studies have mainly
focused on NLR gene numbers, classification, distribution, and
conserved domains (Huang et al., 2008; Lozano et al., 2015). The
present study is the first to systematically study the NLR genes of M.
ruthenica through bioinformatics analysis based on whole-genome
data. The results showed that M. ruthenica contains 338 NLR genes,
160 of which encode NLR proteins with intact domains, representing
approximately 47.3% of the total NLR genes. The remaining genes
encode only partial domains of NLR proteins with high similarity to
domains with full-sized NLR in A. thaliana. The number ofNLR genes
in M. ruthenica was comparable to that of M. truncatula A17 and
common bean. Specifically, M. truncatula A17 has 333 NLR genes
containing 177 CNL and 156 TNL, while the common bean has
337 NLR genes containing 103 TNL, 224 CNL, and 10 RNL
(Ameline-Torregrosa et al., 2008b; Shao et al., 2014). The total
number of NLR genes in M. ruthenica represented 0.69% of the
total annotated genes, which is consistent with the proportions
(0.6%–1.76%) of NLR genes in other plants (Porter et al., 2009).
Thus, although the NLR genes evolved rapidly, they have largely not
been lost in M. ruthenica.
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The NLR proteins contained typical domains with highly similar
sequences, which are an important component of NLR proteins and
have important functions in disease resistance (Bai et al., 2002).
Among the three major domains (TIR/CC/RPW8, NBS, and LRR),
NBS is the core domain of NLR proteins and is present in G-protein
and GTP/ATP-binding protein families, which bind and hydrolyze
ATP and GTP and participate in the nucleoside triphosphate
metabolic pathway (Downward, 1990; Bourne et al., 1991; Kaziro
et al., 1991; Traut, 1994; Tameling et al., 2002; Rojas et al., 2012).
Several studies have reported that the LRR domain specifically
recognizes pathogens through protein–protein interactions (Kobe
and Deisenhofer, 1995; Ellis and Jones, 1998; Leister and Katagiri,
2000; Hulbert et al., 2001; Belkhadir et al., 2004). Moreover,
differences in LRR number are the main factor of variation in NLR
gene length (Jones and Jones, 1997).Mutations in the LRR region confer
disease resistance in A. thaliana (Bent et al., 1994; Grant et al., 1995;
Warren et al., 1998; Gassmann et al., 1999) and rice (Bryan et al., 2000).
TIR and CC structures stimulate downstream signaling systems in
EDS1 and NPR1 types after R gene and pathogen recognition and
participate in plant immune response (Medzhitov et al., 1997; Ellis and
Jones, 1998; Bai et al., 2002; Monosi et al., 2004). Finally, RPW8 has

demonstrated broad-spectrum resistance tomildew inA. thaliana (Xiao
et al., 2001).

Each domain or variety of domain arrangements of NLR
proteins performs different functions and plays an important
role in defending against pathogen invasion (Ameline-
Torregrosa et al., 2008b). Therefore, the structural domains of
NLR proteins were analyzed. Among the proteins encoded by
338 NLR genes of M. ruthenica, four had the RPW8 domain,
102 had the CC structure, 104 had the TIR domain, 218 contained
the LRR domain, and all contained the NBS domain. Overall,
108 of the 338 NLR proteins contained two domains
simultaneously, including 58 that contained NL, 22 that
contained CN, and 28 that contained TN. Similar various
atypical domains have been observed in M. truncatula
(Ameline-Torregrosa et al., 2008b). In addition, the 338 NLR
genes of M. ruthenica included 160 typical NLR genes with intact
CNL (80), TNL (76), or RNL (4) structures. This result differs
from that of many other plants. For example, the ratios of CNL
and TNL genes were nearly 1:2 in A. thaliana and potato and 1:3 in
grape (Meyers et al., 2003; Lozano et al., 2012; The Tomato
Genome Consortium, 2012). Moreover, no TNL genes have

FIGURE 4
Powdery mildew resistance and expression analysis of different M. ruthenica varieties at the initial flowering stage in Inner Mongolia. (A) M. ruthenica
‘Zhilixing’. Arrows: powderymildew. (B)M. ruthenica ‘MengnongNo. 1’. (C) Expression heatmap of 72NLR genes differentially expressed betweenM. ruthenica
‘Zhilixing’ and ‘Mengnong No. 1’.
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been detected in many Gramineous, and only a minority of RNL
genes have been found (Cheng et al., 2012; The Tomato Genome
Consortium, 2012; Li et al., 2021; Qian et al., 2021). However, in
our study, the ratio of typical CNL and TNL was close to 1:1, with
slight differences in the numbers of genes in the CNL (198) and
TNL (136) subclasses. The result was similar for M. truncatula
whose CNL, TNL, and RNL genes accounted for 48.9%, 48.1%, and
3% of these genes, respectively (Shao et al., 2016). These results
suggested that CNL and TNL played equally important roles in
disease resistance in Medicago (Leister, 2004; Jupe et al., 2012).

Phylogenetic analysis has been used to show the relationship
between different individuals (Kumar et al., 2016). Phylogenetic
analyses of NLR genes have shown that non-TNL (lacking the TIR
domain, usually known as CNL and RNL subclasses) were more
diverse than TNL genes. Many studies have also suggested that
non-TNL subclasses are older than TNL subclasses (Cannon et al.,
2002; Meyers et al., 2002; 2003; Mun et al., 2009). The TNL and CNL
subclasses were first identified among land plants in Physcomitrella
patens and Selaginella moellendorffii, respectively (Yue et al., 2012).
Subsequently, the R genes of these two subclasses were extended to
higher plants and the RPW8 domain has recently been identified in
angiosperms (Zhang et al., 2020). However, genes with
RPW8 structure were assigned to the CNL lineage in some
phylogenetic analyses, indicating a closer evolutionary relationship
among the genes in these two subclasses (Ameline-Torregrosa et al.,
2008b; Lozano et al., 2015). In contrast, in our study, instead of being
assigned to the CNL subclasses, genes encoding the RPW8 domain in
their N-terminal region formed a strong branch distinguished from
CNL in M. ruthenica. This showed that the RNL clade was not
classified into the CNL clade but rather formed an independent
monophyletic clade with TNL and CNL. This finding has also been
observed in other legumes, including M. truncatula, pigeon pea,
soybean, and common bean (Shao et al., 2014). Meyers et al.
(2003) also reported that RNL genes formed a separate lineage
group (CNL-A group) in A. thaliana and that its principle of
action also differed from that of most CNL genes. In addition,
CNL, TNL, and RNL genes continued to be divided into smaller
clades due to different integration domains. In short, the
evolutionary relationships of the NLR gene family in M. ruthenica
are mainly affected by the CC, TIR, and RPW8 domains and other
accessory domains. Moreover, the function and phylogeny of RNL
genes differed significantly between the CNL and TNL clades in M.
ruthenica.

Polyploidy and multiple forms of gene doubling increase the copy
numbers of homologous genes. Gene duplication is one of the most
important evolutionary processes, which generates genetic diversity
and new functions, and plays a crucial role in adaptation and
speciation (Magadum et al., 2013). In this study, we identified 189,
49, 59, and 41 tandem, proximal, dispersed, and segmental duplicate
genes, accounting for 55.9%, 14.5%, 17.5%, and 12.1% of all NLR
genes, respectively. These results were consistent with the findings of
Duan et al. (2019) who performed phylogenetic analysis and reported
a large number of tandem duplications of NLR genes in legumes,
including Glycine max, Arachis duranensis, and M. truncatula. Thus,
tandem duplications may have occurred before the doubling of
legumes and may have been conducive to the expansion of family
gene copy numbers (Ratnaparkhe et al., 2011).

Syntenic analysis could explain the conservation of gene types and
the relative order among different species diverging from the same

ancestry. A large amount of homology information is contained in
syntenic chromosome blocks at the DNA level between related species
(Wang et al., 2012). Intra-species syntenic analysis could be used to
confirm the homology of different chromosomes and analyze the
duplication of regions or genes with multiple copies, while inter-
species analysis could show genome homology (Qian et al., 2021).
The syntenic analysis of NLR genes in M. ruthenica revealed 23 NLR
gene pairs located on syntenic chromosomal blocks associated with
chromosomes 6 and 7, 3 and 8, and 4 and 7. The same genes may have
different homologs on different chromosomes, indicating that the NLR
genes of M. ruthenica have multiple copies in different directions.

M. truncatula (2n = 2x = 16), a member of theMedicago genus, has
been used as a model species of legume (Barker et al., 1990; Cook, 1999).
A17-Jemalong is one genotype of M. truncatula with high resistance to
many diseases such as anthracnose and powdery mildew (Ameline-
Torregrosa et al., 2008a). Therefore, it was selected as the target species
for syntenic analysis with M. ruthenica. The results revealed 193 NLR
gene pairs located on syntenic chromosomal blocks of chromosome
3 between M. ruthenica and M. truncatula, indicating that NLR genes
expanded similarly in these two species (Qian et al., 2021). However,
earlier studies demonstrated significant loss and rearrangement in the
M. truncatula genome, especially the NLR genes, which suggested rapid
evolution and may have eliminated any evidence of syntropy (Ameline-
Torregrosa et al., 2008b). Overall, the NLR gene family is a large multi-
gene family with a complex gene structure and evolutionary process.
More comprehensive and detailed analyses are required to better
support breeding for disease resistance.

NLR gene expression patterns have been reported for many plants,
which provide more evidence to understand NLR gene structures,
functions, and applications (Lowe et al., 2017). Yu et al. (2021)
reported that NLR gene expression levels in Akebia trifoliata were
higher in rind tissue that was vulnerable to pathogens. Similarly, Ren
et al. (2020) also observed significantly higher NLR gene expression in
orchardgrass with high resistance to rust fungus compared to the
expression in highly sensitive materials. The same results were
reported in other plants, including Cucumis sativus (Zhang et al.,
2022), Helianthus annuus (Neupane et al., 2018), Hordeum vulgare
(Wang et al., 2013), and Populus (Bresson et al., 2011). In the present
study, we found that 303 (89.6%) NLR genes were expressed in different
M. ruthenica leaf tissues. Most showed no significant differences in
expression, possibly due to the low sequencing coverage or
pseudogenization (Frazier et al., 2016; Neupane et al., 2018). However,
72 of 303 NLR genes showed higher expression in resistant varieties
compared to susceptible varieties, which indicated that these NLR genes
might play important roles in the resistance of M. ruthenica to powdery
mildew and may provide new resistance sources for the improvement of
M. ruthenica disease resistance, although their specific functions and
regulatorymechanisms are still unclear. Additional study on the functions
of NLR genes of M. ruthenica under abiotic stress conditions is needed.
The results of the present study have laid the foundation for further
understanding. In general, NLR genes in M. ruthenica play important
roles in pathogen defense to guarantee the normal growth and
development of M. ruthenica in different ecological environments.

Conclusion

Analysis of whole-genome data of M. ruthenica uncovered a
draft NLR gene family, which included 338 NLR genes with high
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confidence and diversity. These genes can be divided into three
subclasses (TNL, CNL, and RNL) according to their domain
arrangements. Six motifs (P-loop, GLPL, RNBS-D, kinase-2,
RNBS-C, and MHDV) exist in the amino acid sequences of the
NBS domains. The NLR genes of M. ruthenica mainly mapped to
chromosomes 3 and 8, and most were organized in gene clusters.
Phylogeny analysis revealed that genes in the TNL, CNL, and RNL
subclasses formed three deeply separated clades. Collinearity
analysis showed that the NLR genes of M. ruthenica had four
duplication types, with tandem array genes the most numerous.
Moreover, segmental duplication genes formed 23 NLR gene pairs
located on syntenic chromosomal blocks of M. ruthenica.
Meanwhile, 193 syntenic NLR gene pairs were identified
between M. ruthenica and M. truncatula. Differential expression
analysis showed that 303 (89.6%) NLR genes could play essential
roles in powdery mildew resistance. These results further refine and
expand information about M. ruthenica disease resistance gene
families, which could lay a foundation for screening and cloning
disease resistance genes and molecular breeding of disease
resistance in M. ruthenica and its related species.
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