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Backgrounds: The tissue resident memory CD8 T cell (Trm) constitutes an

important component of the local immunity. In the context of malignant

tumors, mounting evidence also supports the potential anti-tumor property

of this cell subset. Therefore, identification of Trmmarker genes and exploration

of the causative effect of Trm in shaping tumor microenvironment (TME)

heterogeneity might provide novel insights for the comprehensive

management of cancer patients.

Methods: By dissecting a single T cell transcriptome dataset, we acquired

marker genes for Trm, which were latter applied to bulk RNA sequencing

profiles of two large colorectal cancer (CRC) patient cohorts downloaded

from TCGA and GEO databases. First, colorectal cancer patients were

divided into different Trm clusters using consensus clustering algorithm.

Then, we established a Trm-related gene (TRMRG) risk score signature and

tested its efficacy in predicting prognosis for colorectal cancer patients.

Moreover, a sequence of rigorous and robust analyses were also carried out

to investigate the potential role of Trm-related gene risk score in tumor

microenvironment remodeling and therapeutic utility of it in colorectal

cancer treatment.

Results: A total of 49 Trm marker genes were identified by analyzing single cell

RNA sequencing profiles. First, colorectal cancer patients were successfully

classified into two Trm clusters with significant heterogeneity in functional

enrichment patterns and tumor microenvironment landscapes. Then, we

developed a Trm-related gene risk score signature and divided patients into
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different risk levels. High risk patients were characterized by attenuated

immunogenicity, weakened sensitivity to immunotherapy, as well as adverse

clinical outcomes. While low risk patients with advantages in survival exhibited

increased immunogenicity, stronger metabolic activity and improved

immunotherapeutic responses.

Conclusion: Through combinatorial analysis of single cell and bulk RNA

sequencing data, the present study identified Trm to play a non-negligible

role in regulating the complexity and heterogeneity of tumor

microenvironment for colorectal cancer. Moreover, the Trm-related gene

risk score signature developed currently was corroborated to be tightly

correlated with prognosis and therapeutic responses of colorectal cancer

patients, thus exhibiting potential application value for clinical practice.

KEYWORDS

colorectal cancer, tissue-resident memory T cells, single cell RNA sequencing,
prognostic model, tumor microenvironment, immunotherapy

Introduction

Colorectal cancer (CRC) is the most common malignancies

in digestive system with highmorbidity andmortality. According

to the latest statistics, CRC ranks the third and second leading

causes for newly-diagnosed cancer cases and cancer-related

deaths worldwide in 2020, respectively (Sung et al., 2021).

Immunotherapies, with immune checkpoint inhibition (ICI)

being the most representative strategy, has achieved

considerably improved clinical outcomes in cancer treatment

(de Miguel and Calvo, 2020). However, durable therapeutic

responses can be only observed in a limited amount of cancer

patient (Sharma et al., 2017). Several factors may have an impact

on prognosis and immunotherapeutic sensitivity, among which

tumor microenvironment (TME) landscape plays an

indispensable role (Duan et al., 2020). Mounting evidence

have suggested that high-level CD8 T cell infiltration was a

positive sign indicating optimistic prognosis after ICI

treatment (Pardoll, 2012; Bindea et al., 2013). Of all the

CD8 T cell subsets, memory CD8 T cells are supposed to

constitute an essential component of secondary defenses to

threats to health including infections and cancers

(Yenyuwadee et al., 2022). Therefore, a deep understanding of

the putative role of memory CD8 T cells in shaping TME

heterogeneity would be crucial to improve prognosis and

optimize therapeutic strategies for cancer patients.

Traditionally, memory CD8 T cells were divided into two

categories: central memory T cells (Tcm) and effector memory

T cells (Tem) (Sallusto et al., 1999). As two categories of

circulatory lymphocytes that move through bloodstream and

lymph, Tcm and Tem are capable of migrating into peripheral

tissues to provide secondary defense when reencountering

antigens (Yenyuwadee et al., 2022). By contrast, tissue

resident memory CD8 T cells (Trm), of which the existence

was initially corroborated in the skin and intestinal mucosa of

mouse models (Kim et al., 1999; Boyman et al., 2004), are non-

migratory and reside permanently in within epithelial layers of

peripheral tissues (Park et al., 2019). CD103 (ITGAE) and

CD69 are acknowledged as two major biomarkers for Trm,

which engender the cell with the ability to reside in local tissues

durably and respond quickly to local antigen challenge, both

are important mechanisms whereby Trm participate in local

secondary defense responses (Yenyuwadee et al., 2022). In the

context of malignant tumors, elegant studies have highlighted

the anti-cancer property of Trm in TME, and the potential

therapeutic utility of Trm in immunotherapy. For example, in

lung cancer, Trm was reported to encompass higher

cytotoxicity and proliferative potentials than non-Trm

CD8 cells and constitute a larger proportion in patients who

respond well to immunotherapies (Clarke et al., 2019). In

addition, several recent works have also correlated high

infiltration of Trm with prolonged survival and better

sensitivity towards immunotherapy in patients with

melanoma (Edwards et al., 2018), ovarian cancer (Webb

et al., 2015), intrahepatic cholangiocarcinoma (Kim et al.,

2021) and breast cancer (Savas et al., 2018), etc. For CRC,

the specific contribution of Trm to TME landscape remains

elusive.

To unravel the association between Trm and the TME

characteristics for CRC patients, we first identified marker

genes for Trm by dissecting single cell RNA sequencing

(scRNA-seq) data. Based on the bulk RNA-seq data

downloaded from the cancer genome atlas (TCGA) gene

expression omnibus (GEO) database, we then used these

marker genes to divide CRC patients into different clusters. In

addition, more relevant genes of Trm, namely the Trm-related

genes (TRMRG), were identified through differential expression

analysis between Trm clusters, and were used for the

construction a risk score signature. The potential application

value of our TRMRG risk score signature for predicting

Frontiers in Genetics frontiersin.org02

Li et al. 10.3389/fgene.2022.1088230

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1088230


prognosis and immunotherapeutic sensitivity was also

investigated.

Methods

Data acquisition and processing

The analytical process of the present work was depicted in

Supplementary Figure S1. In this study, GSE108989, a scRNA-

seq dataset containing transcriptomes of over 10,000 single

T cells from 12 CRC patients were obtained from GEO

database (Zhang et al., 2018). In addition, we downloaded

bulk RNA-seq and corresponding clinical profiles of two large

CRC patient cohorts: TCGA-COAD/READ and GSE39582 from

TCGA (https://portal.gdc.cancer.gov) and GEO (https://www.

ncbi.nlm.nih.gov/geo) database, respectively. After excluding

those without follow-up information, a total of 1071 CRC

patients were enrolled in the present study. Baseline

information of these patients were described in Supplementary

Table S1. To ensure the comparability across different

sequencing platforms, we converted the FPKM format of the

TCGA RNA-seq data to TPM format based on previously

described protocols (Conesa et al., 2016), which was believed

to resemble the GEO microarray data. Moreover, two cohorts

were merged into a meta-cohort after eliminating batch effects

using R package “sva”.

Acquisitoin of Trm marker genes

We focused on single T cell RNA-seq data in GSE108989 to

identify Trmmarker genes. R package “Seurat” was employed for

dimension reduction. Based on the false discovery rate

(FDR) <0.05 criterion, dimensions with significant separation

were identified through principal component analysis (PCA).

The top 20 principle components (PCs) were utilized to divide

cells into different clusters via the t-distributed stochastic

neighbor embedding (tSNE) algorithm. First, CD4 and

CD8 T cells were separated based on their own markers, with

CD4 representing CD4 T cells, CD8 and CD8A for CD8 T cells.

Then, we screened out Trm cell subsets among the CD8 cell

populations based on known marker genes for Trm and genes

used in Zhang’s work (Zhang et al., 2018). Finally, we selected the

marker genes for each T cell subset using the |log2 [FC (fold

change)]| > 1 and FDR <0.05 criterion.

Functional enrichment analysis and
consensus clustering analysis

To gain an insight into the pathways and biological function

enriched in the Trm marker genes selected above, we sought to

Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene

Ontology (GO) functional enrichment analysis using

“clusterprofiler” package in R. Then, based on the expression

pattern of these marker genes, we attempted to divide CRC

patients in meta-cohort into different clusters using

“ConsensusClusterPlus” package in R. The optimal clustering

number was determined by k-means algorithm and cumulative

distribution function (CDF) curve. The stability of our clustering

was evaluated by PCA analysis.

Clinical correlation analysis of Trm
clusters

To investigate the association between different Trm clusters

and clinical features, we analyzed differences in the distribution

of clinicopathological factors including age, gender, T,N,M status

and tumor stage within distinct CRC Trm clusters using chi-

square test or Fisher’s precision probability test.

Correlation of CRC Trm clusters with
biological function and TME

For identification of biological functions enriched in different

Trm clusters, we downloaded KEGG pathway gene set and

Hallmark biological signature gene set from MsigDB (http://

www.gsea-msigdb.org) database. Gene set variation analysis

(GSVA) based on the two gene sets were performed to

calculate the enrichment score (ES) of each CRC sample in

TCGA cohort. Variations in ES between different Trm

clusters were displayed in the form of heatmap and bar plot,

using R packages “pheatmap” and “ggplot2”, respectively. To

investigate the TME characteristics within different Trm clusters,

we sought to the Estimation of STromal and Immune cells in

MAlignant Tumor tissues using Expression data (ESTIMATE)

algorithm (Yoshihara et al., 2013) to calculate the proportion of

immune cell and stroma content in TME, along with the tumor

purity, and compared their differences between different Trm

clusters. Moreover, marker genes of 28 immune cell types were

obtained from Charoentong’s paper (Charoentong et al., 2017)

and further subjected to single sample gene set enrichment

analysis (ssGSEA) for estimation of the infiltration levels of

28 immune cells.

Identification of gene subtypes based on
TRMRG

To find out more TRMRG, we screened out genes

differentially expressed between various Trm clusters using

“limma” package in R. The inclusion criteria were log |FC |

>0.585 and adjusted p-value < 0.05. Then, based on the
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expression pattern of TRMRG, we performed unsupervised

consensus clustering and classified CRC patients into different

TRMRG subtypes.

Construction and validation of TRMRG risk
score signature

To quantify CRC patients’ risk level, we developed a TRMRG

risk score signature. First, all CRC patients in meta-cohort were

randomized into a training (n = 536) and validation (n = 535)

cohort at 1:1 ratio, and training cohort was used to conduct

univariate Cox regression analysis to primarily filter out

prognosis-related genes. Then, to reduce the overfitting risk,

we employed least absolute and selection operator (LASSO)

regression model on genes selected above. Eligible genes were

finally subjected to multivariate Cox regression analysis for risk

score calculation. The formula for risk score estimation was:

Risk score � ∑ Exp i pCoef i( )

Exp i and Coef i represented the expression and multivariate

Cox coefficient of each gene. The stratification of TCGA patients’

risk level was based on the median value of TRMRG risk score.

Subsequently, the risk score signature was applied to validation

cohort, TCGA cohort, GEO cohort as well as the whole meta-

cohort, respectively, for validation. Kaplan-Meier plots and time-

dependent receiver operating curves (ROC) were drawn to

estimate the predictive efficacy of TRMRG risk score signature.

Clinical correlation analysis of TRMRG risk
score signature

To investigate the clinical significance of TRMRG risk score

signature, we first compared the differences in distributions of

different clinicopathological factors between high and low risk

CRC patients. Next, we stratified patients into different clinical

subgroups according to age (≤65 vs. >65), gender (male vs.

female), tumor stage (I-II vs. III-IV), tumor location (left vs.

right), T status (T1-T2 vs. T3-T4), N status (N0 vs. N1-N3), M

status (M0 vs. M1), and compared the risk score differences

quantitatively.

Correlation of TRMRG risk score signature
with biological function and TME

We employed gene set enrichment analysis (GSEA) to

explore the correlation of risk score with biological function.

To figure out whether patients at different risk level harbor

markedly varied TME landscapes, comparisons of ESTIMATE

score and immune cell infiltration were performed. Notably,

anti-cancer immune response is a multi-step cyclic event which

can be conceptualized into seven main steps including release of

cancer cell antigens (step 1), cancer antigen presentation (step 2),

priming and activation (step 3), trafficking of immune cells to

tumors (step 4), infiltration of immune cells into tumors (step 5),

recognition of cancer cells by T cells (step 6), and killing of cancer

cells (step 7) (Chen and Mellman, 2013). Representative genes

involved in each step were curated from tracking tumor

immunophenotype (TIP) website and formed seven gene sets

(Xu et al., 2018). We used ssGSEA algorithm to estimate the

activation degree of the seven steps and made comparisons

between high and low risk patients (Du et al., 2022).

Expression of HLA family genes and
inhibitory molecules, TCR richness
analysis of TRMRG risk score signature

We compared the expression differences of HLA family

genes (Wang et al., 2022) and immunosuppressive molecules

(Pitt et al., 2016; Song et al., 2018) between high and low risk CRC

patients. Moreover, profiles for the richness and diversity of T cell

receptor (TCR) repertoire were obtained from TCGA database

and used for difference comparison between high and low risk

patients (Song et al., 2022).

Immunotherapeutic sensitivity analysis of
TRMRG risk score signature

Given that a large number of established immune-related risk

models showed potential utility in guiding immunotherapeutic

options (Li X. et al, 2022; Gao et al., 2022; Xu et al., 2022), we

determined to continue our research in this direction. First, the

expression levels of 3 commonly-used target genes for immune

checkpoint inhibitor (ICI) therapies, CTLA-4, PD-L1 and

PD1 were compared between high and low risk patients.

Next, Tumor Immune Dysfunction and Exclusion (TIDE)

scoring, a parameter inversely correlated with ICI efficacy was

estimated in each CRC patient according to the instruction on

TIDE website (http://tide.dfci.harvard.edu/) (Jiang et al., 2018).

In addition, the immunophenoscore (IPS) for predicting anti-

PD1 and anti-CTLA4 therapeutics among TCGA CRC patients

was obtained from the Cancer Immunome Atlas (TCIA, https://

tcia.at/home). Generally speaking, higher IPS represents better

accuracy for the more corresponding result (Jiang et al., 2021;

Guo et al., 2022). We divided patients into high (9, 10), medium

(7, 8) and low (5, 6) IPS groups and analyzed the frequencies of

three IPS groups in high and low risk patients, respectively.

Finally, to validate our conclusions drawn from the analysis of

ICI-related parameters, we also directly applied the TRMRG risk

score signature to two external immunotherapeutic cohorts:

IMvigor210 for urothelial carcinoma patients receiving anti-
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PD-L1 treatment, and GSE78220 for melanoma patients with

anti-PD1 administration.

Correlation of TRMRG risk score signature
with metabolism

In a 2020 study, Yang et al. (2020) integrated over

2000 currently-identified metabolism-related genes and

developed a gene set signature containing 115 items. Herein,

we selected gene sets correlated with carbohydrate, lipid and

amino acid and drug metabolism and estimated the ES of them

for CRC patients using “ssGSEA” algorithm. Comparisons of the

ES were made between high and low risk groups. Besides, we

employed consensus clustering analysis in an attempt to classify

CRC patients into different metabolic subtypes. Risk score

variations within different metabolic subtypes were also

compared to further elucidate TRMRG risk score’s association

with metabolism.

Chemotherapeutic sensitivity analysis

To select the appropriate anti-tumor medicine for CRC

patients at different risk levels, we used R package

“pRRophetic” to estimate the half inhibitory concentration

(IC50) values for several chemotherapeutic drugs and

compared IC50 differences between high and low risk patients

latter. In addition, we downloaded drug sensitivity data to more

than 20,000 compounds of the NCI-60 cell line from the Cell

Miner database (Reinhold et al., 2012). Missing values of drug

sensitivity data was supplemented by “impute.knn” function of

the “impute” package in R. Then, drugs with the clinical use being

approved by FDA was selected to perform Pearson correlation

analysis to find out the correlation of gene expression with

IC50 value.

External validation of TRMRG risk score
signature in predicting prognosis and
therapeutic responses

To testify the stability of TRMRG risk score signature in

predicting prognosis and therapeutic responses, two external

CRC cohorts: GSE17536 and GSE17537 were downloaded

from GEO database for external validation. Risk score

calculation and risk level stratification followed the same

criteria as the meta-cohort. We conducted Kaplan-Meier

analysis and time-dependent ROC analysis to test the efficacy

of TRMRG risk score for predicting OS in this two cohorts.

Moreover, TIDE algorithm was also applied to validate the

association of risk score with sensitivity to immunotherapies

in these two cohorts.

Development of a nomogram based on
TRMRG risk score signature

To strengthen the clinical utility of TRMRG risk score

signature, a nomogram integrating risk score and other

clinicopathological factors to predict patient’s survival was

developed using R package “rms”. Meanwhile, we depicted

calibration curves and conducted time-dependent ROC and

decision curve analysis (DCA) to evaluate the predictive

efficacy of the nomogram.

Statistical analysis

All statistical analyses were performed in R version 4.1.2.

Comparisons of numerical variables used Wilcoxon rank sum

test. For survival data, log-rank test was chosen and the result was

display in the form of Kaplan-Meier plots. The predictive efficacy

of variables was demonstrated by time-dependent ROC curves

with area under curves (AUC) values.

Results

Identification and functional analysis of
trm marker genes

GSE108989 comprises transcriptomes of 11,138 single T cells

from 12 CRC patients (Figure 1A). After performing dimension

reduction using the top 20 PCs, 15 cell clusters were obtained

(Figure 1B), with cluster 0, 1, 3, 5, 6, 9, 10, 13 representing CD

4 T cells, and cluster 2, 4, 7, 8, 11, 12, 14 representing CD

8 T cells. Among CD 8 cell populations, cluster 8 and 11 were

recognized as Trm subsets by referring to known Trm marker

genes and genes used by Zhang’s work (Zhang et al., 2018)

(Figure 1C, Supplementary Figure S2). Marker genes for each cell

subset were listed in Supplementary Table S2. The heat map in

Figure 1D depicted the top 5 marker genes for each T cell subset.

Of note, a total of 49 marker genes for Trm were identified.

Functionally, these genes were tightly associated with the

regulation of immune cell activity, MHC protein complex and

antigen processing (Supplementary Figure S3A).

Genetic alteration landscape of Trm
marker genes in TCGA cohort

Among all the 49 Trm marker genes, the expression data of

42 genes could be obtained in both TCGA and GEO cohort. It

was demonstrated that 31 of these genes were differentially

expressed between tumor and normal tissues (Supplementary

Figure S4A). As shown in Supplementary Figure S4B, significant

variations in somatic copy number of these marker genes could
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also be observed. Of note, the variation tendency of gene

expression and copy number variation (CNV) alteration was

the same for some genes (e.g., CD69, GPR65, FOSB with

decreased expression in tumors also exhibited CNV loss;

CCL4, CAPG highly expressed in tumors also exhibited CNV

gain), while was the opposite for others (e.g., CCL5, PTGER4,

CD160 with decreased expression in tumors were associated with

CNV gain; JUN with increased expression in tumors were

associated with CNV loss) The chromosome location of

CNVs was shown in Supplementary Figure S4C. Based on the

waterfall plot in Supplementary Figure S4D, 24.4% samples in

TCGA cohort had mutations in Trm marker genes. Among the

mutated genes, EGR4, IL18RAP and NR4A2 shared the highest

mutation frequencies. The expression correlation and prognostic

value of Trm marker genes were depicted in a comprehensive

network (Supplementary Figure S4E). It was suggested that the

expression of most genes were positively correlated with each

other. Besides, eight of these genes including GZMB, IVNS1ABP,

EGR2, MAP3K8, STOM, ZFP36, PFKFB3 and HOPX were

identified to be prognosis-related genes according to

univariate Cox analysis, with GZMB associated with

prolonged OS and the rest indicating impaired prognosis.

Based on the above analysis, the expression of Trm marker

genes were characterized by significant variations between

tumor and normal tissues, along with frequent CNV changes

and mutation events, which highlighted the potential regulatory

functions of these genes in CRC tumorigenesis.

Identification of Trm clusters for CRC
patients

To shed light on the expression pattern of Trm marker genes

in large CRC patient population, we conducted unsupervised

consensus clustering analysis for patients of meta-cohort

(Figure 2A). Based on CDF curve (Figure 2B) and k-means

algorithm (Figure 2C), the optimal clustering number was 2.

PCA analysis further validated the stability of the clustering

FIGURE 1
Identification of Trm marker genes via scRNA-seq analysis (A,B) t-SNE plots colored by different (A) CRC samples and (B) cell clusters. (C)
Identification of different T cell subsets. (D) Heatmap showing the top 5 marker genes of each T cell subtype. Tex: exhausted T cell; Tem: effector
memory T cell; Temra: recently-activated effector memory T cell; MAIT: mucosal-associated invariant T cell; Trm: tissue-resident memory T cell.

Frontiers in Genetics frontiersin.org06

Li et al. 10.3389/fgene.2022.1088230

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1088230


FIGURE 2
Identification of Trm clusters in CRC patients. (A) Consensus matrix heatmap showing two Trm clusters. (B) CDF curve, (C) k-mean algorithm
and (D) PCA analysis showing the robustness and stability of the clustering. (E)Heatmap showing the expression pattern of Trmmarker genes in two
clusters. (F) Bar plots showing the correlation of Trm clusters with clinicopathological factors including age, gender, tumor location, T, N, M status
and tumor stage. CDF: Cumulative distribution function; PC: Principal component. Statistical Significance: *p < 0.05; ***p < 0.001; ns: not
significant.
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FIGURE 3
Correlation of Trm clusters with biological function and TME landscapes. (A) Heatmap showing the enrichment pattern of KEGG items for two
Trm clusters. (B) Bar plot showing the enrichment pattern of Hallmark items for two Trm clusters. (C) Box plots comparing the infiltration differences
of 28 immune cells between two Trm clusters. (D,E) Box plots comparing the differences in (D) TME score and (E) tumor purity between two Trm
clusters. TME: Tumor microenvironment; KEGG: Kyoto Encyclopedia of Genes and Genomes. Statistical Significance: **p < 0.01; ***p < 0.001;
ns, not significant.
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(Figure 2D). According to the expression pattern of Trm marker

genes, we defined cluster A as high-Trm and cluster B as low-

Trm subtypes, respectively (Figure 2E). In terms of clinical

relevance, the proportion of CRC patients with left-sided and

metastatic tumors (M1 status) was markedly larger in Trm

cluster B than that in Trm cluster A (Figure 2F). While there

were no significant differences in the distributions of age, gender,

T, N status, and tumor stage between two Trm clusters.

Correlation of Trm clusters with biological
function and TME

To gain further insight of biological functions enriched in

different Trm clusters, we performed GSVA analyses based on

KEGG and Hallmark gene sets, respectively. For KEGG gene set,

cluster A had a higher enrichment level of immune-related

pathways (Figure 3A). For Hallmark gene set, biological

processes in relation to immune-activation (e.g., allograft

rejection, interferon alpha and interferon gamma response,

inflammatory response, etc.) and stromal e.g., hypoxia,

angiogenesis and epithelial mesenchymal transition (EMT)

activities were all significantly enriched in Trm cluster A

(Figure 3B). In addition, an overwhelming majority of

immune cells were more densely populated in the TME of

Trm cluster A (Figure 3C). Besides, patients of Trm cluster A

were associated with enhanced immune, stroma and ESTIMATE

scores (Figure 3D), along with a lower tumor purity, as compared

to patients with Trm cluster B (Figure 3E). Therefore, Trm cluster

A was associated with abundant immune cells and stromal

contents, along with declined tumor purity. By contrast, Trm

cluster B was characterized by enhanced tumor purity and a

paucity of immune and stromal contents in TME. Notably, Wnt_

β-catenin pathway, a canonical carcinogenic pathway for

malignancies in digestive system (Xue et al., 2021; Wen et al.,

2022; Yang et al., 2022; Zhang et al., 2022; Zhu et al., 2022), was

the Hallmark item with the highest enrichment level in Trm

cluster B (Figure 3B), which reflected the high tumor purity of

this cluster.

Identification of gene subtypes based on
TRMRGs

Based on the log |FC|>0.585, adjusted p-value <
0.05 standard, a total of 806 TRMRGs were identified to be

differentially expressed between two Trm clusters, of which

742 and 64 genes were up-regulated in cluster A and B,

respectively (Supplementary Table S3). According to KEGG

and GO analysis, these TRMRGs were functionally enriched

in immune-related pathways and biological signatures, similar

to the enrichment pattern of Trm marker genes (Supplementary

Figure S3B, C). Subsequently, we identified two gene subtypes

based on the expression of TRMRG (Supplementary Figure

S5A–D). Similar to Trm clusters, the two TRMRG subtypes

also encompassed totally distinct TME landscapes. With up-

regulated TRMRG expression, subtype A could be regarded as an

alternative to Trm cluster A, which was characterized by

abundant immune cell and stromal contents, as well as lower

tumor purity in TME. In contrast to it, TRMRG subtype B

demonstrated a paucity in immune and stromal contents in TME

but elevated tumor purity, and represented Trm cluster B

(Supplementary Figure S5E–G).

Construction of TRMRG risk score
signature

To quantify CRC patients’ risk level using TRMRG, we

conducted univariate Cox regression analysis for patients in

training cohort and primarily selected 228 genes with

prognostic indication value (Supplementary Table S4). Of

note, 12 genes remained when further subjected to LASSO

Cox regression analysis (Supplementary Figure S6A, B).

Finally, seven eligible genes were screened out through

multivariate Cox regression analysis, including five high risk

(CYTH4, ADAP2, DAPK1 and SPARCL1) and three low risk

(CXCL13, CCL22 and RTP4) genes (Supplementary Figure S6C).

Notably, expressions of seven TRMRGs were positively

correlated with two well-defined Trm marker genes: ITGAE

and CD69, suggesting the intimate association with Trm

(Supplementary Figure S7). Risk score was calculated based on

the result of multivariate Cox regression analysis.

Risk score = (−0.227 * expression of CXCL13) + (0.396 *

expression of CYTH4) + (0.442 * expression of ADAP2) + (0.312

* expression of DAPK1) + (0.138 * expression of SPARCL1) +

(−0.509 * expression of CCL22) + (−0.246 * expression of RTP4).

Based on the median risk score, patients in training cohort

were divided into high risk (n = 268) and low risk (n = 268)

groups. Risk score’s distribution, survival status for high and low

risk patients were shown in Supplementary Figure S6D.

Moreover, the expression pattern of seven TRMRGs between

high and low risk groups was depicted in the heatmap in

Supplementary Figure S6E. Kaplan-Meier plots correlated high

risk patients with impaired OS (log rank p < 0.01, Supplementary

Figure S6F). Besides, the predictive efficacy of TRMRG risk score

signature was also corroborated by time-dependent ROC

analysis, as AUC for 5, 7 and 10 years OS were 0.755,

0.756 and 0.740, respectively (Supplementary Figure S6G).

Validation of TRMRG risk score signature

To verity the generalizability of TRMRG risk score signature

for CRC patients, we further applied it to the test cohort, TCGA

cohort, GSE39582 and the meta-cohort, respectively
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FIGURE 4
Analysis of clinical correlation and biological function for TRMRG risk score signature. (A) Bar plots showing the frequencies of different clinical
features including age (>65 vs. ≤65), gender (male vs. female), tumor location (left vs. right), T status (T1-T2 vs. T3-T4), N status (N0 vs. N1-N3), M
status (M0 vs. M1) and tumor stage (I-II vs. III-IV) in high and low risk patients. (B) Box plots comparing risk score differences betweenmultiple clinical
subgroups. (C)GSEA analysis of TRMRG risk score signature. (D) Bar plot showing the enrichment pattern of Hallmark items for high and low risk
patients. (E) Box plots comparing enrichment differences of gene sets developed by Mariathasan et al. Statistical Significance: *p < 0.05; **p < 0.01;
***p < 0.001; ns, not significant.
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FIGURE 5
Analysis of TME landscape for TRMRG risk score signature. (A) Heatmap showing the immune cell infiltration level, TME score and tumor purity
between high and low risk patients. (B–D) Box plot comparing differences in (B) immune cell infiltration level (C) TME scores and (D) tumor purity
between high and low risk patients. (E,F) Pearson correlation analysis of the risk score with (E) immune cell infiltration levels, (F) TME scores and
tumor purity. (G,H) Pearson correlation analysis of expressions of individual TRMRG with (G) immune cell infiltration levels, (H) TME scores and
tumor purity. Statistical Significance: *p < 0.05; **p < 0.01; ***p < 0.001; ns: not significant.
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(Supplementary Figures S8–S11). The formula for risk score

calculation and the cut-off value for risk level stratification

were consistent with that of the training cohort. With

satisfaction, advantages in OS still exists for low risk patients.

More importantly, TRMRG risk score maintained its high

accuracy in prognosis prediction according to time-dependent

ROC analysis, as the AUCs for predicting 5, 7 and 10 years OS

were all over 0.6 in these cohorts.

Clinical correlation analysis of TRMRG risk
score signature

We classified CRC patients from meta-cohort into several

clinical subgroups to investigate the clinical correlation of

TRMRG risk score signature. As shown in Figure 4A, there

were higher frequencies of patients with advanced clinical

features including T3-T4 status, M1 status, N1–N3 status and

stage III-IV being classified into high risk group, while no

association was found between risk level and age, gender and

tumor location. Then we removed patients with unknown

clinical information and compared the risk score differences

between different subgroups. It was revealed that patients with

advanced T, N and M status as well tumor stages all exhibited

heightened risk scores (Figure 4B). Therefore, our present

analysis correlated high risk patients with more advanced

clinical features.

Correlation of TRMRG risk score signature
with biological function and TME

According to GSEA functional enrichment analysis, risk

scores were positively associated with carcinogenic activities

and extracellular matrix (Figure 4C). Besides, Hallmark items

such as hypoxia, epithelial mesenchymal transition, angiogenesis

(Figure 4D), and gene signatures (EMT1, EMT2, EMT3,

angiogenesis and pan-F-TBRS) developed by Mariathasan

et al. (2018) were all highly enriched in high risk patients

(Figure 4E), suggesting that high risk patients were

characterized by enhanced stromal activities. Next,

ESTIMATE and immune infiltration analyses further revealed

the heterogeneity in TME landscapes between high and low risk

patients. As shown in Figures 5A, B, activated CD4 T cells,

CD8 T cells and B cells had higher enrichment levels in low risk

patients than in high risk patients, while memory lymphocytes

and multiple types of immunosuppressive cells including

myeloid-derived suppressor cells (MDSC), regulatory T cells

(Treg), immature dendritic cells (DC) and Th2 cells were

more abundant in high risk patients (Figures 5A, B). Then,

based on ESTIMATE analysis, high risk patients were

associated with increased stromal scores (Figures 5A, C) and

decreased tumor purity (Figures 5A, D). In addition, the risk

score showed positive correlations with a vast majority of

immune cells (Figure 5E) and TME scores (Figure 5F) while

inversely associated with tumor purity (Figure 5F). For each

individual TRMRG, it was found that their expressions were

positively correlated with infiltrations of most immune cells and

TME scores, while inversely correlated with tumor purity

(Figures 5G, H).

Next, we sought to compare the activation degree of each step

of the anti-cancer immune response between high and low risk

patients. As shown in Figure 6, the ability of immune priming

and activation (step 3), T cells’ recognition (step 6) and killing

(step 7) of cancer cells were all stronger in low risk patients.

However, high risk patients were more competent in the release

of cancer antigen (step 1). Generally speaking, low risk patients

were more capable of trafficking immune cells to tumors (step 4).

In detail, the trafficking ability of the vast majority of immune

cells such as B cells, CD4 and CD8 T cells, neutrophils, etc., was

stronger in low risk patients, whereas high risk patients showed

increased trafficking ability of Th17 cells and monocytes.

Expression of HLA family genes and
immunosuppressive molecules, TCR
richness analysis of TRMRG risk score
signature

We compared the expressions of HLA family genes and

inhibitory molecules, as well as TCR repertoire richness

between high and low risk patients. Of the 19 HLA family

genes, 10 were found to be highly-expressed in low risk

patients (Figures 7A, B). The expression of two

immunosuppressive molecules, VEGFA and TGFβ was

significantly up-regulated in high risk patients compared with

that in low risk patients (Figures 7A, C). In addition, low risk

patients harbored increased TCR richness and diversity

(Figure 7E). Taken together, our analysis correlated an

immune-activated TME with low risk patients, while on the

contrary, an immunosuppressive TME with high risk patients.

Immunotherapeutic sensitivity analysis of
TRMRG risk score signature

The above analysis revealed prominent heterogeneity in

TME landscapes between high and low risk patients. As the

efficacy of ICI therapy is largely dependent on the interaction of

various components within TME, we determined to conduct

multi-omic analysis exploring the association between risk score

and immunotherapeutic responses. First, up-regulation of PD-L1

and CTLA4, which were two immune checkpoint genes as well as

two commonly-used targets for ICI treatment, could be found in

low-risk patients (Figures 7A, D). Then, high-level IPS scores for

positive responses to both anti-CTLA4 and anti-PD1 treatment,
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as well as the combinatorial therapy, all accounted for larger

proportions in patients with low risk (Figure 7F). In addition,

high risk patients were characterized by significantly higher

TIDE scores (Figure 7G). Likewise, the non-responders to ICI

treatment predicted by TIDE algorithm took up a larger

proportion in high risk group (Figure 7H). Finally, we applied

the TRMRG risk score signature to 2 ICI treatment cohorts for

external validation. For IMvigor210, extended OS after receiving

anti-PD1 treatment could be observed in low risk patients

(Figure 7I). For GSE78820, responders to ICI treatment

exhibited lower risk scores (Figure 7J) and constituted a larger

portion in low risk group (Figure 7K). Based on the analysis

above, it was concluded that low risk patients were supposed to

gain benefit from ICI treatment.

Correlation of TRMRG risk score signature
with metabolism

A total of 30 metabolism-related gene signatures were

enrolled in the study, including 13 for lipid, 5 for

carbohydrate, 8 for amino acid and 4 for drug metabolism.

Overall, the metabolic activities for nutrients and drugs were

stronger in low risk patients (Figures 8A–D). Furthermore, two

metabolic subtypes were identified for CRC patients using

consensus clustering method. As shown in Figure 8E, the

overall metabolic activity was higher in metabolism subtype A

than in subtype B. Kaplan-Meier analysis correlated metabolism

subtype A with better OS (Figure 8F). The combinatorial analysis

of metabolism subtypes and risk score signature suggested that

patients with metabolism subtype B were associated with higher

risk scores (Figures 8G, H). Therefore, our analysis above

identified the diversified metabolic landscape as another

contributor to disparities in prognosis between high and low

risk patients, in addition to TME heterogeneity.

Correlation of TRMRG risk score signature
with sensitivity to anti-tumor drugs

To evaluate the potential of TRMRG risk score in guiding

clinical medication, we aimed to select the appropriate anti-

tumor drugs for patients with high and low risk, respectively. It

was suggested that high risk patients exhibited lower IC50 values

for cisplatin, cytarabine, and vinblastine while low risk patients

showed higher sensitivity to 5-fluorouracil (Figure 9A).

Moreover, drug sensitivity profiles for NCI-60 cell line were

downloaded from cell miner database and used to investigate the

association between individual TRMRG expression and drug

sensitivity. As shown in Figure 9B, the expression of

CYTH4 was positively correlated with IC50s of

cyclophosphamide, fluphenazine and AMG-176, suggesting

that patients with high CYTH4 expression were likely to

develop resistance to these three drugs. Likewise, up-regulated

RTP4 expression was suggestive of impaired therapeutic efficacy

of ARQ-680, PLX-8394 and dabrafenib. Positive associations

FIGURE 6
Analysis of the activation status of seven-step anti-cancer immunity cycle for high and low risk patients. Statistical Significance: *p < 0.05; **p <
0.01; ***p < 0.001; ns, not significant.
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FIGURE 7
Immunotherapeutic sensitivity analysis of TRMRG risk score signature. (A) Heatmap showing the expression patterns of HLA family genes,
immunosuppressivemolecules and ICGs between high and low risk patients. (B–D) Bar plots comparing expression differences of HLA family genes,
immunosuppressive molecules and ICGs between high and low risk patients. (E) Differences in TCR richness and diversity between high and low risk
patients. (F) Bar plots showing the frequencies of high, medium, low level IPS scores for anti-PD1 treatment, anti-CTLA4 treatment and the
combinatorial therapy in high and low risk patients. (G) Box plot comparing differences in TIDE scores between high and low risk patients. (H)
Frequencies of responders and non-responders to ICI therapies for patients with high and low risk. (I) Kaplan-Meier plot showing the OS for high and
low risk patients after receiving anti-PD-L1 treatment in IMvigor210 cohort. (J) Box plot comparing the risk scores for responders and non-
responsers in GSE78220. (K) Frequencies of responders and non-responders in high and low risk group in GSE78220. Statistical Significance: *p <
0.05; **p < 0.01; ***p < 0.001; ns: not significant.
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FIGURE 8
Metabolism analysis of TRMRG risk score signature. Violin plots comparing the metabolic activities of (A) carbohydrate, (B) lipid, (C) amino acid
and (D) drug between high and low risk patients. (E) Distinctions in metabolic activities between two metabolism subtypes. (F) Kaplan-Meier plot for
patients with metabolism subtype A and B. (G) Risk score differences between patients with metabolism subtype A and B. (H) Frequencies of two
metabolism subtypes in high and low risk patients. Statistical Significance: *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.
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FIGURE 9
Correlation of TRMRG risk score signature with sensitivity to anti-tumor drugs. (A)Differences in IC50 values for cisplatin, cytarabine, vinblastine
and 5-fluorouracil between high and low risk patients. (B) Pearson correlation analysis of TRMRG expression levels with IC50 values for anti-tumor
drugs in NCI-60 cell lines. Statistical Significance: *p < 0.05; ***p < 0.001.
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FIGURE 10
Development of a nomogram based on TRMRG risk score signature. (A)Nomogram integrating TRMRG risk score, age, gender and tumor stage
for predicting 5, 7, 10 years OS. (B–D) Time-dependent ROC curves evaluating the efficacy of the total nomogram score in predicting (B) 5, (C) 7, (D)
10 years OS, in comparison to age, gender and tumor stage. (E–G) DCA curves estimating the efficacy of the nomogram in predicting (E) 5, (F) 7, (G)
10 years OS from the perspective of clinical benefit. (H–J) Calibration curves of the nomogram for predicting (H) 5, (I) 7, (J)10 years OS. AUC:
area under curve.
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between ADAP2 expression and resistance to erlotinib,

PD183805, as well as between CXCL13 expression and

resistance to elesclomol and BAY-1161909 were also observed.

Increased DAPK1 expression indicated higher sensitivity to R-

547 on the one hand, while indicated resistance to ibrutinib on

the other hand. There were inverse associations between

CCL22 expression and IC50s for ixazomib citrate and

midostaurin. Similarly, improved therapeutic outcomes may also

be achieved for patients with enhanced SPARCL1 expression after

receiving CYC-116 and 6-thioguanine treatment.

External validation of TRMRG risk score
signature in predicting prognosis and
therapeutic responses

To investigate the generality of TRMRG risk score signature,

another two CRC cohorts: GSE17536 and GSE17537 were

obtained from GEO database for external validation. In both

of the two cohorts, high risk patients were characterized by

significantly shortened OS (Supplementary Figures S12A, B).

Time-dependent ROC analysis also verified the efficacy of the

risk score in predicting OS (Supplementary Figures S12C, D). In

GSE17536, patients with high risk exhibited significantly higher

TIDE scores (p = 7.9e−08, Supplementary Figure S12E). While in

GSE17537, increased TIDE scores with borderline significance

(p = 0.052) could also be observed for high risk patients

(Supplementary Figure S12F). In addition, non-responders to

ICI therapies accounted for a larger portion in both of the two

cohorts (Supplementary Figures S12G, H). Overall, the external

validation process corroborated the stability and generality of

TRMRG risk score signature in predicting survival and

therapeutic responses for CRC patients.

Development of a nomogram based on
TRMRG risk score signature

To further enhance the clinical application value of our

TRMRG risk score signature, a nomogram integrating risk

score, age, gender and tumor stage was developed in the meta-

cohort. After endowing a value to each variable, a specific score was

obtained. The total nomogram score could be estimated by adding

up scores for each variable together (Figure 10A). The AUCs for

predicting patients’ 5, 7 and 10 years OS were all over 0.700. The

prediction of OS based on the total nomogram score showed

higher accuracy than the method using age, gender and stage only

(Figures 10B–D). In addition, DCA analysis revealed that the

aggregate nomogram score displayed better net benefit than the

age-, gender- and stage-only model for predicting time-dependent

survival (Figures 10E–G). Besides, according to Figures 10H–J,

calibration plots for 5-, 7- and 10-year OS showed good

consistency between actual observations and predicted value of

nomogram, which further highlighted the clinical application

value of the nomogram in prognosis prediction.

Discussion

With rapid development, scRNA-seq technology provides an

unprecedented opportunity for us to unravel the molecular

characteristics of diversified cell types infiltrated in TME, and

opens up a new era of cancer research. With the help of this

technology, researchers are unveiling the mystery of the

phenotypical and functional variations of tumor infiltrating

immune cells that contribute to heterogeneity of TME and

different responses to immunotherapy. By analyzing scRNA-

seq data obtained from small cell lung cancer patients, Tian et al.

(2022) recognized multiple T Cell clusters with markedly

different immune checkpoint gene expression patterns, which

provided rationale for the application of personalized ICI

strategies to different patient groups. A generally

immunosuppressive TME characterized by abundant Treg

infiltration and the absence of exhausted CD8 T cells for

gastric cancer (GC) patients was identified through the

scRNA-seq analysis performed by Li Y. et al. (2022), which to

some extent accounted for GC patients’ low response rate

towards ICI treatment. Notably, in an article published

recently, Song et al. (2022) performed combinatorial analysis

of single cell and bulk RNA-seq profiles and acquired some

promising findings. First they selected marker genes of NK cells

by analyzing scRNA-seq profiles derived from lung cancer

patients, and latter applied the relevant genes to bulk RNA-

seq profiles of large patient cohorts to construct a risk score

model. The risk score model was corroborated to offer accurate

prediction for the prognosis and immunotherapeutic response

for lung cancer patients. Inspired by this, we attempted to

investigate whether a prognostic model of this kind could be

applied to CRC patients.

Trm is a newly-identified type of memory CD8 T cells lacking

in migratory ability and encompasses tissue residency tendency.

Previous studies have correlated the high infiltration level of Trm

with favorable prognosis in several types of malignancies.

However, there is still a lack of studies exploring the unique

marker genes for Trm. Besides, the specific function of Trm in

CRC patients remains to be fully elucidated. In the present study,

Trm marker genes were obtained through the analysis of a single

T cell RNA-seq dataset for CRC patients. Then, the marker genes

obtained above were applied for consensus clustering analysis

which classify CRC patients from TCGA and GEO cohorts into

two clusters. Patients with Trm cluster A were characterized by

enhanced immune cell infiltration and elevated immune

activities. While patients with Trm cluster B exhibited

increased tumor purity with few immune and stromal

contents in TME. Furthermore, to find out more genes in

relation to Trm, we defined TRMRGs as DEGs between two
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Trm clusters, which were used to develop a risk score signature to

quantify patients risk level. High risk patients were associated

with attenuated immunogenicity, weakened sensitivity to

immunotherapy, as well as adverse clinical outcomes. While

low risk patients with advantages in survival exhibited

increased immunogenicity, stronger metabolic activity and

higher sensitivity to immunotherapies.

Immunotherapy targeting at immune checkpoint genes,

namely the ICI treatment has been gradually applied for

clinical practice and demonstrated perfect therapeutic effect.

In the context of CRC, monoclonal antibodies targeting at

PD-1 such as nivolumab (Overman et al., 2017) and

CTLA4 such as ipilimumab (Overman et al., 2018), exhibited

high efficacy for the treatment of CRC patients with high

microsatellite instability status. However, therapeutic

sensitivity of ICI treatment is dependent on numerous factors,

among which the heterogeneity in TME landscapes is an essential

determinant. In our current study, low risk patients were

characterized by higher infiltration levels of activated

CD4 T cells, CD8 T cells and B cells with anti-tumor potency.

Besides, the anti-cancer immunity in low risk patients were more

easily to be primed, activated, and trafficked to tumor cells, and

were more competent in recognizing and killing tumor cells. In

addition, our analysis correlated low risk patients with higher

immunogenicity as demonstrated by increased expressions of

HLA family genes. Moreover, low risk patients encompassed

elevated TCR richness and diversity. The expansion or alteration

of TCR repertoires followed by ICI treatment has been observed

by an increasing number of studies (Crosby et al., 2018; Yost

et al., 2019; Someya et al., 2022), suggesting that ICI therapies rely

heavily on the recruitment of new T Cells (Chen Y. et al, 2022). In

fact, TCR has been identified as an indicator for predicting

immunotherapeutic responses, with its low richness and

diversity representing impaired sensitivity (Postow et al., 2015;

Chen Y. et al, 2022). By contrast, for high risk patients, the

richness of multiple immunosuppressive cells including MDSC,

Tregs, Th2 cells, immature DC and the expression of

immunosuppressive molecules including VEGFA and TGFβ
was significantly higher in high risk patients as compared to

low risk counterparts. MDSCs and Tregs are acknowledged as

two “bad guys” with pro-tumorigenic and immunosuppressive

properties in TME, of which the high infiltration levels represent

impaired ICI therapeutic responses (Tay et al., 2020; De Sanctis

et al., 2022). Mechanistically, Th2 cells mediate the progression of

CRC via the secretion of some carcinogenic cytokines, indicating

the potential therapeutic utility of Th2 cells as novel targets for

cancer immunotherapy (Akimoto and Takenaga, 2019; Knudson

et al., 2022). Previous studies also identified immature DCs (Song

et al., 2018) and inhibitory molecules including VEGFA (Terme

et al., 2013) and TGF-β (Liu et al., 2022) to be negative regulators
for ICI therapeutic response. In addition, increased stromal

contents and elevated stromal pathways were also associated

with high risk patients, which may hinder the immune cells from

entering into the tumor site and undermine the anti-tumor

responses (Salmon et al., 2012). Based on the above analysis,

it was concluded that high risk patients encompassed an

immunosuppressive TME, which was responsible for impaired

sensitivity to ICI treatment. In support of this, high risk patients

were associated with decreased IPS scores for anti-PD1 and/or

anti CTLA4 treatment, as well as elevated TIDE score. Moreover,

the application of TRMRG model to two immunotherapeutic

cohort yielded identical results: high risk patients exhibited either

impaired response rate or shortened OS after receiving ICI

treatment.

Two chemokine-encoding genes: CCL22 and CXCL13,

were involved in the present TRMRG risk score signature.

Through the interaction with CCR4, CCL22 could facilitate

the recruitment of immunosuppressive cells (Yoshie, 2021).

Moreover, elegant experiments have provided evidence for

CCL22’s oncogenic role in multiple types of cancers:

CCL22 overexpression renders an immunosuppressive TME

and is associated shortened OS for cervical cancer patients (Ni

et al., 2022); the intimate association between CCL22 and

disease progression was revealed in esophageal cancer patients

(Chen J. et al, 2022). By contrast, the specific role of

CXCL13 in TME was more complex. On the one hand, it

was revealed by some studies that up-regulated

CXCL13 expression could promote the proliferation,

migration and invasion of CRC cells (Zhu et al., 2015), and

was responsible for the dismal survival and drug resistance for

CRC patients (Qi et al., 2014; Zhang et al., 2020). On the other

hand, CXCL13 was also reported to be fully capable of

attracting anti-tumor immune cells to TME and correlated

with favorable prognosis (Bindea et al., 2013). Therefore, a

deeper understanding about the potential role of CXCL13 in

TME remodeling is crucial for unraveling the dual effect of the

gene in tumorigenesis.

To augment the association between TRMRG risk score

signature and clinical practice, we sought to investigate the

suitable therapeutic strategies for patients at different risk

levels. It was revealed that high risk patients demonstrated

higher sensitivity to a wider range of anti-tumor drugs,

including cisplatin, cytarabine and vinblastin. While low

risk patients responded better to 5-fluorouracil. Finally, a

nomogram integrating TRMRG risk score, age, gender and

tumor stage was established to enhance the clinical utility of

our work.

Admittedly, the present study had certain limitations. First,

although the identification of Trm marker genes were achieved

by dissecting a single T Cell transcriptome dataset, the

supplementation of newly-emerged Trm markers is still

necessary. In addition, as a descriptive research performed by

retrospectively analyzing public databases, our current work

lacks validation in the real world. Therefore, future

prospective and large-scale researches are warranted to verify

the current findings.
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Conclusion

In summary, through integrative analysis of single cell

and bulk RNA transcriptomic profiles, the present study

identified two Trm clusters with significantly different

TME landscapes for CRC patients, which highlighted the

non-negligible role of Trm in regulating the complexity and

heterogeneity of TME. Moreover, we quantified the risk level

based on Trm-related genes and established a seven-gene

risk score signature. The potential utility of the signature to

serve as a novel clinical biomarker for prediction of the

prognosis and immunotherapeutic responses was also

corroborated.
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