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AmicroRNA is a small, single-stranded, non-coding ribonucleic acid that plays a

crucial role in RNA silencing and can regulate gene expression. With the in-

depth study of miRNA in development and disease, miRNA has become an

attractive target for novel therapeutic strategies. Exploring miRNA targeting

therapy only through experiments is expensive and laborious, so it is essential to

develop novel and efficient computationalmethods to narrowdown the search.

Recent advances in machine learning applied in biomedical informatics provide

opportunities to explore miRNA-targeting drugs, thus promoting miRNA

therapeutics. This review provides an overview of recent advancements in

miRNA targeting therapeutic using machine learning. First, we mainly

describe the basics of predicting miRNA targeting drugs, including

pharmacogenomic data resources and data preprocessing. Then we present

primary machine learning algorithms and elaborate their application in

discovering relationships among miRNAs, drugs, and diseases. Along with

the progress of miRNA targeting therapeutics, we finally analyze and discuss

the current challenges and opportunities that machine learning confronts.
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1 Introduction

As a kind of non-coding RNA transcript, MicroRNA (miRNA) plays a vital role in cell

proliferation, survival and differentiation by modulating the transcription of target

messenger RNA (mRNA) and disrupting the translation of mRNA (Rupaimoole and

Slack, 2017). The miRNA-mRNA interactions usually lead to translation inhibition or

mRNA degradation, which brings about the reduction of the final protein output (Guo

et al., 2010). MiRNAs act as novel therapeutic targets and potential diagnostic markers

due to they can regulate gene expression involved in the pathogenesis of cancer and other

complex diseases (Tay et al., 2008). Just a few years after the first miRNA was discovered

by Lee and others in 1993 (Lee et al., 1993), the research of miRNA biology dramatically

bloomed. The experimentally validated function of miRNAs laid a solid foundation for
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cellular biology, which enables researchers to study associated

diseases and drugs at the molecular level (Chen et al., 2020).

The efficacy of various miRNA therapies depends on the

accurate relationships between miRNAs and diseases. There are

many validated relationships that exist between miRNAs and

prevalent diseases, such as lung cancer, pancreatic, ovarian

cancer, and so on (Roldo et al., 2006). For example, excisions

and downregulation of the miR-15/16 cluster frequently occur in

chronic lymphocytic leukemia (Calin et al., 2008), and the

significant upregulation of miR-21 is involved in hematological

malignancies (Fulci et al., 2007). The decreased expression of

human let-7 miRNA family in lung cancer was associated with

poor prognosis in patients (Takamizawa et al., 2004). MiRNAs also

have been associated with several metabolic pathways (Fernández-

Hernando et al., 2013), for example, miR-33 influenced the level of

triglyceride and the high-density lipoprotein in serum (Marquart

et al., 2010). However, it costs a lot of time, money, and resources

to acquire associations verified in experiments, which brought

about a widespread interest in the computational discovery of

underlying miRNA-disease associations during the last few years.

More than 186,000 related articles were available online, andmany

relevant databases andmodels were designed (Huang et al., 2022a).

For instance, the latest version of Human MicroRNA Disease

Database (Huang et al., 2019) records 35,547 entries, and the

commonly used database miR2Disease (Jiang et al., 2009) contains

3,273 associations. Meanwhile, based on the conception that

similar miRNAs would be associated with similar diseases,

various computational models were adopted to identify

underlying associations. Usually, the homogeneous network and

the heterogeneous network were built to extract desired feature

embeddings via machine learning methods (Fu and Peng, 2017).

The therapeutic advance of diseases was deeply influenced by

the time-consuming and costly process of drug discovery and

development. Most drugs generally are small molecules, namely

low molecular weight organic compounds, that act as a regulator

in a biological process. It was indicated in studies that small

molecules could disrupt protein interactions, and also suppress

specific functions of a multifunctional protein; hence it may have

a positive effect on diseases (Melo et al., 2011). Unlike biologics

with which injection and other parenteral administration are

usually required, most small-molecule drugs can be taken orally.

The urgent request for novel therapeutic alternatives makes the

approach of targeting disease-related miRNA with small

molecules seem to be promising. Since Gumireddy et al.

(2008) developed the first small molecule inhibitor of miRNA

for specifically suppressing miR-21, numerous miRNA inhibitors

have been discovered via a sequence-based computational

approach or high throughput screening (Young et al., 2010).

For instance, the miR-122 inhibitors were identified to suppress

the miR-122 expression and reduce 50% of HCV viral load

in vitro (Kutay et al., 2006). Besides, streptomycin, neomycin,

tobramycin, and amikacin could impede miR-27a function,

which plays a role in the regulation of adipogenesis, gastric

cancer and so on, by directly interacting with pre-miR-27a

(Zhang et al., 2011; Chandrasekhar et al., 2012). Recently,

more and more miRNA-drug association research has been

launched, such as the Developmental Therapeutics Program

funded by the National Cancer Institute of United States,

which publicly published related datasets. Similarly, many

computational methods based on regression, matrix

factorization, neural networks and so on have been proposed.

In this review, we firstly listed several manually curated

mainstream databases of miRNA-disease associations and

miRNA-drug associations as comprehensive resources for

computational approaches. Then, with the rapid bloom of

machine learning approaches, we reviewed some representative

studies on predicting underlying relationships between miRNAs

and diseases or drugs using modified learning models. Due to the

length limit of the paper, not all papers related to the above

introduction are able to be included. Nevertheless, we collected the

commonly used databases and the most representative

computational methods to reveal promising development trends

for targeting miRNAs in human diseases and drugs.

2 Database

As we all know, miRNA expression deregulation is crucial to

the state transition from a physiological to a pathological one.

Many studies in recent have suggested that bioactive drugs can

act as the regulator of miRNA expression, hence indicating a new

therapy that miRNAs targeted with small molecules. Therefore,

more and more diversified databases containing various omics

data increased dramatically due to the development of system

biology andmolecular biology. The database of miRNAs-diseases

was generated from experimentally validated miRNA-disease

associations, and the miRNAs-drugs databases originated from

experimentally verified small molecules’ impacts on the

expression of microRNA. In this section, we concluded data

details in themost popularly used and commonly cited databases,

most of which were still in maintained status, from aspects of

miRNA-diseases and miRNA-drugs. Table 1 listed various

information about these mainstream databases.

2.1 miRNA-disease associations

2.1.1 miR2Disease
To date, the latest version of miR2Disease (Jiang et al., 2009)

curated 3,273 relationships between 349 human microRNAs and

163 human diseases, one-eighth of which suggested the

pathogenic roles of various human diseases related to miRNA

deregulation. Resources in the miR2Disease contained various

details about microRNA-disease relationships, in which every

entry could be retrieved by disease name, miRNA ID, or target

gene. Additionally, the literature reference, the detection method
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for miRNA expression, the expression pattern of miRNA, and a

brief description of a relationship are also included in this

database.

2.1.2 PhenomiR
The PhenomiR database (Ruepp et al., 2010) included

11,029 data points and 572 miRNAs, which were collected

from 542 related studies focusing on the differential regulation

of miRNA expression in diseases. In addition to some usual

information, PhenomiR provided in-depth information such as

the sample size, the quantitative fold-change of miRNA

expression, and the origin analysis of samples (cell culture or

patients). Depending on disease type in the PhenomiR dataset,

we can contrast conclusions originating from patient studies with

independent resources drawn from cell culture studies.

2.1.3 miRGen
The latest version miRGen v4 (Perdikopanis et al., 2021)

uniquely integrated annotations for numerous cell-specific

miRNA promoters with transcription factor binding sites

derived from experiments, which clearly revealed the

regulation of miRNA at the transcriptional level. Combined

with more than 1,000 cap analyses results from gene

expression samples (Shiraki et al., 2003) of 133 cell lines,

primary cells, and tissues derived from the FANTOM

Consortium (Forrest et al., 2014), miRNA transcription start

sites that specific in cell type were provided for more than

1500 miRNAs. Details in this database can be queried through

the sample-oriented method or miRNA-oriented method.

2.1.4 miRmine
The miRmine database (Panwar et al., 2017) contained

details of different miRNAs and collected expression profiles

from various miRNA databases. The miRmine functionality

included searches based on miRNA and cell-line/tissue,

comparison of multiple miRNAs, normal and human disease

information, and so on. For specific tissue or cell-line type,

miRmine could retrieve single or multiple miRNAs expression

information. Besides, retrieved results could be shown in various

graphs and interactive formats.

TABLE 1 Main databases for accelerating miRNA therapy based on machine learning.

Database Published year
(latest update)

Data type Number of data URL

miR2Disease 2008 (2022) Relationships between deregulated miRNAs
and diverse human diseases

3273 entries, 349 microRNAs, 163 human
diseases

http://www.
mir2disease.org/

PhenomiR 2009 (2011) Differential regulation of miRNA expression
in diseases

11029 data points and 572 miRNAs http://mips.helmholtz-
muenchen.de/
phenomir

miRGen 2007 (2020) miRNAs related to disease status information Over 1500 miRNAs and 133 cell lines,
primary cells, and tissues

http://www.microrna.
gr/mirgenv4

miRmine 2016 (2016) miRNA expression profiles in tissues, cell
lines, and diseases

304 miRNA sequencing datasets for 15 tissues
and 24 cell lines

https://guanfiles.dcmb.
med.umich.edu/

mirmine

miRTarBase 2011 (2022) miRNA-associated diseases and the
relationship between miRNA-target

interactions and disease

4630 miRNAs and 30tissues/cell lines from
440CLIP-seq datasets

https://miRTarBase.
cuhk.edu.cn/

HMDD 2007 (2022) miRNA-disease associations could be divided
into 6 categories of genetics, target,

circulation, tissue, epigenetics, and others

35547 entries of miRNA-disease association
between 1206 miRNA genes and 893 diseases

http://www.cuilab.cn/
hmdd

Pharmaco-miR
Verified Sets

2013 (2013) miRNA pharmacogenomic sets that were
verified in experiments

119 target genes, 72 drugs (whose function
depends on the gene), and 105 miRNAs

www.Pharmaco-
miR.org

SM2miR 2012 (2015) The experimentally verified small molecules’
effects on miRNA expression

4989 entries of relationships between
1658 miRNAs and 255 small molecules

http://www.jianglab.
cn/SM2miR/

DTP NCI-60
dataset

2016 (2022) A dataset of CellMiner database which
screened over chemical compounds by
utilizing diverse human cancer cell lines

335 miRNA expressions and half-cell growth
inhibition concentration from 18724 drugs

https://discover.nci.
nih.gov/cellminer

ncDR 2017 (2017) miRNA-drug resistance associations for
predicting non-coding RNA related to drug

resistance

5864 experimentally verified relationships
between 145 drug compounds and

877 miRNAs

http://www.jianglab.
cn/ncDR

The 1st column gives the database names. The 2nd column presents the published year and the latest update of the database. The 3rd column introduces data type included in the database.

The 4th column presents the number of data. The 5th column introduces the URL of the database.
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2.1.5 miRTarBase
The miRTarBase 9.0 (Huang et al., 2022b) released in

2021 documented over 360,000 miRNA-target interactions

between 27,172 targets and 4,630 miRNAs collected from

13,389 related studies, which facilitated the research of

miRNAs’ function in pathology and promoted the

improvement of diagnostic and therapeutic tools. Integrating

with increasing miRNA expression and biological data,

miRTarBase accumulated miRNA-target interactions verified

in experiments and satisfied biologists’ requirements.

Additionally, an optimized scoring system is utilized in the

updated version to reinforce the important identification of

related articles and relevant disease information.

2.1.6 HMDD
To date, 35,547 entries of miRNA-disease association

between 1,206 miRNA genes and 893 diseases curated from

19,280 papers were collected in HMDD (Huang et al., 2019).

Disease network analysis modules were applied in the latest

HMDD v3.3, which was released in Sep 2022. Covering

20 kinds of detailed evidence code derived from literature,

miRNA-disease associations in HMDD were divided into six

categories of genetics, target, circulation, tissue, epigenetics, and

others. Due to the wide coverage and abundant experimentally

verified associations, HMDD became one of the most popular

databases regarding association prediction and was widely

adopted as the benchmark in training and testing prediction

models.

2.2 miRNA-drug associations

2.2.1 Pharmaco-miR Verified Sets
In 2014, Pharmaco-miR Verified Set (Rukov et al., 2014)

manually curated 269 miRNA pharmacogenomic data from

149 original literature. It is a dataset of miRNA

pharmacogenomic sets that were verified in experiments,

containing119 target genes, 72 drugs (whose function depends

on the gene), and 105 miRNAs. In Pharmaco-miR Verified Sets,

the miRNA directly targeted the gene in a specified context,

which was typically exhibited via luciferase experiments.

Meanwhile, in the same context, the efficacy of drugs was

affected by the subsequent suppression of gene expression in

this database.

2.2.2 SM2miR
SM2miR (Liu et al., 2013) collected miRNA expression

influenced by experimentally verified small molecules’ effects

in 21 species curated from the published papers. To date, it

documented 4,989 entries of relationships between

1,658 miRNAs and 255 small molecules. Various details of

each entry encompass species, the miRNA expression pattern,

accession number in miRbase and DrugBank, detection

conditions, experimental method, PubChem Compound

Identifier, PubMed ID, and the related reference information.

2.2.3 DTP NCI-60 dataset
The U.S. National Cancer Institute launched the

Developmental Therapeutics Program, which screened over

100,000 chemical compounds by utilizing 60 diverse human

cancer cell lines, namely DTP NCI-60 (Blower et al., 2007). In

NCI-60 dataset, data consists of 335 miRNA expressions and

half-cell growth inhibition concentration (GI50) from

18,724 drugs. The DTP NCI-60 dataset can evaluate the

correlations between miRNA expression and drug sensitivity

by calculating the Pearson correlation coefficient between

miRNA expression level and GI50 value.

2.2.4 ncDR
In 2017, a comprehensive database called ncDR documenting

miRNA-drug resistance associations was released to predict non-

coding RNA related to drug resistance (Dai et al., 2017). This

database contains 5,864 experimentally verified relationships

between 145 drug compounds and 877 miRNAs through

manually curating from about 3,300 relevant literatures. In

addition, 226,109 predicted relationships between drug

resistance and miRNA were already provided in this database.

3 Predicting miRNA-disease
associations

In past biological experiments, plenty of relationships

between diseases and miRNAs have been verified, which laid

the foundation for discovering latent miRNA-disease

associations in silico. At first, both negative and positive

samples were included in the training set because the

association prediction was usually processed as a binary

classification task. Undoubtedly, the known miRNA-disease

associations constituted positive training samples; hence,

negative ones were randomly sampled from the remaining.

The remaining set may contain unknown disease miRNA. As

we all know, negative samples should only contain miRNAs and

diseases between which the relationship was actually nonexistent;

however, there are still many unknown miRNA-disease

associations that have not been detected in biological

experiments. It is most likely that the current negative

samples contained many undiscovered associations. Therefore,

to avoid bias brought by the sample, various computational

methods only learned from verified associations were

proposed to accurately predict miRNA-disease associations.

Furthermore, the miRNA-disease association prediction was

processed as a triplet classification in machine learning

approaches, which could identify the role miRNA played. The

main process for predicting miRNA disease associations based on

machine learning is presented in Figure 1.
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FIGURE 1
The processes of machine learning models for predicting miRNA-disease associations.
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3.1 Traditional machine learning models
for miRNA disease associations

As an example of using a negative training sample, a previous

study (Ji et al., 2020) learned graph representations with global

structure knowledge in a heterogeneous network consisting of

the known associations among miRNA, disease, drug, and

protein. Integrating these embeddings with miRNA sequences,

disease semantic similarities and so on, a classifier based on

Random Forest was applied to discover underlying relationships

between miRNAs and diseases.

Meanwhile, more and more approaches preferred to predict

unknown miRNA-disease associations only with known ones, so

researchers utilized verified associations, such as miRNA-disease,

miRNA-gene, and weighted gene-gene, to construct a regularized

framework for inferring the latent miRNA-disease associations

(Peng et al., 2017a). Similarly, using the identified disease-

associated miRNA information, (Luo et al., 2018) built a

semi-supervised classifier to calculate the probability of a

miRNA related to a given disease, and also utilized graph

regularization to avoid overfitting. Considering the sparsity of

known data, have also (Luo et al., 2016) proposed a transductive

learning-based collective prediction method in which the

relevance score was calculated and updated via the disease-

miRNA network.

To adequately discover disease-related candidate miRNAs, in

(Ding et al., 2018) for example, a heterogeneous disease-gene-

miRNA network consisting of three types of nodes and five types

of links was built to predict associations via a regression-based

model. For fully utilizing verified miRNA-disease associations. In

(Pan et al., 2019), the miRNA-disease associations were

synchronously predicted and updated via a multi-label, graph-

based model, which firstly introduced a set of kernel matrices and

then adaptively obtained two optimal kernel matrices.

Considering the inherent noise in current databases, a study

in (Liang et al., 2019) adaptively learned an affinity graph from

various similarity profiles and simultaneously updated the

prediction via multi-label learning. According to the latest

version of HMDD, a study in (Liang et al., 2018) obtained the

semantic similarities of disease and function similarities of

miRNA. Then, the similarity matrices and association matrix

were iteratively updated to generate the optimized association

outcome.

Matrix factorization, a method of multiplying two different

entities to generate potential features, is another essential method

for predicting miRNA disease associations. As in (Peng et al.,

2017b) for example, a matrix recovery approach was utilized to

integrate the weight matrix to recover association matrix; hence

novel latent associations were accurately inferred without the

need for negative samples. Integrated with the label propagation

algorithm, a study in (Peng et al., 2022) adopted robust

nonnegative matrix factorization to predict underlying

associations more precisely. To be specific, using the

integrated similarity information, the original adjacency

matrix was updated via matrix multiplication to reduce the

influence of negative samples. For sparse existing associations

and new diseases or miRNAs, a previous work (Xiao et al., 2018)

developed a preprocessing step that built the interaction score

profiles to facilitate prediction, and then utilized graph

regularized non-negative matrix factorization based on

integrated multisource data to discover underlying associations.

Although most methods in silico currently focus on

discovering unknown miRNA-disease associations, there are

some approaches that could identify the multiple relationship

types among various associations as the roles miRNAs played in

diseases significantly diverged. For example, the down-regulation

of mir-16 and mir-15 could induce chronic lymphocytic

leukemia in B cell (Calin et al., 2002), while the different

expression of serum miRNAs, such as mir-1307-3p, mir-1246

and so on, could assist researchers in tracing breast cancer early

(Shimomura et al., 2016). To this end, a more recent study

(Huang et al., 2021) innovatively constructed a tensor composed

of miRNA-disease-type triples, and then adopted tensor

decomposition that utilized the similarity information as

decomposition constraints to detect multi-type of miRNA-

disease associations. Another study built a novel model for

miRNA-disease-type associations by applying tensor robust

principal component analysis (Yu et al., 2021a).

3.2 Deep learning models for miRNA
disease associations

Currently, many prediction methods extracted feature

embeddings as the input of convolutional neural networks

(CNN). Xuan et al. (2018) constructed a dual convolutional

neural network, which was divided into the left and right part,

to detect underlying associations. The left CNN learned the

integrated feature embedding of original information to

produce an association score, and the right learned the feature

embedding of the network topology to generate the other score.

On this basis, a work in (Xuan et al., 2019) firstly projected nodes

of miRNAs and diseases into a low dimensional space to obtain

feature embeddings, and then utilized network representation

learning and two CNN to discover latent disease-associated

miRNAs. In (Peng et al., 2019), the low dimensional feature

embeddings were selected by an auto-encoder from a three-layer

network consisting of multisource data. Then, the association

score was calculated by a deep CNN structure, including the

fully-connected layer, max-pooling layer, and convolutional

layer.

Besides, some Graph Convolutional Network (GCN) based

end-to-end models were also implemented to capture candidate

associations. In 2020, a work (Li et al., 2020) respectively learned

underlying feature embeddings derived from the miRNA

function similarity network and the disease semantic
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similarity network with GCN encoders. Then an association

matrix completion was generated from a novel neural

inductive model that adopted learned embeddings as input.

As in (Chu et al., 2021), a miRNA-disease pair was regarded

as a node in homogeneous graphs, which were easier to learn.

Then based on graph sampling, the modified GCN algorithm was

implemented on the topology and feature graph to cluster similar

nodes. Meanwhile, some other graph neural network methods

were also employed in this regard. A graph attention network-

based method (Li et al., 2022) aggregated different neighbor

information with varying weights to obtain the non-linear

features of miRNAs and diseases. Combined with the linear

features constructed by correlation profiles, latent miRNA-

disease associations were inferred via the random forest

algorithm. In 2021, Li et al. (2021a) developed an end-to-end

framework based on a novel graph auto-encoder model to

discover unknown associations. This model aggregated nodes’

neighborhood information via a graph neural network-based

encoder, which consisted of the multi-layer perceptron and

aggregator function, to obtain low dimensional embeddings

and effectively integrate heterogeneous information.

Some methods aimed at predicting type instead of taking

association prediction as a binary task. In (Huang et al., 2021) for

example, miRNA-type- disease triples were innovatively

regarded as a tensor, and then tensor decomposition with

relation constraints was implemented to complete the type

prediction task. Similarly, a more recent work (Yu et al.,

2022) could identify dysregulation, downregulation, or

upregulation relationship between miRNA and disease because

a depth graph representation learning model was trained based

on a knowledge graph constructed by extracting disease-miRNA-

type triples from existing databases and numerous

experimental data.

To fully understand the synergistic effect of miRNA-miRNA

pairs on the pathogenesis of complicated diseases, a study (Luo

et al., 2021) proposed a new tensor decomposition model based

on a graph attention network to discover potential miRNA-

miRNA pairs related to diseases. The graph attention network

aggregated the feature embeddings from the miRNA function

similarity graph, disease semantic similarity graph, and miRNA

sequence similarity graph. With the aggregated feature

embeddings, the deep tensor factorization was implemented to

reconstruct the association tensor consisting of miRNA-miRNA-

disease triples.

4 Predicting miRNA-drug
associations

With the accumulated research on miRNA-small-molecule

interactions, computational approaches attract more and more

attention because they can efficiently promote miRNA-targeted

drug discovery and optimization when compared to

conventional routine. Varieties of computational models were

proposed to discover latent miRNA-drug candidates. Generally

speaking, they can be classified into two kinds of approaches for

predicting: the traditional machine learning method and the deep

learning method, as shown in Figure 2.

4.1 Traditional machine learning models
for miRNA drug associations

Some machine learning methods focused on constructing

novel feature engineering with varied features. A random forest

prediction model (Wang et al., 2019) adopted similarities of

miRNAs and small molecules as features to accurately predict

associations. Specifically for cancer, (Li et al., 2021b) innovatively

concatenated features extracted from small molecule structures,

miRNA sequences, and cancer symptoms to obtain a new feature

vector. Then a random forest model was utilized to predict latent

cancer-miRNA-small molecule associations. Similarly, Jamal

et al. (2012) developed a prediction model by utilizing Naïve

Bayes and Random Forest. In 2017, a work (Xie et al., 2017) was

proposed to discover the influential miRNA on the drug via the

support vector machine, in which feature vectors were drug-

miRNA pairs extracted from the related literature.

There are some methods based on random walk algorithm to

identify latent miRNA-small molecule associations. In (Liu et al.,

2020) for example, Random Walk was utilized in a triple-layer

heterogeneous network of disease-miRNA-small molecule

association after computing similarities and selecting negative

samples. Similarly, a restart algorithm-based Random Walk (Lv

et al., 2015) was implemented in a comprehensive network, in

which miRNA-miRNA associations, small molecule interactions,

and verified miRNA-small molecule targeting pairs were

integrated. Meanwhile, some other methods are based on

regression algorithm. In Chen et al. (2021) for example, a

matrix was defined to represent a heterogeneous network

consisting of small molecule similarity, miRNA similarity, and

verified miRNA-small molecule associations. Then, the model of

the Alternating Direction Method of Multipliers was designed to

minimize the nuclear norm of the matrix and obtain predicted

scores of underlying miRNA-small molecule associations.

Likewise, a work (Wang et al., 2022) developed a prediction

model based on the Ensemble of Kernel Ridge Regression. They

integrated feature dimensionality reduction with ensemble

learning to discover latent small molecule-microRNA

associations.

It can be seen in various studies that many computational

models adopted matrix factorization. In Yin et al. (2019) for

example, a sparse learning method (SLM) was proposed to

eliminate noises and improve performance. After the small

molecule-miRNA adjacency matrix was decomposed by SLM,

latent miRNA-small molecule associations would be obtained via

a heterogeneous graph that integrated the similarities of miRNAs
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and small molecules with the improved association information.

At the same time, Wang and Chen (2019) not only adopted

similarities of small molecules, miRNAs, and diseases but

also integrated with associations between miRNAs and

diseases/small molecule. Therefore, a three-layer network was

built to obtain potential representations of small molecule-

miRNA association via in-layer similarities and cross-layer

associations. Then cross-layer dependency inference on the

three-layer network was utilized to identify unknown miRNA-

small molecule associations. In addition, the model adopted

a regularized optimization to avoid overfitting. Afterward, a

study (Zhao et al., 2020) applied matrix decomposition in

integrated similarity matrixes and obtained small molecule-

miRNA pair similarity by calculating the Kronecker product.

Additionally, regularized least square method was applied to

acquire the mapping relationships between associated

probabilities and miRNA-small molecule pairs. Considering

the functional similarity of two miRNAs, clinical similarity

and chemical similarity of small molecules, a work (Luo

et al., 2020) adopted a nonnegative matrix decomposition

method for discovering the potential miRNA-small molecule

associations. Besides, combining small molecule-disease

associations with miRNA-disease associations, Shen et al.

(2020a) adopted graph regularization techniques and the

iterative approach in a heterogeneous network to obtain

the prediction scores of miRNA-small molecule pairs. In

Shen et al. (2020b), the prediction performance was improved

by a Restricted Boltzmann Machine-based joint

learning framework, which integrated miRNA sequence,

heterogeneous network knowledge, and small molecule

structure data.

4.2 Deep learning models for miRNA drug
associations

Currently, Graph Convolution Network is commonly used to

process node classification tasks in the homogeneous network. In

Huang et al. (2020) for example, a three-layer latent factor model

based on graph convolution was developed to discover unknown

miRNA-drug resistance associations. In this end-to-end learning

scheme, they could not only utilize high-dimensional attributes but

also learn graph embedding features of miRNAs/drugs. To

overcome the problem of over-smoothing in conventional graph

convolution networks, a work (Yu et al., 2021b) simplified GCN by

constructing the embedding propagation layer utilizing a weighted

sum aggregator. Then, the ideal representations were obtained by

summing over the embeddings in each layer. At last, they applied

the inner product to discover the unknown miRNA-drug

sensitivity associations. Wang et al. (2021) firstly extracted drug/

miRNA representations via a layer attention graph convolution

network in the heterogeneous network consisting of known drug

similarities, miRNA similarities, and drug-miRNA interactions.

Then they obtained the drug/miRNA embedding vectors by

concatenating their representations with drug features derived

from drug molecular graphs, and the miRNA expression

features, respectively. In addition, they utilized compressed

tensor network, tensor decomposition, and multi-layer

perceptron to extract node-pair embeddings. Eventually, the

potential relationship between miRNA and drug resistance was

predicted by the completely connected layer with concatenated

representations. Similarly focused on prediction for the

relationship of miRNA-drug resistance (Zhao et al., 2022),

constructed a graph neural network based on positional

FIGURE 2
The process of computational models for identifying miRNA-drug associations.
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encoding to extract embeddings from drug molecular graphs and

miRNA-drug heterogeneous networks. Then, these embeddings of

different layers were combined with a layer attentionmechanism to

learn powerful feature representations. Finally, the potential

miRNA-drug resistance association could be discovered via a

multi-channel neural network consisting of tensor network,

tensor decomposition, and the multi-layer perceptron.

Besides, there are some other deep learning models based on

varied neural networks algorithm. In Deepthi and Jereesh (2021),

firstly, the principal component analysis was applied to reduce

the dimensions of features extracted from the integrated

similarity pairs of drugs and miRNAs. Then, they trained a

convolutional neural network to obtain deep retrieved features

and adopted the support vector machine classifier to predict

latent association. Meanwhile, based on Long Short-Term

Memory (LSTM) (Abdelbaky et al., 2021), proposed an

encoder-decoder model that could perform on the character

level of a sequence. They utilized the LSTM Sequence Auto-

Encoders to obtain feature embeddings of miRNAs and small

molecules, and sequence-to-sequence learning with an RNN to

encode sequences. The input sequence reproduced by the

decoder was based on the outcome of the encoder.

5 Conclusion

As the miRNA-related data is explosively growing, developing

advanced computational methods for miRNA therapy is not only

an opportunity but also a challenge for medical research. Taking

advantage of the traditional machine learning method and deep

learning method, the discovery of unknown associations among

drugs, diseases, and miRNAs could be greatly anticipated.

Furthermore, the prediction results of machine learning models

could be compared to miRNA-disease/drug associations validated

in experimental methods. In this review, we collected commonly

used data sources of miRNA-disease and miRNA-drug, which laid

a solid foundation for designing feasible prediction models.

Various machine learning-based methods were classified into

two parts: predicting potential miRNA-disease association and

discovering latent miRNA-drug associations, which facilitated

exploring miRNA therapy.

Although machine-learning methods have exhibited

tremendous potential, it is still a big challenge to accelerate

development in miRNA therapy by adopting data-driven

computational approaches. This could be improved by utilizing

high-quality data resources and integrating domain knowledge

when selecting feature to build and verify models. Nevertheless,

considering the experimental data might be unavailable for some

miRNA, or only a few data points are accessible, reliablemodels are

difficult to construct. Therefore, machine learning approaches like

active learning might be a promising strategy to cope with the

limitation of available data used to construct reliable prediction

models. Meanwhile, generalizability is essential for the widespread

application of machine learning approaches, and it could be

examined via external validation or cross-validation in their

proposed model based on machine learning. Recent work

adopted anchor regression once a linear shift made training set

and test set distributions varied (Rothenhäusler et al., 2018).

Different from the “black box” design in which a specific

output conducted by a model cannot be explained, machine

learning/deep learning models with understandable results or

analytical processes are explainable artificial intelligence

(Sample, 2017). It is of great importance for domains like

miRNA therapy, in which an understandable relationship

between outcomes and features is essential. In general, machine

learning explainable tools can bemainly divided into twomethods:

1) The local model explainability method is helpful to discover

which specific features affected a specific decision; 2) The global

model explainability method is centered on the features that most

affect all decisions or the model’s results. Recently, an emerging

field as machine learning fairness has been proposed to study the

role of data biases and model biases like race, gender, disabilities

and so on, played in the prediction performance in miRNA

therapy.

Author contributions

YL conceived and wrote the manuscript. LP and WS co-

wrote the manuscript. MS, LL, and WL commented on the

manuscript. WL supervised YL and polished the manuscript.

Funding

This work has been supported by the National Natural

Science Foundation of China (Grant no.61902125) and the

Scientific Research Startup Foundation of University of South

China (Grant no. 190XQD096).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers in Genetics frontiersin.org09

Luo et al. 10.3389/fgene.2022.1088189

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1088189


References

Abdelbaky, I., Tayara, H., and Chong, K. T. (2021). Identification of miRNA-
small molecule associations by continuous feature representation using auto-
encoders. Pharmaceutics 14, 3. doi:10.3390/pharmaceutics14010003

Blower, P. E., Verducci, J. S., Lin, S., Zhou, J., Chung, J.-H., Dai, Z., et al. (2007).
MicroRNA expression profiles for the NCI-60 cancer cell panel.Mol. cancer Ther. 6,
1483–1491. doi:10.1158/1535-7163.MCT-07-0009

Calin, G. A., Cimmino, A., Fabbri, M., Ferracin, M., Wojcik, S. E., Shimizu, M.,
et al. (2008). MiR-15a and miR-16-1 cluster functions in human leukemia. Proc.
Natl. Acad. Sci. 105, 5166–5171. doi:10.1073/pnas.0800121105

Calin, G. A., Dumitru, C. D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., et al.
(2002). Frequent deletions and down-regulation of micro-RNA genes miR15 and
miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. 99,
15524–15529. doi:10.1073/pnas.242606799

Chandrasekhar, S., Pushpavalli, S. N., Chatla, S., Mukhopadhyay, D., Ganganna,
B., Vijeender, K., et al. (2012). aza-Flavanones as potent cross-species microRNA
inhibitors that arrest cell cycle. Bioorg. Med. Chem. Lett. 22, 645–648. doi:10.1016/j.
bmcl.2011.10.061

Chen, X., Guan, N.-N., Sun, Y.-Z., Li, J.-Q., and Qu, J. (2020). MicroRNA-small
molecule association identification: From experimental results to computational
models. Briefings Bioinforma. 21, 47–61.

Chen, X., Zhou, C., Wang, C.-C., and Zhao, Y. (2021). Predicting potential small
molecule–miRNA associations based on bounded nuclear norm regularization.
Briefings Bioinforma. 22, bbab328. doi:10.1093/bib/bbab328

Chu, Y., Wang, X., Dai, Q., Wang, Y., Wang, Q., Peng, S., et al. (2021). MDA-
GCNFTG: Identifying miRNA-disease associations based on graph convolutional
networks via graph sampling through the feature and topology graph. Brief.
Bioinform 22, bbab165. doi:10.1093/bib/bbab165

Dai, E., Yang, F., Wang, J., Zhou, X., Song, Q., An, W., et al. (2017). ncDR: a
comprehensive resource of non-coding RNAs involved in drug resistance.
Bioinformatics 33, 4010–4011. doi:10.1093/bioinformatics/btx523

Deepthi, K., and Jereesh, A. (2021). An ensemble approach based on multi-source
information to predict drug-MiRNA associations via convolutional neural
networks. IEEE Access 9, 38331–38341. doi:10.1109/access.2021.3063885

Ding, P., Luo, J., Liang, C., Xiao, Q., and Cao, B. (2018). Human disease MiRNA
inference by combining target information based on heterogeneous manifolds.
J. Biomed. Inf. 80, 26–36. doi:10.1016/j.jbi.2018.02.013

Fernández-Hernando, C., Ramírez, C. M., Goedeke, L., and Suárez, Y. (2013).
MicroRNAs in metabolic disease. Arteriosclerosis, thrombosis, Vasc. Biol. 33,
178–185. doi:10.1161/ATVBAHA.112.300144

Forrest, A. R. R., Kawaji, H., Rehli, M., Baillie, J. K., de Hoon, M. J. L., Haberle, V.,
et al. (2014). A promoter-level mammalian expression atlas. Nature 507, 462–470.
doi:10.1038/nature13182

Fu, L., and Peng, Q. (2017). A deep ensemble model to predict miRNA-disease
association. Sci. Rep. 7, 14482–14513. doi:10.1038/s41598-017-15235-6

Fulci, V., Chiaretti, S., Goldoni, M., Azzalin, G., Carucci, N., Tavolaro, S., et al.
(2007). Quantitative technologies establish a novel microRNA profile of chronic
lymphocytic leukemia. Blood, J. Am. Soc. Hematol. 109, 4944–4951. doi:10.1182/
blood-2006-12-062398

Gumireddy, K., Young, D. D., Xiong, X., Hogenesch, J. B., Huang, Q., and Deiters,
A. (2008). Small-molecule inhibitors of microrna miR-21 function. Angew. Chem.
120, 7482–7484. doi:10.1002/anie.200801555

Guo, H., Ingolia, N. T., Weissman, J. S., and Bartel, D. P. (2010). Mammalian
microRNAs predominantly act to decrease target mRNA levels. Nature 466,
835–840. doi:10.1038/nature09267

Huang, F., Yue, X., Xiong, Z., Yu, Z., Liu, S., and Zhang, W. (2021). Tensor
decomposition with relational constraints for predicting multiple types of
microRNA-disease associations. Briefings Bioinforma. 22, bbaa140. doi:10.1093/
bib/bbaa140

Huang, H.-Y., Lin, Y.-C.-D., Cui, S., Huang, Y., Tang, Y., Xu, J., et al. (2022).
miRTarBase update 2022: an informative resource for experimentally validated
miRNA–target interactions. Nucleic acids Res. 50, D222–D230. doi:10.1093/nar/
gkab1079

Huang, L., Zhang, L., and Chen, X. (2022). Updated review of advances in
microRNAs and complex diseases: Experimental results, databases, webservers and
data fusion. Briefings Bioinforma. 23, bbac397. doi:10.1093/bib/bbac397

Huang, Y.-a., Hu, P., Chan, K. C., and You, Z.-H. (2020). Graph convolution for
predicting associations between miRNA and drug resistance. Bioinformatics 36,
851–858. doi:10.1093/bioinformatics/btz621

Huang, Z., Shi, J., Gao, Y., Cui, C., Zhang, S., Li, J., et al. (2019). HMDD v3. 0: A
database for experimentally supported human microRNA–disease associations.
Nucleic acids Res. 47, D1013–D1017. doi:10.1093/nar/gky1010

Jamal, S., Periwal, V., and Scaria, V. (2012). Computational analysis and
predictive modeling of small molecule modulators of microRNA.
J. cheminformatics 4, 16–19. doi:10.1186/1758-2946-4-16

Ji, B.-Y., You, Z.-H., Cheng, L., Zhou, J.-R., Alghazzawi, D., and Li, L.-P. (2020).
Predicting miRNA-disease association from heterogeneous information network
with GraRep embedding model. Sci. Rep. 10, 6658–6712. doi:10.1038/s41598-020-
63735-9

Jiang, Q., Wang, Y., Hao, Y., Juan, L., Teng, M., Zhang, X., et al. (2009).
miR2Disease: a manually curated database for microRNA deregulation in
human disease. Nucleic acids Res. 37, D98–D104. doi:10.1093/nar/gkn714

Kutay, H., Bai, S., Datta, J., Motiwala, T., Pogribny, I., Frankel, W., et al. (2006).
Downregulation of miR-122 in the rodent and human hepatocellular carcinomas.
J. Cell. Biochem. 99, 671–678. doi:10.1002/jcb.20982

Lee, R. C., Feinbaum, R. L., and Ambros, V. (1993). The C. elegans heterochronic
gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75,
843–854. doi:10.1016/0092-8674(93)90529-y

Li, G., Fang, T., Zhang, Y., Liang, C., Xiao, Q., and Luo, J. (2022). Predicting
miRNA-disease associations based on graph attention network with multi-source
information. BMC Bioinforma. 23, 244–324. doi:10.1186/s12859-022-04796-7

Li, J., Peng, D., Xie, Y., Dai, Z., Zou, X., and Li, Z. (2021). Novel potential small
molecule–MiRNA–cancer associations prediction model based on fingerprint,
sequence, and clinical symptoms. J. Chem. Inf. Model. 61, 2208–2219. doi:10.
1021/acs.jcim.0c01458

Li, J., Zhang, S., Liu, T., Ning, C., Zhang, Z., and Zhou, W. (2020). Neural inductive
matrix completion with graph convolutional networks for miRNA-disease association
prediction. Bioinformatics 36, 2538–2546. doi:10.1093/bioinformatics/btz965

Li, Z., Li, J., Nie, R., You, Z.-H., and Bao, W. (2021). A graph auto-encoder model
for miRNA-disease associations prediction. Briefings Bioinforma. 22, bbaa240.
doi:10.1093/bib/bbaa240

Liang, C., Yu, S., and Luo, J. (2019). Adaptive multi-view multi-label learning for
identifying disease-associated candidate miRNAs. PLoS Comput. Biol. 15, e1006931.
doi:10.1371/journal.pcbi.1006931

Liang, C., Yu, S., Wong, K.-C., and Luo, J. (2018). A novel semi-supervised model
for miRNA-disease association prediction based on $$\ell_ {1} $$ ℓ 1-norm graph.
J. Transl. Med. 16, 357–412. doi:10.1186/s12967-018-1741-y

Liu, F., Peng, L., Tian, G., Yang, J., Chen, H., Hu, Q., et al. (2020). Identifying
small molecule-miRNA associations based on credible negative sample selection
and random walk. Front. Bioeng. Biotechnol. 8, 131. doi:10.3389/fbioe.2020.00131

Liu, X., Wang, S., Meng, F., Wang, J., Zhang, Y., Dai, E., et al. (2013). SM2miR: A
database of the experimentally validated small molecules’ effects on microRNA
expression. Bioinformatics 29, 409–411. doi:10.1093/bioinformatics/bts698

Luo, J., Ding, P., Liang, C., Cao, B., and Chen, X. (2016). Collective prediction of
disease-associated miRNAs based on transduction learning. IEEE/ACM Trans.
Comput. Biol. Bioinforma. 14, 1468–1475. doi:10.1109/TCBB.2016.2599866

Luo, J., Ding, P., Liang, C., and Chen, X. (2018). Semi-supervised prediction of
human miRNA-disease association based on graph regularization framework in
heterogeneous networks. Neurocomputing 294, 29–38. doi:10.1016/j.neucom.2018.
03.003

Luo, J., Lai, Z., Shen, C., Liu, P., and Shi, H. (2021). “Graph attention mechanism-
based deep tensor factorization for predicting disease-associated miRNA-miRNA
pairs,” in 2021 IEEE International Conference on Bioinformatics and Biomedicine
(BIBM), Houston, TX, United States, 09-12 December 2021 (IEEE), 189–196.

Luo, J., Shen, C., Lai, Z., Cai, J., and Ding, P. (2020). Incorporating clinical,
chemical and biological information for predicting small molecule-microRNA
associations based on non-negative matrix factorization. IEEE/ACM Trans.
Comput. Biol. Bioinforma. 18, 2535–2545. doi:10.1109/TCBB.2020.2975780

Lv, Y., Wang, S., Meng, F., Yang, L., Wang, Z., Wang, J., et al. (2015). Identifying
novel associations between small molecules and miRNAs based on integrated
molecular networks. Bioinformatics 31, 3638–3644. doi:10.1093/bioinformatics/
btv417

Marquart, T. J., Allen, R. M., Ory, D. S., and Baldán, Á. (2010). miR-33 links
SREBP-2 induction to repression of sterol transporters. Proc. Natl. Acad. Sci. 107,
12228–12232. doi:10.1073/pnas.1005191107

Melo, S., Villanueva, A., Moutinho, C., Davalos, V., Spizzo, R., Ivan, C., et al.
(2011). Small molecule enoxacin is a cancer-specific growth inhibitor that acts by

Frontiers in Genetics frontiersin.org10

Luo et al. 10.3389/fgene.2022.1088189

https://doi.org/10.3390/pharmaceutics14010003
https://doi.org/10.1158/1535-7163.MCT-07-0009
https://doi.org/10.1073/pnas.0800121105
https://doi.org/10.1073/pnas.242606799
https://doi.org/10.1016/j.bmcl.2011.10.061
https://doi.org/10.1016/j.bmcl.2011.10.061
https://doi.org/10.1093/bib/bbab328
https://doi.org/10.1093/bib/bbab165
https://doi.org/10.1093/bioinformatics/btx523
https://doi.org/10.1109/access.2021.3063885
https://doi.org/10.1016/j.jbi.2018.02.013
https://doi.org/10.1161/ATVBAHA.112.300144
https://doi.org/10.1038/nature13182
https://doi.org/10.1038/s41598-017-15235-6
https://doi.org/10.1182/blood-2006-12-062398
https://doi.org/10.1182/blood-2006-12-062398
https://doi.org/10.1002/anie.200801555
https://doi.org/10.1038/nature09267
https://doi.org/10.1093/bib/bbaa140
https://doi.org/10.1093/bib/bbaa140
https://doi.org/10.1093/nar/gkab1079
https://doi.org/10.1093/nar/gkab1079
https://doi.org/10.1093/bib/bbac397
https://doi.org/10.1093/bioinformatics/btz621
https://doi.org/10.1093/nar/gky1010
https://doi.org/10.1186/1758-2946-4-16
https://doi.org/10.1038/s41598-020-63735-9
https://doi.org/10.1038/s41598-020-63735-9
https://doi.org/10.1093/nar/gkn714
https://doi.org/10.1002/jcb.20982
https://doi.org/10.1016/0092-8674(93)90529-y
https://doi.org/10.1186/s12859-022-04796-7
https://doi.org/10.1021/acs.jcim.0c01458
https://doi.org/10.1021/acs.jcim.0c01458
https://doi.org/10.1093/bioinformatics/btz965
https://doi.org/10.1093/bib/bbaa240
https://doi.org/10.1371/journal.pcbi.1006931
https://doi.org/10.1186/s12967-018-1741-y
https://doi.org/10.3389/fbioe.2020.00131
https://doi.org/10.1093/bioinformatics/bts698
https://doi.org/10.1109/TCBB.2016.2599866
https://doi.org/10.1016/j.neucom.2018.03.003
https://doi.org/10.1016/j.neucom.2018.03.003
https://doi.org/10.1109/TCBB.2020.2975780
https://doi.org/10.1093/bioinformatics/btv417
https://doi.org/10.1093/bioinformatics/btv417
https://doi.org/10.1073/pnas.1005191107
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1088189


enhancing TAR RNA-binding protein 2-mediated microRNA processing. Proc.
Natl. Acad. Sci. 108, 4394–4399. doi:10.1073/pnas.1014720108

Pan, Z., Zhang, H., Liang, C., Li, G., Xiao, Q., Ding, P., et al. (2019). Self-weighted
multi-kernel multi-label learning for potential miRNA-disease association
prediction. Mol. Therapy-Nucleic Acids 17, 414–423. doi:10.1016/j.omtn.2019.
06.014

Panwar, B., Omenn, G. S., and Guan, Y. (2017). miRmine: a database of human
miRNA expression profiles. Bioinformatics 33, 1554–1560. doi:10.1093/
bioinformatics/btx019

Peng, J., Hui, W., Li, Q., Chen, B., Hao, J., Jiang, Q., et al. (2019). A learning-based
framework for miRNA-disease association identification using neural networks.
Bioinformatics 35, 4364–4371. doi:10.1093/bioinformatics/btz254

Peng, L., Peng, M., Liao, B., Huang, G., Liang, W., and Li, K. (2017). Improved
low-rank matrix recovery method for predicting miRNA-disease association. Sci.
Rep. 7, 6007–6010. doi:10.1038/s41598-017-06201-3

Peng, L., Peng, M., Liao, B., Xiao, Q., Liu, W., Huang, G., et al. (2017). A novel
information fusion strategy based on a regularized framework for identifying
disease-related microRNAs. RSC Adv. 7, 44447–44455. doi:10.1039/c7ra08894a

Peng, L., Yang, C., Huang, L., Chen, X., Fu, X., and Liu, W. (2022). Rnmflp:
Predicting circRNA–disease associations based on robust nonnegative matrix
factorization and label propagation. Briefings Bioinforma. 23, bbac155. doi:10.
1093/bib/bbac155

Perdikopanis, N., Georgakilas, G. K., Grigoriadis, D., Pierros, V., Kavakiotis, I.,
Alexiou, P., et al. (2021). DIANA-miRGen v4: Indexing promoters and regulators
for more than 1500 microRNAs. Nucleic acids Res. 49, D151–D159. doi:10.1093/
nar/gkaa1060

Roldo, C., Missiaglia, E., Hagan, J. P., Falconi, M., Capelli, P., Bersani, S., et al.
(2006). MicroRNA expression abnormalities in pancreatic endocrine and acinar
tumors are associated with distinctive pathologic features and clinical behavior.
J. Clin. Oncol. 24, 4677–4684. doi:10.1200/JCO.2005.05.5194

Rothenhäusler, D., Meinshausen, N., Bühlmann, P., and Peters, J. (2018). Anchor
regression: Heterogeneous data meets causality. Available at http://org.arXiv/abs/
1801.06229.

Ruepp, A., Kowarsch, A., Schmidl, D., Buggenthin, F., Brauner, B., Dunger, I.,
et al. (2010). PhenomiR: A knowledgebase for microRNA expression in diseases and
biological processes. Genome Biol. 11, R6–R11. doi:10.1186/gb-2010-11-1-r6

Rukov, J. L., Wilentzik, R., Jaffe, I., Vinther, J., and Shomron, N. (2014).
Pharmaco-miR: Linking microRNAs and drug effects. Briefings Bioinforma. 15,
648–659. doi:10.1093/bib/bbs082

Rupaimoole, R., and Slack, F. J. (2017). MicroRNA therapeutics: Towards a new
era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 16,
203–222. doi:10.1038/nrd.2016.246

Sample, I. (2017). Computer says no: Why making AIs fair, accountable and
transparent is crucial. Guard. 5, 1–15.

Shen, C., Luo, J., Lai, Z., and Ding, P. (2020). Multiview joint learning-based
method for identifying small-molecule-associated MiRNAs by integrating
pharmacological, genomics, and network knowledge. J. Chem. Inf. Model. 60,
4085–4097. doi:10.1021/acs.jcim.0c00244

Shen, C., Luo, J., Ouyang, W., Ding, P., andWu, H. (2020). Identification of small
molecule–miRNA associations with graph regularization techniques in
heterogeneous networks. J. Chem. Inf. Model. 60, 6709–6721. doi:10.1021/acs.
jcim.0c00975

Shimomura, A., Shiino, S., Kawauchi, J., Takizawa, S., Sakamoto, H., Matsuzaki,
J., et al. (2016). Novel combination of serum microRNA for detecting breast cancer
in the early stage. Cancer Sci. 107, 326–334. doi:10.1111/cas.12880

Shiraki, T., Kondo, S., Katayama, S., Waki, K., Kasukawa, T., Kawaji, H., et al.
(2003). Cap analysis gene expression for high-throughput analysis of transcriptional
starting point and identification of promoter usage. Proc. Natl. Acad. Sci. 100,
15776–15781. doi:10.1073/pnas.2136655100

Takamizawa, J., Konishi, H., Yanagisawa, K., Tomida, S., Osada, H., Endoh, H.,
et al. (2004). Reduced expression of the let-7 microRNAs in human lung cancers in

association with shortened postoperative survival. Cancer Res. 64, 3753–3756.
doi:10.1158/0008-5472.CAN-04-0637

Tay, Y., Zhang, J., Thomson, A. M., Lim, B., and Rigoutsos, I. (2008). MicroRNAs
to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell
differentiation. Nature 455, 1124–1128. doi:10.1038/nature07299

Wang, C.-C., and Chen, X. (2019). A unified framework for the prediction of
small molecule–MicroRNA association based on cross-layer dependency inference
onmultilayered networks. J. Chem. Inf. Model. 59, 5281–5293. doi:10.1021/acs.jcim.
9b00667

Wang, C.-C., Chen, X., Qu, J., Sun, Y.-Z., and Li, J.-Q. (2019). Rfsmma: A new
computational model to identify and prioritize potential small molecule–mirna
associations. J. Chem. Inf. Model. 59, 1668–1679. doi:10.1021/acs.jcim.9b00129

Wang, C.-C., Zhu, C.-C., and Chen, X. (2022). Ensemble of kernel ridge
regression-based small molecule–miRNA association prediction in human
disease. Briefings Bioinforma. 23, bbab431. doi:10.1093/bib/bbab431

Wang, H., Khan, S., Liu, S., Zheng, F., and Zhang, W. (2021).“Predicting drug-
miRNA resistance with layer attention graph convolution network and multi
channel feature extraction,” in 2021 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM), Houston, TX, United States, 09-
12 December 2021. (IEEE), 1083–1089.

Xiao, Q., Luo, J., Liang, C., Cai, J., and Ding, P. (2018). A graph regularized non-
negative matrix factorization method for identifying microRNA-disease
associations. Bioinformatics 34, 239–248. doi:10.1093/bioinformatics/btx545

Xie, W.-B., Yan, H., and Zhao, X.-M. (2017). EmDL: Extracting miRNA-drug
interactions from literature. IEEE/ACM Trans. Comput. Biol. Bioinforma. 16,
1722–1728. doi:10.1109/TCBB.2017.2723394

Xuan, P., Dong, Y., Guo, Y., Zhang, T., and Liu, Y. (2018). Dual convolutional
neural network based method for predicting disease-related miRNAs. Int. J. Mol.
Sci. 19, 3732. doi:10.3390/ijms19123732

Xuan, P., Sun, H., Wang, X., Zhang, T., and Pan, S. (2019). Inferring the disease-
associated miRNAs based on network representation learning and convolutional
neural networks. Int. J. Mol. Sci. 20, 3648. doi:10.3390/ijms20153648

Yin, J., Chen, X., Wang, C.-C., Zhao, Y., and Sun, Y.-Z. (2019). Prediction of
small molecule–microRNA associations by sparse learning and heterogeneous
graph inference. Mol. Pharm. 16, 3157–3166. doi:10.1021/acs.molpharmaceut.
9b00384

Young, D. D., Connelly, C. M., Grohmann, C., and Deiters, A. (2010). Small
molecule modifiers of microRNAmiR-122 function for the treatment of hepatitis C
virus infection and hepatocellular carcinoma. J. Am. Chem. Soc. 132, 7976–7981.
doi:10.1021/ja910275u

Yu, N., Liu, Z.-P., and Gao, R. (2021). “A semi-supervised learning algorithm for
predicting MiRNA-disease association,” in 2021 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM), Houston, TX, United States, 09-
12 December 2021 (IEEE), 771–774.

Yu, S., Wang, H., Liu, T., Liang, C., and Luo, J. (2022). A knowledge-driven
network for fine-grained relationship detection between miRNA and disease.
Briefings Bioinforma. 23, bbac058. doi:10.1093/bib/bbac058

Yu, S., Xu, H., Li, Y., Liu, D., and Deng, L. (2021). “Lgcmds: Predicting miRNA-
drug sensitivity based on light graph convolution network,” in 2021 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM), Houston,
TX, United States, 09-12 December 2021 (IEEE), 217–222.

Zhang, Z., Liu, S., Shi, R., and Zhao, G. (2011). miR-27 promotes human gastric
cancer cell metastasis by inducing epithelial-to-mesenchymal transition. Cancer
Genet. 204, 486–491. doi:10.1016/j.cancergen.2011.07.004

Zhao, C., Wang, H., Qi, W., and Liu, S. (2022). Toward drug-miRNA
resistance association prediction by positional encoding graph neural network
and multi-channel neural network. Methods 207, 81–89. doi:10.1016/j.ymeth.
2022.09.005

Zhao, Y., Chen, X., Yin, J., and Qu, J. (2020). Snmfsmma: Using symmetric
nonnegative matrix factorization and kronecker regularized least squares to predict
potential small molecule-microRNA association. RNA Biol. 17, 281–291. doi:10.
1080/15476286.2019.1694732

Frontiers in Genetics frontiersin.org11

Luo et al. 10.3389/fgene.2022.1088189

https://doi.org/10.1073/pnas.1014720108
https://doi.org/10.1016/j.omtn.2019.06.014
https://doi.org/10.1016/j.omtn.2019.06.014
https://doi.org/10.1093/bioinformatics/btx019
https://doi.org/10.1093/bioinformatics/btx019
https://doi.org/10.1093/bioinformatics/btz254
https://doi.org/10.1038/s41598-017-06201-3
https://doi.org/10.1039/c7ra08894a
https://doi.org/10.1093/bib/bbac155
https://doi.org/10.1093/bib/bbac155
https://doi.org/10.1093/nar/gkaa1060
https://doi.org/10.1093/nar/gkaa1060
https://doi.org/10.1200/JCO.2005.05.5194
http://org.arXiv/abs/1801.06229
http://org.arXiv/abs/1801.06229
https://doi.org/10.1186/gb-2010-11-1-r6
https://doi.org/10.1093/bib/bbs082
https://doi.org/10.1038/nrd.2016.246
https://doi.org/10.1021/acs.jcim.0c00244
https://doi.org/10.1021/acs.jcim.0c00975
https://doi.org/10.1021/acs.jcim.0c00975
https://doi.org/10.1111/cas.12880
https://doi.org/10.1073/pnas.2136655100
https://doi.org/10.1158/0008-5472.CAN-04-0637
https://doi.org/10.1038/nature07299
https://doi.org/10.1021/acs.jcim.9b00667
https://doi.org/10.1021/acs.jcim.9b00667
https://doi.org/10.1021/acs.jcim.9b00129
https://doi.org/10.1093/bib/bbab431
https://doi.org/10.1093/bioinformatics/btx545
https://doi.org/10.1109/TCBB.2017.2723394
https://doi.org/10.3390/ijms19123732
https://doi.org/10.3390/ijms20153648
https://doi.org/10.1021/acs.molpharmaceut.9b00384
https://doi.org/10.1021/acs.molpharmaceut.9b00384
https://doi.org/10.1021/ja910275u
https://doi.org/10.1093/bib/bbac058
https://doi.org/10.1016/j.cancergen.2011.07.004
https://doi.org/10.1016/j.ymeth.2022.09.005
https://doi.org/10.1016/j.ymeth.2022.09.005
https://doi.org/10.1080/15476286.2019.1694732
https://doi.org/10.1080/15476286.2019.1694732
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1088189

	Machine learning in the development of targeting microRNAs in human disease
	1 Introduction
	2 Database
	2.1 miRNA-disease associations
	2.1.1 miR2Disease
	2.1.2 PhenomiR
	2.1.3 miRGen
	2.1.4 miRmine
	2.1.5 miRTarBase
	2.1.6 HMDD

	2.2 miRNA-drug associations
	2.2.1 Pharmaco-miR Verified Sets
	2.2.2 SM2miR
	2.2.3 DTP NCI-60 dataset
	2.2.4 ncDR


	3 Predicting miRNA-disease associations
	3.1 Traditional machine learning models for miRNA disease associations
	3.2 Deep learning models for miRNA disease associations

	4 Predicting miRNA-drug associations
	4.1 Traditional machine learning models for miRNA drug associations
	4.2 Deep learning models for miRNA drug associations

	5 Conclusion
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


