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Background: Tyrosyl phosphorylation is carried out by a group of enzymes known as
non-receptor protein tyrosine phosphatases (PTPNs). In the current investigation, it
is hoped to shed light on the relationships between the expression patterns of PTPN
family members and the prognosis of acute myeloid leukemia (AML).

Methods: PTPN expression was examined using GEPIA and GEO databases. To
investigate the connection between PTPN expression and survival in AML patients,
we downloaded data from the Broad TCGA Firehose and Clinical Proteomic Tumor
Analysis (CPTAC) of the Cancer Genome Atlas (TCGA). We used quantitative real-
time PCR (qRT-PCR) to confirm that essential genes were performed in clinical
samples and cell lines. We then used western blot to verify that the genes expressed
in the above databaseswere positive in normal tissues, AML patient samples, and AML
cell lines. Next, we investigated associations between genome-wide expression
profiles and PTPN6 expression using the GEO datasets. We investigated the
interactive exploration of multidimensional cancer genomics using the cBioPortal
datasets. Using the DAVID database, a study of gene ontology enrichment was
performed. The protein-protein interaction (PPI) network was created using the
STRING portal, and the gene-gene interaction network was performed using
GeneMANIA.

Results: Data from GEO and GEPIA revealed that most PTPN family members were
linked to AML. Patients with leukemia have elevated levels of several PTPNmembers.
All of the AML patients’ poor overall survival (OS, p < .05) was significantly linked with
higher expression of PTPN1, PTPN6, and PTPN7. Additionally, clinical samples
showed that the expression of PTPN 6, PTPN 7, PTPN 13, and PTPN 14 was
higher than normal in AML patients (p = .0116, p = .0034, p = .0092, and p =
.0057, respectively) and AML cell lines (p = .0004, p = .0035, p = .0357, and p = .0177,
respectively). Western blotting results showed that the expression of PTPN6 in AML
samples and AML cell lines was significantly higher than that in normal control
samples.

Conclusion: Differentially expressed PTPN family members were found in AML. The
prognosis of patients and PTPN gene expression were shown to be correlated.
PTPN6 is one of these members and may be used as an AML diagnostic and
prognostic marker.
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Introduction

The most prevalent kind of acute leukemia in adults and the
cause of the most significant number of leukemia-related fatalities
each year in the United States is acute myeloid leukemia (AML), a
heterogeneous hematologic malignancy characterized by the clonal
growth of myeloid blasts in peripheral blood, bone marrow, and
other organs (Tallman et al., 2019). In 2022, it is predicted that
20,050 people will be diagnosed with AML, and 11,540 people will
pass away from the condition (Siegel et al., 2022). Despite
improvements in AML treatment, such as the introduction of
chemotherapy and other successful targeted medicines over the
previous few decades, the 5-years relative survival rate increased
from 6.2% in the mid- 1970s to 30% for those diagnosed from
2009 to 2015 (Lai et al., 2019). However, there are significant
restrictions in the prognosis predicted by the existing biomarkers
because of the clinical and molecular heterogeneity of AML (Patel
et al., 2012). Therefore, it is vital to find reliable biomarkers that
will allow for an earlier diagnosis and better, more specialized
therapy of AML.

Complex phosphorylation and dephosphorylation networks
are created when kinases and phosphatases, which carry out
phosphorylation and dephosphorylation, are linked by their
shared substrates or direct interactions. These networks are
essential for controlling cellular functions (Li et al., 2013).
Protein tyrosine phosphatases (PTPs) are a group of enzymes
that catalyze the dephosphorylation of tyrosine residues (Chen
et al., 2020). One hundred three genes encode PTPs, which are
organized into four primary superfamily classes. The Human
Genome Organization’s Nomenclature Committee has given
each PTP member an official gene name (Ogino et al., 2007).
There are 17 non-receptor PTPs in Class I of the most
prominent family, known as PTPN, with a number, according to
the literature (Alonso et al., 2004). More and more evidence points
to the possibility that protein tyrosine kinases (PTKs) and protein
tyrosine phosphatases (PTPNs) collaborate to control a wide range
of cellular processes, including immune response, migration,
metabolism, and proliferation and differentiation (Tonks, 2013;
Yu and Zhang, 2018). The PTPN family numbers significantly
influence various disorders, according to numerous research that
has already been published. For instance, PTPN22 restricts T-cell
receptor-induced proliferation. It hinders naive T-cell activation
and effector cell responses in response to low-affinity antigens
(Salmond et al., 2015), and PTPN12 expression is elevated in both
stomach adenocarcinoma and cancer (Chen et al., 2020).
Additionally, one study indicates that the deletion of PTPN2
may enhance the therapeutic effectiveness of CAR-T cells in the
treatment of breast cancer (Wiede et al., 2020). The cell cycle,
apoptosis, and metastasis are all heavily regulated by PTPN2, which
is a significant predictor of the prognosis of pancreatic cancer
(Kuang et al., 2022). The PTPN genes are generally a promising
prognostic and therapeutic target for cancer therapy due to this
evidence. However, the distinct roles of PTPN family genes in AML
have yet to be understood entirely.

Therefore, discovering oncogenes or tumor suppressors
mediated by PTPN as potential pathways for predicting
biomarkers may offer novel therapeutic approaches for treating
AML. The difficulty comes from the fact that most PTPN genes’
variances in transcriptional levels, prognostic values, molecular

roles, and biological processes have not yet been thoroughly
understood in the context of AML disease. In order to
thoroughly investigate the association between PTPN subtypes
and the pathogenesis and progression of AML, we combed
through some widely used databases as part of this work to
further our understanding of AML.

Materials and methods

Ethics statement

The Seventh Affiliated Hospital of Sun Yat-Sen University’s
Academic Committee approved this study, which was carried out
following the guidelines outlined in the Declaration of Helsinki. Each
patient signed informed consent. Since all the datasets were taken from
published works, it was verified that written informed consent had
been obtained for every one of them.

Download and expression analysis of
microarray data

The GEO database (http://www.ncbi.nlm.nih.gov/geo) is a public
functional genomics data repository that downloads the
GSE149237 microarray dataset (Jäger et al., 2021). This dataset was
obtained by comparing five healthy HSPCs sequenced and compared
to eight AML patient samples, and the study was conducted with
GPL20301 Illumina HiSeq 4000 sequencing platform. Then, we
performed a classification analysis on the mRNA expression values
of the target genes. The filter conditions are p-value <0.05 and the
absolute value of the difference (| log2 (Fold Change) |) > 1.

Download the data set GSE37642 and its corresponding platform
file GPL96 (Affymetrix Human Genome U133A Array). The
GSE37642 data set based on the GPL96 platform contains a total of
422 tissue samples (bone marrow mononuclear cells) of AML patients,
and clinical information such as survival time, survival status, and
whether PTPN6 mutations occur in the samples are extracted.

GEPIA dataset

GEPIA (Gene Expression Profiling Interactive Analysis) is a
newly created interactive web server for evaluating the RNA
sequencing expression data of 9,736 tumors and 8,587 normal
samples from projects like the Genotype-Tissue Expression
(GTEx) and the Cancer Genome Atlas (TCGA), using a regular
processing pipeline. (http://gepia.cancer-pku.cn/). Customizable
features offered by GEPIA include dimensionality reduction
analysis, similar gene discovery, patient survival analysis, profiling
based on cancer kinds or pathological stages, tumor or normal
differential expression analysis, patient survival analysis, and
similar gene detection (Tang et al., 2017).

LinkedOmics dataset

In the software ecosystem, LinkedOmics (http://www.
linkedomics.orglogin.php) is a brand-new and unique tool for
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sharing data from extensive cancer omics initiatives. To reduce
duplication of effort, which is concentrated on the detection and
interpretation of attribute connections, preprocessed and
normalized data from the Clinical Proteomic Tumor Analysis
(CPTAC) data portal and the Broad TCGA Firehose are used,
completing the work of the already-existing cancer data portals
(Vasaikar et al., 2018).

Cell lines and cell culture

Four AML cells, HL-60, KG-1, THP-1, and MOLM-13, were
purchased from American Type Culture Collection (Rockville,
MD). HL-60 and KG-1 were cultured in IMDM medium
(Invitrogen, Shanghai, China) supplemented with 20% fetal
bovine serum (Biological Industries, Kibbutz Beit Haemek,
Israel) and 100 units/ml penicillin and streptomycin. THP-1 and
MOLM-13 were cultured in RPMI medium (Invitrogen, Shanghai,
China) supplemented with 10% fetal bovine serum (Biological
Industries, Kibbutz Beit Haemek, Israel) and 100 units/ml
penicillin and streptomycin. Cells were incubated at 37°C in a
humidified atmosphere of 95% air and 5% CO2, as described
previously (Jin et al., 2015). The cells were confirmed to be
mycoplasma-free routinely.

RNA extraction, reverse transcription and
quantitative real-time polymerase chain
reaction (qRT-PCR)

To verify the expression of crucial genes in clinical samples and
cell lines, we further verified the expression level of essential genes in
blood monocytes of four newly diagnosed patients with AML
(confirmed by WHO-AML criteria, excluding AML-M3 cases.
Not receive treatment was received) and four AML cell lines (HL-
60, KG-1, THP-1, and MOLM-13) using qPCR. Peripheral blood
monocytes from four anonymous healthy volunteers were used as
control samples.

According to g Trizol reagent and the manufacturer’s
instructions, total RNA was extracted from cultivated cells
(Takara Bio, Kusatsu, Japan). The expression of the indicated
genes was examined using SYBR Premix Ex Taq TM II and PCR
detection equipment from Bio-Rad in Hercules, California,
United States. A quick all-in-one RT-Kit was used to create the
cDNA (ES Science Biotech). The internal control gene GAPDH’s
transcript levels were used to standardize transcription levels. The
supplementary table displays the order of the primers. Triplicate
analyses of each RNA sample were carried out.

Reagents and antibodies

PTPN6 (Rabbit, 3759) and PTPN14 (Rabbit, 13,808) antibody
was from Cell Signaling Technology (Beverly, MA). Antibodies
against β-actin were from Sigma-Aldrich (Mouse, A5441,
Shanghai, China). Antibodies against PTPN1(Goat, AF3954) was
from Novus Biologicals (Littleton, CO). Antibodies against
PTPN7(Goat, AF3954) was from Novus Biologicals (Littleton,
CO). Antibodies against PTPN13 (Rabbit, PA5-72907) were

from Thermo-Fisher Scientific (Shanghai, China). The
fluorescent-conjugated secondary antibodies anti-mouse and
anti-rabbit IgG were from LI-COR Biotechnology (Nebraska,
United States).

For western blotting assays, whole cell lysates were prepared in
RIPA buffer (1 × PBS, 1% NP-40, .5% sodium deoxycholate, .1%
SDS) supplemented with 10 mmol/L β-glycerophosphate, 1 mmol/
L sodium orthovanadate, 10 mmol/L NaF, 1 mmol/L
phenylmethylsulfonyl fluoride, and 1 × Roche complete Mini
protease inhibitor cocktail (Roche, Indianapolis, IN) (Jin et al.,
2017). The cytosolic fractionations for cytochrome c detection were
prepared with digitonin extraction buffer (10 mmol/L PIPES
pH 6.8, .015% digitonin, 300 mmol/L sucrose, 100 mmol/L NaCl,
3 mmol/L MgCl2, 5 mmol/L EDTA, and 1 mmol/L
phenylmethylsulfonyl fluoride) as described previously (Jin
et al., 2017). Protein samples were separated by SDS-PAGE and
transferred to nitrocellulose membranes, which were then
incubated with the primary antibodies. After incubation with
appropriate secondary antibodies, the membranes were scanned
by the Odyssey infrared imaging system (LI-COR, Lincoln,
Nebraska).

TCGA data and the cBioPortal

The cBioPortal (http://www.cbioportal.org/) for cancer
genomics is an open-access and open-source platform developed
for the interactive study of multidimensional cancer genomics
datasets (Cerami et al., 2012). It supports and maintains data
about non-synonymous mutations, DNA copy-numbers, mRNA
and microRNA expression, protein-level and phosphoprotein
levels, DNA methylation, and de-identified clinical data. We may
compute mRNA expression z-scores (RNA Seq V2 RSEM), PTPN
family gene correlations, and the frequency of gene modifications
using the web tool cBioPortal.

GO and PPI analysis for the function and
interaction of PTPN family

Enrichment analysis of gene ontology (GO) of PTPN genes was
explored using the Database for Annotation, Visualization and
Integrated Discovery (DAVID; v.6.8; https://david.ncifcrf.gov/
home.jsp; accessed on 20 November 2019) (Chandrasekharan
et al., 2013). The gene-gene interaction network was structured
using the Gene Multiple Association Network Integration
Algorithm (GeneMANIA; https://www.genemania.org/; accessed
on 21 November 2019) (Warde-Farley et al., 2010) and the search
tool for the Retrieval of Interacting Genes Database (STRING v.10.0;
https://string-db.org/; accessed on 23 November 2019) was used to
create a protein-protein interaction (PPI) network (Szklarczyk et al.,
2017).

Statistical analysis

Utilizing the software packages R Studio (R version 4.0.2) and
GraphPad Prism 8.3, statistical analysis and visualization were carried
out (GraphPad Software, Inc., La Jolla, CA, United States). Single

Frontiers in Genetics frontiersin.org03

Liu et al. 10.3389/fgene.2022.1087938

http://www.cbioportal.org/
https://david.ncifcrf.gov/home.jsp
https://david.ncifcrf.gov/home.jsp
https://www.genemania.org/
https://string-db.org/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1087938


e-variable Cox proportional regression models and two-way ANOVA
analysis were employed to examine the overall survival and mRNA
expression datasets. An illustration of the prognosis was a Kaplan-
Meier survival curve. We compared variations in central gene
expression levels using two-way ANOVA analysis. Statistical
significance was set at as < .05.

Results

Transcriptional level of PTPNs in patients with
AML in the GEO database

The human genome contains PTPN genes, which have been
found. We compared the transcriptional expression of the PTPN
genes in tumorigenic and healthy control samples using the
GSE149237 microarray dataset. GEO analysis revealed that the

mRNA expression level of PTPN3, PTPN6, PTPN7, PTPN11,
PTPN14, and PTPN18, was upregulated in AML patients
compared with normal controls (p < .05, Figure 1). However, the
expression levels of PTPN5, PTPN13, PTPN21, and PTPN22 were
lower in AML patients (p < .05, Figure 1). While others, such as
PTPN1, PTPN2, PTPN9, PTPN12, PTPN20, and PTPN23, showed no
difference between AML and normal samples (p > .05,
Supplementary Figure S1).

The mRNA levels of PTPNs in AML samples
and normal samples in the GEPIA

Database
In order to compare the mRNA expression of PTPN factors in

leukemia and normal samples, we used the GEPIA (Gene
Expression Profiling Interactive Analysis) dataset (http://gepia.

FIGURE 1
In the GSE149237 microarray dataset, there were differential transcript levels of the PTPN gene in AML and healthy control samples. The filter conditions
are p-value <0.05 and the absolute value of the difference (| log2 (Fold Change) |) > 1.
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cancer-pku.cn/). The findings showed that PTPN6, PTPN18, and
PTPN22 had higher expression levels in leukemia than in
normal blood samples, while PTPN1 had a lower

expression level in the former than the latter (Figure 2).
However, there was no discernible difference in the expression
levels of PTPN2, PTPN3, PTPN4, PTPN5, PTPN7, PTPN9, PTPN

FIGURE 2
Differentially expressed PTPN genes in AML and healthy control samples in the GEPIA database. The filter conditions are p-value <0.05 and the absolute
value of the difference (| log2 (Fold Change) |) > 1.

FIGURE 3
PTPN genes whose expression level is related to patient prognosis in AML patients.
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11, PTPN12, PTPN13, PTPN14, PTPN20, PTPN21, and PTPN23
(Supplementary Figure S2).

Relationship between the mRNA level of
PTPNs and the prognosis of patients with
leukemia

The role of PTPN genes in AML patients’ survival was the
subject of our further research. We conducted a prognostic analysis
of PTPN genes in patients with AML using the LinkedOmics
database. The results of the study showed that there was a
significant correlation between poor overall survival (OS, p <
.05, Figure 3) and increased expression levels of PTPN1, PTPN6,
and PTPN7 in all AML patients, but was associated with low
expression of PTPN13 and PTPN14 (OS, p < .05, Figure 3).
However, there were no significantly different in the expression
levels of PTPN2, PTPN3, PTPN4, PTPN5, PTPN9, PTPN11,
PTPN12, PTPN18, PTPN20, PTPN21, PTPN22, and PTPN23

(Supplementary Figure S3). PTPN1, PTPN6, and PTPN7
overexpression may indicate a poor prognosis for AML.

Clinical samples were used to verify the
mRNA and protein levels of PTPNs in AML and
normal samples

We next carried out qRT-PCR experiments utilizing clinical samples
and cell lines to confirm further the expression level of PTPNsmRNA in
AML. According to the findings, the expression of PTPN 6, PTPN 7,
PTPN 13, and PTPN 14was higher in AML patients (p = .0116, p = .0034,
p = .0092, and p = .0057, respectively) and AML cell lines (p = .0004, p =
.0035, p = .0357, and p = .0177, respectively) than in normal individuals.
The expression level of PTPN1 was, however, lower in AML patients (p =
.0094) andAML cell lines (p = .0013) (Figure 4A). However, there were no
significantly different in the expression levels of PTPN2, PTPN3, PTPN4,
PTPN5, PTPN9, PTPN11, PTPN12, PTPN18, PTPN20, PTPN21, PTPN22,
and PTPN23 (Supplementary Figure S4A).

FIGURE 4
Relative mRNA and protein expression of the PTPN gene in AML samples and AML cell lines and normal controls were detected by qRT-PCR and
western blotting. (A) Relative mRNA expression of PTPN gene in AML samples and AML cell lines and normal healthy controls detected by qRT-PCR. (B)
Protein expression levels of PTPN6 in AML samples and AML cell lines and normal healthy controls detected by western blotting. Note: C1-C4
represent 4 normal controls, P1-P4 control 4 AML clinical samples, A1-A4 represent 4 AML cell lines including HL-60, KG-1, THP-1, and
MOLM-13.
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According to the results of GEO, GEPIA, LinkedOmics, and
qRT-PCR, only PTPN6 expression was increased in AML patients
in all major databases and qRT-PCR, and the results were
consistent with each other. Next, we explored the
protein expression of PTPN 1, PTPN6, PTPN 7, PTPN 13, and
PTPN 14 in normal controls, clinical AML patients, and AML cell
lines. The results of western blotting assays showed that the
expression of PTPN6 in AML patient samples and AML cell
lines was significantly higher than that in normal controls
(Figure 4B). However, the expression levels of PTPN1, PTPN7,
PTPN13 and PTPN14 were not different among AML patient
samples, AML cell lines and normal controls (Supplementary
Figure S4B).

Associations between genome-wide
expression profiles and PTPN6 expression

In order to further study the biological role of PTPN6 in
leukemogenesis, the gene expression profile related to PTPN6 was
obtained based on the analysis of GSE dataset 37,642. As a result,
128 upregulated genes and 390 downregulated genes were identified as
being significantly associated with the expression of PTPN6 (fdr-
adjusted p < .05 and FC > 1.5 or FC < 1/1.5, Figure 5A). In
addition, we also presented these differentially expressed genes as a
heat map (Figure 5B). The upregulated genes include: 1) Genes related
to leukemia (such asHHEX, NET1), tumor-promoting factors (such as
CDK6, HOX family genes), tyrosine kinase genes (c-KIT, GRB10); 2)

FIGURE 5
Genome-wide genes associated with PTPN6 expression. (A) Volcano plot of differential gene profiles between PTPN6 high and PTPN6 low. (B)
Expression heatmap of PTPN6-associated genes. The top curve shows PTPN6’s expression distribution of 156 CN-AML samples.
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Prognosis-related genes (such asWT1, CXXC5, MSI2, etc.); 3) CD34 (a
marker of hematopoietic progenitor cells); 4) AML drug resistance-
related genes (such as IGFBP2 and ABCC1). Downregulated genes
include: 1) Immune system activators, such as CD86; 2) blood tumor
suppressors ID2 and KLF4; 3) CEBPB, CEBPB is a BCR/ABL negative
regulator gene, which can inhibit the proliferation of BCR/ABL-
positive cells, and promote cell differentiation.

Genetic alterations and correlations of PTPN
genes in AML

We gathered details on genetic changes to the PTPN genes and
determined any gene-to-gene correlations using the online resource
cBioPortal and the “TCGA, Firehose Legacy” database for AML. In 68/
163 (42%) patient samples with AML, PTPN genes were changed
(Figure 6A). Mutation, deep deletion, mRNA overexpression, mRNA
down-expression, and numerous alterations were among the several
genetic alterations. The percentage of genetic alterations in PTPN
family members for leukemia varied from .6% to 9% for individual
genes based on the TCGA, Firehose Legacy dataset (PTPN1, 6%;
PTPN2, 5%; PTPN3, 1.2%; PTPN4, 3%; PTPN5, 4%; PTPN6, 5%;

PTPN7, 3%; PTPN9, 3%; PTPN11, 9%; PTPN12, 6%; PTPN13, 4%;
PTPN14, 6%; PTPN18, 5%; PTPN20, .6%; PTPN21, 5%; PTPN22, 4%;
PTPN23, 1.8%; Figure 6A). In addition, cBioPortal was used to
investigate the expression of PTPN genes in AML [using mRNA
sequencing (RNA-seq) version V2 RSEM], and the relationships
between certain PTPN genes (including Pearson’s correlation) were
calculated. Except for PTPN1 and PTPN22, the findings showed a
significant positive correlation between any two PTPN family gene
members (Pearson = .00952, p = .905) (Figure 6B).

Function and interaction of PTPN family
genes

The three main categories of GO analysis were molecular function
groups, cellular component groups, and biological process groups.
Figure 7A displays the top five enriched categories for each group as
determined by the analysis results. GO analysis revealed that most
PTPN proteins were associated with the cytoplasm. Protein
dephosphorylation and protein tyrosine phosphatase activity were
the main targets of PTPN genes’ actions. The KEGG pathway enriched
11 genes using the David online platform. JAK-STAT signaling

FIGURE 6
Genetic alteration and correlations of PTPN genes in AML. (A) Genetic alteration of PTPN gene in AML. (B) Genetic correlations of PTPN genes in AML.
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pathway, Adherens junction, PD-L1 expression, and PD-1 checkpoint
pathway in cancer, as well as insulin resistance and natural killer cell-
mediated cytotoxicity, were the principal pathways associated with the
eleven genes (Figure 7B). To further understand the relationships
between colocalization, shared protein domains, co-expression,
prediction, and pathways, interaction analysis of PTPN genes at the
gene level was carried out using GeneMANIA (Figure 7C). The
STRING protein-protein interaction network analysis revealed that
the connections between the members of the PTPN gene family were
complex (Figure 7D).

Discussion

According to the Global Burden of Disease study, acute myeloid
leukemia (AML) is the deadliest form of leukemia in the world, with
147,000 fatalities attributed to it in 2019 (Fitzmaurice et al., 2019; GBD
2019 Diseases and Injuries Collaborators, 2020) AML is linked to 40%

of leukemia-related mortality in the United States and around the
world, but only about 30% of leukemia occurrences (Siegel et al., 2021).
AML incidence has increased more during the previous 10 years than
chronic lymphocytic leukemia (CLL) (34% vs 25%), acute
lymphoblastic leukemia (ALL) (22%), and chronic myeloid
leukemia (13%), in part due to population expansion and aging as
well as an increase in the standardized incidence rate (Cao et al., 2021).
Therefore, it is noteworthy and crucial for AML that new biological
therapeutic targets are found.

Together with protein-tyrosine kinases, PTPN regulates tyrosine
phosphorylation and dephosphorylation in cellular signal
transmission. They are essential members of the protein tyrosine
phosphatases family (Tonks, 2006). Numerous studies have
examined the relationships between specific PTPN family members
and various neoplasms (Chen et al., 2020; Mitra and Ayyannan, 2020).
To date, no report has provided an overview of the connections
between PTPN family genes and human leukemia. In this study,
PTPN gene expression patterns were illustrated for the first time,

FIGURE 7
Enrichment and correlation analysis among PTPN family genes. (A) GO analysis of PTPN family genes. The top five enriched categories for Molecular
Function, Cellular Component, and Biological Process were showed. (B) KEGG pathway analysis of PTPN family genes, top five KEGG pathway category were
showed. (C) Gene–gene interaction network among PTPN gene family members. (D) Protein–protein interaction network among PTPN gene family
members.
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and it was also shown how the PTPN family of genes and AML
diagnosis and prognosis are related. This information gave genes
clearer understanding of the clinical value of all the PTPN genes in
human leukemia.

We investigated the level of PTPN gene expression in AML using
GEO database and the online databases GEPIA, Next, we used the
LinkedOmics database to explore the relationship between the PTPN
family’s expression and AML patients’ survival. Then we validated our
findings using qRT-PCR. As a result of the high levels of expression of
numerous PTPN family members in human AML discovered in our
study, PTPNs may 1 day be used as an AML diagnostic biomarker.
However, there is much debate about the expression of the PTPN
family in AML and normal samples. The expression level of PTPN1 in
AML mice is significantly lower than in normal mice, and myeloid-
specific deficiency of PTPN1 can promote the development of AML
(Le Sommer et al., 2018). In the GSE149237 microarray, there was no
difference in the expression of PTPN1 in AML and normal samples. In
contrast to the GEPIA database and RT-PCR, which revealed the
opposite findings. This suggests that the expression and role of PTPN1
in AML are still controversial, and further studies are needed to
explore and clarify. PTPN2 is frequently absent in adult and pediatric
T-ALL patients, but the expression level of PTPN1 does not correlate
with patient prognosis (Alcantara et al., 2019). Similar to our findings,
PTPN2 expression did not differ between AML and normal samples
and was not associated with patient prognosis. PTPN3 is an
oncoprotein with a poor prognosis and can promote cell invasion
and proliferation in biliary cancer (Wang et al., 2018). PTPN4 is highly
expressed in AML and can guide the classification of AML (Kabir
et al., 2013). PTPN5 act as a tumor suppressor in breast cancer
(Palaniappan et al., 2018), but previous studies have not found
differences in the expression of PTPN5 between AML and normal
samples. Our findings demonstrated that, PTPN3, PTPN4, and PTPN5
were not differentially expressed in AML and normal blood, and there
was no correlation between their expression levels and patient survival.
Several transmembrane receptors’ intracellular signaling is modulated
by PTPN6 (SHP-1). When SHP-1 expression and activity are reduced,
JAK kinase activity is raised, which causes aberrant cell proliferation
(Wu et al., 2003). Activation of PTPN6 (SHP-1) recruits CAMK1 to
mediate self-renewal of AML (Hao et al., 2021). Compared to samples
from AML patients and AML cell lines, the expression of PTPN6 was
significantly lower in our study’s normal samples (whether in GEO
and GEPIA databases or RT-PCR and western blotting results).
Further evidence that PTPN6 can be employed as a marker for the
diagnosis and prognosis of AML comes from the substantial
correlation between the high expression of PTPN6 and the poor
survival of AML patients. Cytoplasmic protein tyrosine
phosphatase PTPN7, sometimes referred to as hematopoietic PTP,
was first cloned from human T-cells. Since PTPN7 dephosphorylated
ERK, T-cell activation was decreased in T cells derived from PTPN7-
KO mice, as seen by the hyperphosphorylation of ERK on those cells
(Inamdar et al., 2019). Our results from GEO and RT-PCR showed
that PTPN7 expression was lower in normal samples than in AML
patients. However, the GEPIA results showed no statistically
significant difference between the two. In contrast, the cytoplasmic
PTP PTPN9 is broadly distributed in the tissues of the brain,
leukocytes, endocrine cells, and other cells (Wang et al., 2019).
PTPN11 is involved in many signal transduction functions
necessary for normal hematopoiesis, and mutations in PTPN11 can
mediate the development of AML and are associated with poor

prognosis (Alfayez et al., 2021). PTPN12 is highly expressed in
AML samples (Arora et al., 2012). Our results showed that in the
GSE149237 microarray dataset, the expression of PTPN11 was higher
in AML than in normal controls, but in the GEPIA database, there was
no difference between the two. The expression of PTPN9 and PTPN12
did not differ between AML patients and normal controls, neither in
the GEO nor the GEPIA database. Transcription levels of PTPN13 are
abnormally elevated in myeloid malignancies (Mundle et al., 1999).
PTPN14 is now considered a tumor suppressor, but its expression and
role in AML have not been studied and reported (Au et al., 2010). Our
results showed the opposite. In the analysis of the GEO database,
PTPN13 was higher in AML than normal controls, while PTPN14 was
the utter opposite. In contrast, GEPIA results showed PTPN13 and
PTPN14 expression in AML and normal controls with no difference.
RT-PCR results showed that the expression of PTPN13 and PTPN14
was higher in AML and AML cell lines than in the control group. Only
brain tissues express PTPN20 (Xia et al., 2018), and overexpression of
PTPN21 promotes the proliferation of ALL cells by activating the
mitogen-activated protein kinase (MAPK) signaling pathway (Wang
et al., 2020). In our study, PTPN20 expression did not differ between
AML and normal samples. However, the expression results of PTPN21
in AML and normal samples in the GSE149237 microarray dataset
and GEPIA database were inconsistent. PTPN23 is required for AML
cell survival (Zhang et al., 2017). However, our results showed that
normal samples had higher expression levels of PTPN23 than AML
samples. Furthermore, the expression of PTPN23 in AML patients was
not associated with the prognosis of the patients. Combined with the
GSE149237 microarray dataset, GEPIA database, LinkedOmics
database, RT-PCR, and western blotting results. PTPN6 can be
used as a marker for the diagnosis and prognosis of AML.
However, further research and testing are needed to determine its
association with AML risk.

Significant genomic genes of genetic alterations include changing
the genetic code, inducing gene disruptions, and producing
phenotypic differences (Egger et al., 2004; Zhou et al., 2016; Wu
and Xu, 2020). An abnormal expression and PTPN dysfunction in
AML can result from altered PTPN genes’ chromosomal structure. In
our study, 68/163 (42%) of the patient samples with AML had PTPN
gene alterations, which included mutations, deep deletions, mRNA
overexpression, mRNA down-expression, and multiple alterations.
PTPN11 mutations are frequently associated with acute
myelomonocytic/monocytic leukemia subtypes, and PTPN11 is
associated with lower rates of complete remission and shorter
overall survival (Alfayez et al., 2021). Our study shows that
PTPN11 has the highest probability of mutation, followed by
PTPN1, PTPN12, PTPN12, and PTPN6. These results suggest that
high genetic alterations in the PTPN gene are related to the
development of AML.

GO analysis in this study showed that the PTPN protein was
primarily related with the cytoplasm. The primary functions of PTPN
genes, which have been extensively documented in various
publications, are protein tyrosine phosphatase activity and
dephosphorylation. PTPN11 contains two N-terminal Src homology
2 (SH2) domains, a protein tyrosine phosphatase (PTP) catalytic
domain, and a COOH terminus. PTPN11 further contributes to the
transformation of AML by encoding a ubiquitously expressed
cytoplasmic phosphatase SHP2, which mediates cellular responses
to hormones and cytokines (Stasik et al., 2021). Additionally, the
outcomes of interaction network analysis at the gene and protein levels
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further suggested extensive interactions between PTPN members and
other genes. However, few studies have examined interactions between
PTPN members in AML. According to one investigation, the
dephosphorylation of IRF3 at Y245 is mediated by a protein that
both PTPN1 and PTPN2 target (Xia et al., 2019). By
dephosphorylating protein tyrosine kinases unique to lymphocytes,
PTPN2 and PTPN22 have been found to affect T-cell receptor
signaling (Cloutier and Veillette, 1999; Wiede et al., 2011). Multiple
studies showed that PTPN5 and PTPN7 might bind to and inactivate
the mitogen-activated protein kinases Erk2 and P38, which could
negatively influence cell proliferation and differentiation (Francis
et al., 2011; Francis et al., 2013; Francis et al., 2014). It has been
noted that diffuse large B-cell lymphomas are prevented from
progressing by the hypermethylation of the PTPN6 and PTPN13
promoters (Wang et al., 2016). In our study, the prognosis of
patients with AML was related to PTPN6, PTPN7, PTPN13, and
PTPN13. Therefore, PTPN members have the potential to play the
role of numerous diseases, including AML, via consortium processes.

Our results demonstrate the expression status and prognostic
value of PTPN members in AML. The results showed the
differential expression of some PTPN members and their
correlation with the prognosis of AML. These members’ samples
from healthy people had significantly lower levels of PTPN6
expression than samples from AML patients. Furthermore, patients
with AML had significantly worse survival rates when their
PTPN6 expression was higher. PTPN6 may be employed as a
diagnostic and prognostic marker for AML, according to our
findings. To further develop the therapeutic applicability of PTPNs,
further well-designed studies are required to explain the importance of
our findings.
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