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Esophageal cancer is a widespread cancer of the digestive system that has two main
subtypes: esophageal squamous cell carcinoma (ESCC) and esophageal
adenocarcinoma (EA). In the diverse range of cancer therapy schemes, the side
effects of conventional treatments remain an urgent challenge to be addressed.
Therefore, the pursuit of novel drugs with multiple targets, good efficacy, low side
effects, and low cost has become a hot research topic in anticancer therapy. Based
on this, epigenetics offers an attractive target for the treatment of esophageal cancer,
where major mechanisms such as DNA methylation, histone modifications, non-
coding RNA regulation, chromatin remodelling and nucleosome localization offer
new opportunities for the prevention and treatment of esophageal cancer. Recently,
research on epigenetics has remained at a high level of enthusiasm, focusing mainly
on translating the basic research into the clinical setting and transforming epigenetic
alterations into targets for cancer screening and detection in the clinic. With the
increasing emergence of tumour epigenetic markers and antitumor epigenetic
drugs, there are also more possibilities for anti-esophageal cancer treatment. This
paper focuses on esophageal cancer and epigenetic modifications, with the aim of
unravelling the close link between them to facilitate precise and personalized
treatment of esophageal cancer.
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1 Introduction

Esophageal cancer is a prevalent gastrointestinal tumour, a malignant tumour occurring in
the mucosal epithelium of the oesophagus, that can be divided into two main categories:
esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma. Of these, the
former is predominant in clinical practice (Short et al., 2017). The latest cancer data show a
steady increase in the overall 5-year relative survival rate for all cancers, but the survival rate for
esophageal cancer is at the bottom of the list at only 20% (Siegel et al., 2022). The latest estimate
from GLOBOCAN 2020 for esophageal cancer is 6.3 cases and 5.6 deaths per 100,000 people in
2020 globally. Further projections suggest that there will be 957,000 new cases and
880,000 deaths from esophageal cancer by 2040 (Morgan et al., 2022). Surgery, the main
curative treatment for early-stage localized esophageal cancer, has limitations because it does
not provide a standard of care for patients with distant metastases in the mid to late stages.
Furthermore, some of the side effects and high costs associated with radiotherapy remain an
unbridgeable gap. Hence, there is an urgent need to find new drugs with multiple targets, good
efficacy, few side effects and low cost.
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Cancer has a variety of biological features, including cell
differentiation, abnormal proliferation, infiltration, and metastasis.
Its occurrence involves a complex multifactorial, multistep process
and is closely related to smoking, infection, occupational exposure,
environmental pollution, irrational diet and genetic factors (Mullard,
2020). In recent years, there has been a surge of research into
epigenetics, with a focus on translating the basic into the clinical
setting and transforming epigenetic alterations into targets for cancer
screening and detection in the clinic. Numerous studies have been
performed to this end. Epigenetics is the opposite concept to genetics,
which is a science based on changes in gene expression levels due to
non-genetic sequence alterations, whose mechanisms involve DNA
methylation, histone modifications, non-coding RNA regulation,
chromatin remodelling and nucleosome localization. Studies have
also confirmed that abnormal epigenetic mechanisms affect the
transcription of genes that are widely involved in cell growth,
differentiation, apoptosis, transformation and tumour progression,
all of which have valuable implications for the clinical diagnosis,
treatment and prevention of tumours (Sun et al., 2022). In addition,
most cancers share an essential feature, which is the presence of DNA
alterations in the genome and epigenome. Cancer cells can acquire
genetic and epigenetic alterations that alter the molecular and cell
biological processes of the cell that drive cancer initiation and
progression. These alterations, in addition to host and other
environmental factors, ultimately lead to the clinical behaviour of
cancer. The promising point is that these alterations can be used in the
clinic as biomarkers for researchers to determine cancer risk, for early
detection of cancer and precancer, to determine cancer prognosis and
to predict response to treatment. Of note, epigenetic regulatory
mechanisms play a very important role in the development of
esophageal cancer. This article reviews the progress of epigenetic
regulatory mechanisms in esophageal cancer.

2 DNA methylation and esophageal
cancer

Currently, nothing is more vigorously researched than epigenetic
modification, which has greatly contributed to the development of
molecular genetics. In turn, DNAmethylation is the most well-studied
form of epigenetic modification. Studies have shown that normal
methylation is necessary to maintain cell growth and metabolism,
while abnormal DNA methylation can cause disease, such as tumours
(Nishiyama and Nakanishi, 2021). Therefore, the study of DNA
methylation is very useful for understanding biological growth and
development as well as disease treatment.

The methylation status of DNA not only affects the growth and
development of an organism but also plays an important role in the
development of tumours. The cancer process in esophageal cancer
can be broadly understood as a period of cellular genetic mutation,
a period of precancerous lesions and a period of clinical cancer.
Within this, how DNA methylation is involved and regulated is the
focus of what researchers want to determine. DNA methylation is
known to occur on CpG islands, which are often located near
transcriptional regulatory regions. Studies have shown that the
DNA methylation that occurs here is highly correlated with the
carcinogenesis of esophageal cancer. Specifically, during the
carcinogenesis of esophageal cancer, altered DNA methylation
status in CpG islands can lead to increased chromosomal

rotation and silencing and loss of expression of oncogenes,
leading to tumour growth (Xi et al., 2022). A variety of related
gene methylations have been examined in esophageal cancer, such
as p16, E-cadherin, DNMT1 and MTHFR.

The P16 gene, also known as the multiple tumour suppressor 1
(MTS1) gene, was a new anticancer gene discovered by Kamb et al., in
1994 and is a fundamental gene in the cell cycle, that is directly
involved in the regulation of the cell cycle, negatively regulating cell
proliferation and division (Kamb et al., 1994). Once inactivated, it
causes malignant cell proliferation. Numerous studies have
corroborated this. The P16 gene was found to be widely involved
in the formation of a variety of tumours by gene deletion and
mutation. Detecting the presence or absence of alterations in the
p16 gene is of great clinical importance in determining the
susceptibility of patients to tumours and in predicting the
prognosis of tumours (Foulkes et al., 1997; Zhao et al., 2016). Hibi
et al. (2001) applied methylation-specific PCR to detect serum from
38 patients with ESCC and found that the rate of p16 methylation was
82%. Bian et al. (2002) examined the degree of P16 methylation in
tissue specimens from 22 esophageal adenocarcinoma and
33 precancerous lesions, of which P16 methylation was detected in
18 and 10 cases with methylation rates of 82% and 30%, respectively. A
study by Guo et al. (2006) further showed that P16 methylation was
most common in ESCC, at approximately 52%. Further additions were
made by Li et al. (2011) They suggested that the pathogenesis of ESCC
was associated with hypermethylation of several tumour-related genes,
such as RAR-β, DAPK, p16 and CDH1, mediated by increased
expression of DNMT3b. Of note, genistein and other isoflavones
from soy can reactivate methylation-silenced genes, such as P16,
and inhibit the growth of esophageal cancer cells, in part by
directly inhibiting DNA methyltransferases (Fang et al., 2005).

E-cadherin, a transmembrane glycoprotein with a molecular
weight of 120 kDa, belongs to a family of calcium-dependent
adhesion molecules in epithelial cells and plays an influential role
in the growth and development of tissues. The reduction or loss of its
function can lead to the disruption of cell junctions and is associated
with the infiltration and metastasis of tumour cells. Corn et al. (2001)
examined tissue specimens of esophageal adenocarcinoma by MSP
and immunohistochemistry and found that the positive rate of
E-cadherin methylation was 84% in 31 samples and that
immunohistology suggested that E-cadherin protein expression
levels were significantly lower in methylated samples than in non-
methylated samples. This was also confirmed in a study by Si et al.
(2001) The hypermethylation rate was 80% in 20 specimens of ESCC.
In addition, Lee et al. (2008) retrospectively analysed the methylation
status of 251 cases of ESCC, and the E-cadherin detection rate reached
43%. Hypermethylation of the E-cadherin gene and integrin
alpha4 gene can be used as prognostic indicators related to
recurrence of stage I and II ESCC, respectively.

The process of DNA methylation is dependent on the function of
DNA methylation enzymes (DNMTs). DNMTs are aberrantly
expressed in a variety of diseases, and their expression is
particularly elevated in many malignancies. DNMT1 is one of the
most extensively studied isoforms of the DNMT family and is the most
abundant methyltransferase in human cells. It maintains DNA
methylation, and its aberrant expression destabilizes the genome,
playing an important role in the development and progression of
many diseases (Fu et al., 2022). Seiji et al. observed the effect on drug-
induced squamous carcinoma of the tongue and oesophagus in mice

Frontiers in Genetics frontiersin.org02

Liu et al. 10.3389/fgene.2022.1087479

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1087479


by shaping the DNA hypomethylation state using the DNMT1 allele.
Their results showed that the DNA hypomethylation state
significantly inhibited squamous carcinogenesis of the tongue and
oesophagus (Baba et al., 2009). Similarly, only 5% black raspberries
significantly inhibited drug-induced ESCC in mice. They also further
confirmed that this inhibition was associated with reduced mRNA
levels of DNMT1 and DNMT3b (Huang C et al., 2016). In addition,
some miRNAs, as well as the combined regulatory mechanism of
LncRNA and DNMT1, have been suggested as novel mechanisms for
the development of esophageal carcinogenesis (Li et al., 2014; Zeng W
et al., 2019).

Methylenetetrahydrofolate reductase (MTHFR) is the rate-
limiting enzyme that regulates the metabolism of folate and
methionine. It can reduce 5,10-methylenetetrahydrofolate to 5-
tetrahydrofolate, thus acting as an indirect donor of methyl groups
to participate in the synthesis of purines and pyrimidines and the
methylation of DNA, RNA, and proteins in vivo while maintaining
the effectiveness of the normal peer cysteine cycle in vivo and
ensuring the proper functioning of DNA synthesis and
methylation. Song et al. designed an experiment to investigate
the MTHFR gene polymorphism and the risk of ESCC in northern
China. The obtained results showed that genetic polymorphisms in
the MTHFR gene may be a predisposing factor for ESCC in an
experimental group of 240 patients with esophageal cancer and a
control group of 360 healthy individuals (Song et al., 2001). It has
also been demonstrated that aberrant DNA methylation in the
genetic polymorphisms of the P16, MGMT and hMLH1 genes and
MTHFR C677T in ESCC is significantly associated and is most
likely a promising biomarker for diagnosis and prognosis (Wang
et al., 2008).

In addition, GPX3, EYA4, PAX1, SOX1, ZNF582, SLC22A3,
and Polι, all of which were implicated in DNA methylation in
esophageal cancer, which in turn influenced the increase or
decrease in their expression, could be key factors in the
carcinogenesis of esophageal cancer (Lin et al., 2020; Wang H
et al., 2021). The details are shown in Table 1.

3 Histone modifications and esophageal
cancer

In the mammalian genome, histones can be modified in many
forms by the action of related enzymes, such as methylation,
acetylation, phosphorylation, adenylation, ubiquitination and ADP-
ribosylation, all of which affect the transcriptional activity of genes
(Audia and Campbell, 2016). Therefore, a proper understanding of the
role of histone modifications in the development of cancer is an
essential part of the process.

Furthermore, in addition to DNA methylation, histone
modification is also an important event in human esophageal
cancer pathology, and histone methylation and acetylation are also
important modes of gene expression regulation. Histone methylation
sites are mostly located on lysine and arginine residues of H3 and
H4 and are dynamically regulated by histone arginine
methyltransferases and lysine demethylases, which can regulate
gene expression and maintain chromatin structure at the
corresponding sites. Cao et al. (2020) used a whole methylome
view to map out the oncogenic factors of ESCC. The findings
revealed that 98% of CpG was methylated in the entire ESCC
genome and was enriched in the H3K9me3 and
H3K27me3 regions. Zhao et al. (2019) found that PRMT1 could
promote the transcriptional activation of downstream genes,
mainly by catalysing asymmetric demethylation of histone H4R3.
The mechanisms involved in the activation of Wnt/β-catenin and
Notch signalling pathways were further explored by RNA-Seq
transcriptome analysis. In addition, H3K9me3, H4K20me3 and
H3K36me3 have been suggested to be closely associated with
clinical features and are independent risk factors for patients with
esophageal cancer. Zhou et al. (2019) even further suggested that the
combination of the three expressions could be expected to further
enhance the assessment of prognosis and management of esophageal
cancer.

Histone acetylation is a reversible, biologically dynamic process
regulated by the dual regulation of histone acetyltransferase (HAT)

TABLE 1 Biomarkers of abnormal DNA methylation in esophageal carcinoma.

Name Function Methylation status Ref

p16 Involved in the regulation of cell cycle Hypermethylation status Li et al. (2011)

E-cadherin Involved in the regulation Epithelial-mesenchymal transition Hypermethylation status Ling et al. (2011)

DNMT1 Maintenance methylation enzymes Hypermethylation status Zeng W et al.
(2019)

MTHFR Involved in cell cycle regulation, DNA replication, DNA and protein methylation
modifications

Significantly associated with hypermethylation
status

Wang et al.
(2008)

GPX3 Abnormal expression in a variety of tumors Hypermethylation status He et al. (2011)

EYA4 Involved in apoptosis regulation, innate immunity, DNA damage repair, angiogenesis Hypermethylation status Luo et al. (2018)

PAX1 Involved in regulation of transcription, DNA dependence, promoter development Hypermethylation status Tang et al. (2019)

SOX1 Involved in establishing and maintaining chromatin structure, regulating transcription, DNA-
dependent

Hypermethylation status Tang et al. (2019)

ZNF582 Involved in transcriptional regulation Hypermethylation status Tang et al. (2019)

SLC22A3 Mediates potential-dependent transport of a variety of organic cations Hypermethylation status Xiong et al.
(2018)

Polι Involved in the translation and synthesis of DNA Hypomethylation state Zhou et al. (2012)
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and histone deacetyltransferase (HDAC). The dynamic balance of
acetylation and deacetylation also affects chromatin structure and
gene expression, selectively affecting the structure of chromatin
regions and thus gene expression. In addition, HAT and HDAC
play a crucial role in the regulation of chromatin function and cell
death, and their misregulation may be associated with the
development of certain tumours in humans, as demonstrated by
Toh et al. (2003) in a study of esophageal cancer. In addition,
histone acetylation has been considered a potential novel
chemotherapeutic target to inhibit cancer cell proliferation.
Inhibitors developed for this purpose are also considered to be
promising anticancer agents. Ahrens et al. (2015) showed that the
combination of HDAC inhibitors (HDACi) and azacytidine could
selectively target esophageal cancer by inducing DNA damage,
inhibiting cell viability, and inducing apoptosis. Hu et al. (2015)
first found that methylseleninic acid could induce acetylation of
histone H3 at Lys9, thereby inhibiting the growth of esophageal
cancer cells. The mechanism also involved the HAT/HDAC
interaction. In addition, aberrant histone modifications often
accompany and interact with DNA methylation, further
complicating the mechanisms of gene expression in tumour cells
(Chang et al., 2019). Based on immunohistochemistry and other
experiments, Tzao et al. (2006) found a high degree of
concordance between promoter methylation of the Fragile histidine
triad (FHIT) and aberrant expression of FHIT and acetylated H4, with
specific concordance rates of 75% and 81.7%, respectively.

Relatively speaking, histone methylation modifications are the
most stable and therefore best suited as stable epigenetic information,
while acetylation modifications have a higher dynamic. There are also
other unstable modifications, such as phosphorylation, adenylation,
ubiquitination and ADP-ribosylation, which are more flexible and can
affect the structure and function of chromatin and thus perform their
regulatory functions. The combinatorial variations between these
histone modifications are so numerous that histone covalent
modifications may be a more refined form of gene expression
(Strahl and Allis, 2000).

4 Non-coding RNA regulation and
esophageal cancer

In recent years, with the development of molecular biology, whole
genome sequencing analysis has identified an increasing number of
non-coding RNAs (ncRNAs) that play an important role in tumour
development, infiltration and metastasis (Anastasiadou et al., 2018).
There are two main categories of ncRNAs, structural ncRNAs, mainly
rRNA and tRNA. The other category is regulatory ncRNAs, which are
classified into small, medium, and long ncRNAs according to their
nucleotide length. Small ncRNAs are between 20 and 50 nucleotides in
length, with miRNAs and siRNAs being the most widely studied.
Medium ncRNAs are 50–200 nucleotides in length and include
snoRNA and snRNA. lncRNAs are greater than 200 nucleotides in
length. Studies have shown that lncRNAs play important roles in
many life activities, such as epigenetic regulation, cell cycle regulation
and cell differentiation regulation, and have become a hot spot in
genetic research (Bhan et al., 2017).

NcRNAs can act not only in the diagnosis of esophageal cancer but
also in the treatment and prognosis of esophageal cancer. Liu A et al.,
2017 used miR-455-3p antagonists and found that they could greatly

improve the sensitivity of chemotherapy in esophageal cancer. The
newly identified miR-99b/let-7e/miR-125a cluster also plays an
important role in tumour metastasis, and its overexpression
promotes the migration and invasion of esophageal cancer cells
in vitro and in vivo (Ma et al., 2017). miR-143 and miR-145 also
have the potential to act as common anticancer substances in
esophageal cancer (Wu et al., 2011). In addition, studies have
shown that miR-3656, -498, -32, -375 and -27b-3p can be used as
novel diagnostic and prognostic biomarkers for esophageal cancer and
have strong potential (Islam et al., 2017; Liu Y. T et al., 2019; Han et al.,
2020; Jin et al., 2021; Wu et al., 2021). In addition, lncRNAs have equal
potential; for example, Xue et al. (2022) used transcriptome analysis
and found that LINC00680 was highly expressed in esophageal cancer
and significantly correlated with tumour volume, stage and prognosis.
Further experiments revealed that inhibition of
LINC00680 expression could inhibit the proliferative properties of
esophageal cancer in vitro and in vivo to some extent. The mechanism
is mainly that LINC00680 can act as a ceRNA that can sponge miR-
423-5p, which in turn regulates the expression of p21-activated kinase
6 (PAK6) in esophageal cancer cells. The exosomal lncRNA
ZFAS1 can regulate STAT3 and miR-124 to promote the
proliferation, migration and invasion of esophageal cancer cells and
inhibit their apoptosis, which leads to tumour progression (Li et al.,
2019). The lncRNA MIR22HG has also been suggested as a novel
cancer prognostic biomarker acting through ceRNA (Zhang C et al.,
2020). Similarly, the lncRNAs NORAD, AGPG, DNM3OS, VESTAR,
IRF1-AS and LINC01554 have strong potential for application in the
diagnosis and treatment of esophageal cancer (Zhang B. X et al., 2019;
Huang et al., 2019; Liu Y et al., 2020; Wang Y et al., 2021; Jia et al.,
2021; Zheng et al., 2022) (Figure 1; Table 2).

5 Others

In addition to the abovementioned epigenetic modifications
involved in the progression of esophageal cancer, chromatin
remodelling and nucleosome localization are also involved in the
development of esophageal cancer as important epigenetic
mechanisms. Sung et al. (2015) analysed and examined the risk
assessment of epigenetic modifications and upper gastrointestinal
tract tumours using thousands of cases, and it is certain that

FIGURE 1
Some of the epigenetic modifications involved in esophageal
carcinoma, including DNA methylation, histone modifications and non-
coding RNA regulation. Of these, Me stands for methylation, and Ac
stands for acetylation.
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chromatin remodelling occupies an important place in cancer risk.
The SWI/SNF complex is an important chromatin remodelling factor,
and on this basis, Schallenberg et al. reported the loss of SWI/SNF
enzyme subunits in a large number of esophageal cancers. This reflects
the important role of chromatin remodelling in esophageal cancer. In
addition, nucleosome localization is an essential mechanism that
regulates transcription by inhibiting or facilitating the binding of
transcription factors. The stability of nucleosome localization may
even be considered a regulator of variation in germline mutation rates
in the human genome (Li and Luscombe, 2020). Currently, there is less
focus on the link between esophageal cancer and nucleosomes, but it is
no less an area of research with important implications for human
genetics and genome evolution.

6 Epigenetically linked pathways in
esophageal cancer

Cancer-related signalling pathways play a crucial role in regulating
cellular processes. Furthermore, epigenetic modifications, which are
currently a hot topic of research, still need to be investigated in depth.

Therefore, the study of the specific mechanisms and functions between
them will provide us with a deeper understanding of cancer-related
signalling pathways and provide valuable information for new drugs to
treat cancer.

PI3K/AKT/mTOR, as the star molecular pathway in cancer-
related pathways, has been found in various tumours, including
esophageal cancer. Huang et al. demonstrated that the PI3K/AKT/
mTOR signalling pathway is a potential therapeutic target for
ESCC by summarizing the extensive literature (Huang et al.,
2022). Luo et al. (2022) also confirmed this to a certain extent.
In addition, miR-18a can increase the expression of chylin D1 by
regulating the PTEN-PI3K-AKT-mTOR signalling axis, thus
promoting the proliferation of esophageal cancer Eca109 cells
(Zhang et al., 2016). miR-214, as a tumour promoter, targets
LZTS1 through the PI3K/AKT/mTOR signalling pathway to
promote the proliferation, migration, invasion and inhibition of
apoptosis of ESCC cells (Guanen et al., 2018). The dual PI3K-
HDAC inhibitor CUDC-907 inhibits the PI3K-AKT-mTOR
pathway, leading to the downregulation of LCN2 expression and
ultimately to the accumulation of ROS and the activation of
cytotoxic autophagy. In addition, consistent antitumor effects

TABLE 2 Biomarkers of ncRNAs in esophageal carcinoma.

ncRNAs Expression Mechanism Ref

lncRNA CASC9 Upregulated Interacts with CREB-binding proteins to upregulate LAMC2 expression and promote metastasis Liang et al. (2018)

LncRNA TUG1 Upregulated Regulation of the miR-1294/PLK1 axis, an oncogene for esophageal cancer Zong et al. (2020)

LncRNA ELFN1-AS1 Upregulated Acts as a ceRNA to promote progression by sponging miR-183-3p, which promotes GFPT1 expression Zhang H et al.
(2020)

LncRNA
FAM83A-AS1

Upregulated Exacerbation of malignant development through negative regulation of miR-495-3p Huang et al.
(2020)

LncRNA RPL34-AS1 Downregulated Inhibition of cell proliferation, migration and invasion by down-regulation of RPL34 expression Gong et al. (2019)

lncRNA ZFAS1 Upregulated Up-regulation of STAT3 and down-regulation of miR-124 promote cell proliferation, migration and invasion and
inhibit apoptosis

Li et al. (2019)

LncRNA SNHG7 Upregulated Regulates the expression of p15 and p16, partially contributing to development Xu L. J et al. (2018)

LncRNA linc00460 Upregulated Acts as a molecular sponge to adsorb miR-1224-5p, which promotes cell migration, invasion and EMT Cui et al. (2020)

LncRNA MIR22HG Downregulated Functions as ceRNA, participates in signaling pathways, interacts with proteins/miRNAs and acts as a host gene in
tumorigenesis and tumor progression

Zhang C et al.
(2020)

LncRNA EIF3J-AS1 Upregulated Demonstrates oncogenic properties by acting as a sponge for miR-373-3p to upregulate AKT1 mRNA levels Wei et al. (2020)

miR-485-5p Upregulated Significantly inhibits cell proliferation, migration and invasion Han et al. (2019)

miR-498 Downregulated Inhibition of autophagy and M2-like polarization of macrophages through MDM2/ATF3, leading to cancer
inhibition

Li et al. (2021)

miR-502 Upregulated Promotes phosphorylation of AKT signaling and regulates cell proliferation Xu J et al. (2018)

miR-493 Downregulated Inhibits c-JUN and p-PI3K/p-AKT activity, enhances p21, and directly regulates the expression and function of
Wnt5A

Bian et al. (2021)

miR-2053 Downregulated Upregulation of KIF3C expression and activation of PI3K/AKT signaling pathway involved in cell proliferation,
apoptosis, migration and invasion

Yao et al. (2021)

miR-183 Upregulated Regulation of PDCD4 expression, which acts as a carcinogen Yang et al. (2014)

miR-4885 Upregulated Binds to the 3′untranslated region of CTNNA2, reduces cell adhesion and promotes EMT Song et al. (2019)

miR-374a Upregulated Reduced expression and transcriptional activity of Axin2 and inhibition of cell proliferation Wang et al. (2015)

miR-483-5p Upregulated Targeted silencing of KCNQ1 as an oncogene promotes cell proliferation, migration and invasion Chen et al. (2020)

miR-10b Upregulated Targeting PPARγ to activate AKT/mTOR/P70S6K signaling and confer cisplatin resistance Wu K et al. (2020)
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have been demonstrated in xenograft mouse models (Jian et al.,
2022).

The MAPK/ERK pathway is one of the branches of the MAPK
pathway, which also includes JNK, p38/MAPK and ERK5. JNK, and
p38 have similar functions and are related to inflammation, apoptosis
and growth, while ERK is mainly responsible for cell growth and
differentiation. Zhang H et al. (2019) showed that miR-148a was
significantly downregulated in ESCC and predicted a poor prognosis
for patients. They further demonstrated that miR-148a directly targets
its target gene MAP3K9 and affects the ERK/MAPK pathway and
EMT-related pathways in ESCC, inhibiting cell proliferation and
invasion. Overexpression of miR-133b has also been shown to
target EGFR, thereby inhibiting the MAPK/ERK and PI3K/AKT
signalling pathways and suppressing cell proliferation, migration
and invasion (Zeng B et al., 2019). KISS-1, a tumour suppressor
mediated by promoter methylation, downregulates the expression of
phosphorylated ERK1/2 and MAPK to inhibit the metastasis of ESCC
cells by targeting the MMP2/9/ERK/p38 MAPK axis (Duan et al.,
2022).

The Wnt/β-catenin signalling pathway has been found to be
aberrantly activated in a variety of tumours. It has been
demonstrated that inhibition of Wnt/β-catenin signalling increases
the sensitivity of esophageal cancer cells to radiotherapy (Spitzner
et al., 2021). Cao et al. (2020) used a high-resolution multiomics
approach to map the epigenetic landscape of ESCC, suggesting that the
epigenetically mediated Wnt/β-catenin signalling pathway is a
potential oncogenic driver of ESCC. Li et al. (2010) found that
Wnt5A, which is often silenced by promoter methylation in ESCC,
could suppress tumours by antagonizing the Wnt/β-catenin pathway.
In addition, the epigenetic modifier PRDM5 was shown to act as a
tumour suppressor by regulating the Wnt/β-catenin signalling
pathway through a mechanism involving antagonism with aberrant
Wnt/β-catenin signalling and inhibition of oncogene expression (Shu
et al., 2011).

In addition, the NF-κB and JAK-STAT pathways are also involved.
Studies have shown that hypomethylation-induced PLCE1 can induce
angiogenesis and inhibit apoptosis through activation of the NF-κB
signalling pathway (Chen et al., 2019). miR-429 inhibits proliferation
in ESCC via the RAB23/NF-κB pathway (Wang S et al., 2020).
Similarly, JAK-STAT structural domain-enhanced MUC1-CAR-
T cells exhibit significant anti-esophageal cancer potential in vivo

(Zhang L et al., 2020). miR-193, on the other hand, is thought to enable
esophageal cancer cells to acquire cisplatin resistance by regulating the
cell cycle (Shi et al., 2020) (Figure 2).

7 Epigenetics in the treatment of
esophageal cancer

According to the latest cancer data, people are still under constant
threat from cancer. Cancer not only affects the patient but also has
economic and social implications. It is imperative for patients to
receive active and effective treatment. In addition, the choice of the
right treatment can also have a significant impact on a patient’s life
and health. In addition to surgery, radiotherapy and chemotherapy,
new immunotherapies and gene therapies are being actively developed
that can treat cancer by inhibiting and killing tumour cells either
directly or indirectly. Among these, epigenetics has emerged as a
research hotspot, and by virtue of its reversible response, a range of
epigenetic drugs have been developed, such as DNAmethyltransferase
inhibitors (DNMTi) and HDACi, to treat disease by altering DNA
methylation and histone modification patterns. Nutlin-3, as a DNMTi,
greatly improves the sensitivity of esophageal cancer to radiotherapy
(Chang et al., 2022). Ahrens et al. (2015) combined HDACi with
azacytidine to treat esophageal cancer cells and found that they could
modulate some of the novel candidate genes in esophageal cancer,
which may be effective in treating esophageal cancer. Bruyer et al.
(2018) combined the two and found them to be more beneficial for
patients at high risk of multiple myeloma. In addition, they have clear
therapeutic value in colorectal cancer, breast cancer and melanoma
(Raynal et al., 2017; Gonçalves et al., 2020; Grunewald et al., 2021).

To investigate the clinical value of epigenetic regulation in
esophageal cancer, Liu J et al. (2020) found that pretreatment of
esophageal cancer cells with decitabine, a DNMTi, reversed the
methylation of IGFBPL1, thereby regulating the PI3K-AKT
signalling pathway to inhibit esophageal cancer proliferation
in vitro and in vivo. Decitabine can also enhance the recognition of
esophageal cancer by T cells through upregulation of MAGE-A3
expression, which can contribute to further immunotherapy (Shi
et al., 2019). Low doses of decitabine also inhibited the invasive
ability of esophageal cancer cells (Liu et al., 2014). In addition, the
combination of decitabine and azacytidine also contributes to the

FIGURE 2
Esophageal cancer regulates cancer-related pathways through different epigenetic modifications.
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suppression of esophageal cancer activity (Ahrens et al., 2015).
Procaine, a non-nucleoside DNMTi, can inhibit the proliferation of
gastric cancer cells (Li et al., 2018) but has not been reported in
esophageal cancer. Another inhibitor derived from green tea,
(-)-epigallocatechin-3-gallate, can inhibit the proliferation of
esophageal cancer (Wang et al., 2019). In addition, it can also
inhibit esophageal cancer by promoting apoptosis and reversing
multidrug resistance (Liu L et al., 2017). HDACi is also featured in
epigenetic drug development, such as FK228, entinostat and
belinostat, which are in trials. Hoshino et al. (2005) found that
FK228 could activate peroxiredoxin 1 expression and regulate
histone acetylation in the promoter to achieve an anti-esophageal
cancer effect. This was confirmed by subsequent analysis of the gene
expression profile of esophageal cancer (Hoshino et al., 2007).
Entinostat has been demonstrated to overcome cisplatin resistance
in esophageal cancer cells by a mechanism involving the Src-Mcl-1-
MDR1 pathway (Huang et al., 2018), and it also induces DNA damage
and apoptosis in esophageal cancer (Feingold et al., 2018). In contrast,
Belinostat has been used to treat peripheral T-cell lymphoma
(O’Connor et al., 2015). It has not been reported in esophageal
cancer. Furthermore, there have been a number of clinical trials
that have further validated the efficacy of some of the
abovementioned drugs in the treatment of esophageal cancer
(NCT00423150, NCT01799083, NCT01386346, NCT02625623)
(Hochhauser et al., 2013; Schneider et al., 2017; Bang et al., 2018;
Chen et al., 2018). In addition, miRNAs are an important target for
epigenetic therapy. It has been shown that the development of
esophageal cancer can be inhibited by reducing the expression of
oncogenic miRNAs, increasing the expression of oncogenic miRNAs
and interfering with miRNA‒mRNA interactions (Sharma and
Sharma, 2015). In addition, because epigenetic abnormalities are
not single isolated events, they are interlinked with each other.
Hence, epigenetics-based combination therapeutic strategies may
also further improve the outcome of esophageal cancer treatment
(Nasir et al., 2020).

In addition to the epigenetic drugs that have been developed thus
far, some herbal active ingredients can also modulate epigenetic
modifications to achieve antitumor effects. Studies have shown that
resveratrol, a powerful alternative to antioxidants, inhibits a variety of
cancers (Rauf et al., 2018). Luteolin inhibits paclitaxel resistance in
esophageal cancer and synergistically inhibits the EMT process in
combination with low-dose paclitaxel, thereby inducing apoptosis in
esophageal cancer in vitro and in vivo (Zhao Y et al., 2021; Qin et al.,
2021). In addition, apigenin, icaritin, oridonin, berberine and
curcumin have all been shown to have anti-esophageal cancer
efficacy (Jiang et al., 2017; Han et al., 2018; Jiang et al., 2019;
Kwiecien et al., 2019; Qiu et al., 2019). The modulation of
epigenetic modifications by traditional Chinese medicine (TCM)
partially explains the antitumor mechanism of TCM and may not
be the only mechanism to be further investigated.

8 Epigenetics in the prognosis of
esophageal cancer

The formation of cancer requires a combination of factors,
including abnormal genetic alterations, including the activation of
proto-oncogenes, inactivation of oncogenes, accumulation of multiple
genetic abnormalities, and involvement of pathogenic factors,

ultimately leading to the formation of cancer. The treatment of
cancer mostly adopts a combination of surgery, chemotherapy, and
radiotherapy and can be combined with targeted therapy and
biological therapy if needed to improve the prognosis. Cancer has
long been one of the most important diseases threatening human life
and health. Early-stage patients may be cured with timely and effective
treatment, while patients in the middle and late stages are more
difficult to cure, with high recurrence and metastasis rates, but
active treatment can delay the progression of the disease and
improve survival rates. Epigenetic modifications are widely
involved in the development of tumour diseases and have played
an important role in the early diagnosis, prognosis evaluation and
development of therapeutic drugs in recent years.

DNA methylation was one of the first epigenetic modifications to
be identified and the most intensively studied to date. In clinical
applications, the detection of methylation of specific genes in serum,
urine, or tissue fluids for early diagnosis of disease has the advantage of
being convenient, rapid, and non-invasive and is also highly specific
and sensitive. Xi et al. (2022) confirmed the important role of aberrant
DNA methylation in the development and progression of esophageal
cancer by comparing 91 genome-wide methylation sites in esophageal
cancer and adjacent normal tissues that matched them, laying the
foundation for the future development of non-invasive cancer
detection methods for targeted methylation testing. Talukdar et al.
(2021) studied cases of esophageal cancer from nine high incidence
countries in Africa, Asia and South America, focusing on aberrant
DNAmethylation in them, suggesting that it could serve as a potential
tumour-specific marker for esophageal cancer for prognosis and even
treatment. In another study, hypermethylation of the promoter region
of the APC gene was observed in 48 of 52 patients with esophageal
adenocarcinoma and in 16 of 32 patients with squamous esophageal
carcinoma, with methylation rates of approximately 92% and 50%,
respectively. Hypermethylated APC DNA was also detected in patient
plasma and was significantly associated with patient survival.
Kawakami et al. (2000) suggested that this may be a strong
prognostic marker for esophageal cancer. Smoking and alcohol
consumption are risk factors for esophageal cancer, which can
induce methylation changes and are involved in cancer-related
pathways through multiple pathways and genes. The
characterization of the DNA methylome will help to better
understand its mechanisms and improve its prognosis (Ma et al.,
2016).

Histone modifications mainly include methylation, acetylation,
phosphorylation, adenylation, ubiquitination, glycosylation and the
recently discovered lactation. Recently, researchers have proposed the
use of global patterns of histone modifications as predictors of
outcome in cancer patients. Zhao et al. performed a retrospective
clinicopathological analysis of 97 patients with ESCC recovering from
oesophagectomy and evaluated five histone modification markers,
including H3K18Ac, H4K12Ac, H4R3diMe, H3 K4diMe and
H3K27triMe. The obtained results revealed that low expression of
H3K18Ac and H3K27triMe was associated with better prognosis in
patients with ESCC, especially in early-stage patients (Tzao et al.,
2009). In addition, Zhang et al. (2022) investigated five digestive
cancers, including esophageal, gastric, hepatocellular, pancreatic
and colorectal cancers, by systematically examining 13 HAT and
18 HDAC genes. As a result, histone acetylation was found to be a
key regulatory molecule in digestive cancer. Moreover, H3K4me3,
EP300, H3K9me3, H3K36me3 and H4K20me3 were all closely
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associated with the prognosis of esophageal cancer (Bi et al., 2019;
Zhou et al., 2019; Ye et al., 2020). Furthermore, there are countless
studies on the prognostic impact of non-coding RNAs on esophageal
cancer. As confirmed by a recent multicentre prospective study, the
detection of tsRNA in patients’ salivary exosomes can effectively
distinguish patients with esophageal cancer from normal subjects
with a specificity of 94.2% and can be used as a novel prognostic
marker for esophageal cancer (Li et al., 2022). In addition, a prognostic
model of esophageal adenocarcinoma risk based on miR-4521, miR-
3682-3p and miR-1269a verified that miRNA target genes are
significantly associated with immune infiltration, tumour
microenvironment, cancer stemness properties and tumour
mutational load in esophageal adenocarcinoma (Zhao J et al.,
2021). Other prognostic factors regarding esophageal cancer
include MALAT1, miR-21, miR-375 and miR-203 (Fu et al., 2014;
Huang Y W et al., 2016; Wang Y et al., 2020) (Figure 3).

9 Discussion and prospects

Currently, the number of deaths due to cancer continues to
increase with each passing year. Esophageal cancer, one of the
most prevalent cancers of the digestive system, remains a
challenge for mankind. Among the many cancer treatments
available, the side effects of conventional treatment are mainly
damaging to normal cells, which largely limits the application of
some treatments. As research into molecular mechanisms
progresses, researchers have been pursuing novel drugs with
low toxicity and high specificity. Therefore, the development of
new drugs with more targeting, better efficacy, fewer side effects
and significantly lower cost will become a hot research topic in
anticancer therapy. Based on this, the discovery of epigenetics
provides an attractive target for the treatment of esophageal
cancer and has received widespread attention from scholars at
both national and international levels. DNA methylation is
currently a relatively well-studied mechanism in epigenetics,
but its mechanisms are still in the exploratory stage.
Meanwhile, epigenetic modifications such as DNA methylation,
histone modifications, non-coding RNAs and nucleosome
localization are not independent of each other but often have

synergistic effects, and their relationships need to be further
investigated. This will help us to better understand and
manipulate the epigenetic system and provide new perspectives
for human disease prevention and control research.

Additionally, with the introduction of precision medicine
services, new ways to prevent and diagnose cancer and
accelerate the arrival of a new era of precision medicine are
expected. With this aim, the construction of more non-coding
RNA-related diagnostic and predictive models in esophageal
cancer could help to provide new opportunities for the
prevention and treatment of esophageal cancer (Zhao Y et al.,
2021; Weidle and Birzele, 2022). Of note, some important
breakthroughs have been made in the field of epigenetic
regulation, including the development of epigenetic drugs.
With a greater understanding of gene transcription, various
epigenetic drugs have been developed and successfully applied
in the treatment of cancer. Most notably, DNMTi- and HDACi-
based drugs have been developed, which can be used not only
alone but also in combination with antitumor drugs, improving
their efficacy while largely reducing the toxic side effects of
antitumor drugs. For example, the DNMTi 5-aza-2′-
deoxycytidine combined with the antitumor effects of PD-1/
PD-L1 provides a more effective immune response and clinical
benefit for patients with esophageal cancer (Wu Y et al., 2020).
The combination of 5-aza-2′-deoxycytidine with cisplatin, one of
the conventional chemotherapeutic agents, also brings better
therapeutic results (Cao et al., 2017). The drugs developed thus
far, although showing promising advantages, still have toxic
effects, such as bone marrow suppression and possible
activation of oncogenes, which need further study.

As mentioned above, although a number of approved
inhibitors targeting epigenetically modified enzymes have been
developed and some are already in clinical trials, these advances
suggest the great potential of epigenetic modifications in cancer
therapy. However, as further thought and practice suggests,
epigenetic modifications regulate cancer development not only
in a single way but also in a synergistic way. The use of a single
inhibitor alone is not sufficient to fundamentally alter the
outcome of cancer patients, and the side effects cannot be
avoided. Epigenetic modifications are reversible in nature,

FIGURE 3
Esophageal Carcinoma being a cancer with poor prognosis, the addition of epigenetic mechanisms facilitates the early diagnosis, prognostic evaluation
and therapeutic drug development aspects of the tumor.
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which may provide new ideas and targets for the prevention and
treatment of esophageal cancer. Further research is needed to
identify the exact efficacy and adverse effects of currently
developed targeted drugs, and the existence of different
pathogenesis mechanisms due to different regions or individual
differences in esophageal cancer also requires further rational
drug screening. In addition, the development of esophageal
cancer is inextricably linked to environmental influences. All
these factors add to the impediments to the translation of basic
research into the clinical treatment of esophageal cancer. In fact,
cancer treatment is a complex process, and it is difficult to achieve
good results with one treatment alone; cancer treatment requires a
combination of therapies to achieve the final victory in the battle
against cancer.

Taken together, abnormal epigenetic alterations not only
provide new opportunities for the diagnosis of tumours but also
new strategies for their treatment. With further research on the
relationship between epigenetics and esophageal cancer, epigenetic
modifications are involved in the development of esophageal
cancer through the regulation of various genes and signalling
pathways, which also provides a more complete theoretical basis
for the development of tumour epigenetic markers and antitumor
epigenetic drugs. Based on this, the search for more precise
molecular markers to serve the personalized characteristics of
esophageal cancer and provide more reasonable treatment plans
for each patient is the future direction of precision medicine, and
the exciting performance of epigenetics in esophageal cancer is the
cornerstone towards precision medicine.
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