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Essential proteins play important roles in the development and survival of

organisms whose mutations are proven to be the drivers of common

internal diseases having higher prevalence rates. Due to high costs of

traditional biological experiments, an improved Transfer Neural Network

(TNN) was designed to extract raw features from multiple biological

information of proteins first, and then, based on the newly-constructed

Transfer Neural Network, a novel computational model called TNNM was

designed to infer essential proteins in this paper. Different from traditional

Markov chain, since Transfer Neural Network adopted the gradient descent

algorithm to automatically obtain the transition probability matrix, the

prediction accuracy of TNNM was greatly improved. Moreover, additional

antecedent memory coefficient and bias term were introduced in Transfer

Neural Network, which further enhanced both the robustness and the non-

linear expression ability of TNNM as well. Finally, in order to evaluate the

identification performance of TNNM, intensive experiments have been

executed based on two well-known public databases separately, and

experimental results show that TNNM can achieve better performance than

representative state-of-the-art prediction models in terms of both predictive

accuracies and decline rate of accuracies. Therefore, TNNM may play an

important role in key protein prediction in the future.
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1 Introduction

Essential proteins refer to proteins that removal of them will lead to cell death or

infertility (Acencio and Lemke, 2009). Identification of essential proteins can help us

understand the basic requirements for maintaining life forms. However, considering that

it is very costly and time-consuming to identify essential proteins by adopting traditional

biological experimental techniques such as gene knock-out (Maliackal et al., 2005), RNA

interference (Jeong et al., 2001) and conditional knockout (Hahn and Kern, 2005), more
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and more computational models have been proposed to infer

essential proteins in recent years based on the topological

characteristics of Protein-Protein Interaction (PPI) networks,

in which, proteins are the vertices of PPI networks, while the

interactions between proteins constitute the edges. Researches

demonstrated that the topological position of a protein in the

protein network has a strong correlation with whether the

protein is critical (Jeong et al., 2001; Maslov and Sneppen,

2002; Pržulj et al., 2004). Based on the topological

characteristics of proteins in PPI networks, a series of

essential protein recognition methods have been proposed.

For instance, based on the centrality of PPI networks

(Stephenson and Zelen, 1989; Jeong et al., 2001), different

computational models including CC (Closeness Centrality)

(Stefan and Stadler, 2003), DC (Degree Centrality) (Hahn and

Kern, 2005), BC (Between Centrality) (Wang et al., 2012), SC

(Graph Centrality) (Maliackal et al., 2005) and NC (Neighbor

Centrality) (Wang et al., 2012) have been proposed in succession.

In addition, Li M et al. designed a recognition model named LAC

(Li et al., 2011) to detect essential proteins (Li et al., 2015) based

on the local average connectivity of protein nodes in the PPI

network. Qi Yi et al. (Qi and Luo, 2016) introduced a prediction

model based on the local interaction density (LID) of protein

nodes in the PPI network to infer essential proteins. Chen B et al.

(Chen and Wu, 2013) proposed an essential protein recognition

method based on multiple topological features of the PPI

network. In all these above methods, only topological

characteristics of the PPI network were considered to identify

essential proteins, however, since there is a large amount of noise

data in PPI networks, then the predictive accuracy of these

methods is not very satisfactory.

In order to break through the inherent limitations of existing

PPI data, in the past few years, people proposed novel models by

combining the topological characteristics of PPI networks with

biological information of proteins. For example, M Li et al. and

Xiwei Tang et al. put forward prediction models called Pec (Li

et al., 2012) and WDC (Tang et al., 2014) by integrating PPI

network and gene expression data of proteins respectively. W

Peng et al. designed a prediction model (Peng et al., 2012) by

integrating protein homology information with PPI networks,

and a prediction model (Peng et al., 2015) through combining

protein domain information with PPI network, simultaneously. X

Zhang et al. (Zhang et al., 2013) introduced a recognition method

called CoEWC by merging topological characteristics of the PPI

network with the co expression characteristics of proteins. BH

Zhao et al. designed a prediction model named POEM (Zhao

et al., 2014) by combining gene expression data of proteins with

the topological characteristics of PPI networks. J Luo et al.

proposed a identification method based on local interaction

density of PPI networks and biological characteristics of

protein complexes (Jiawei et al., 2015). Seketoulie Keretsu

et al. presented a protein complex recognition model (Li et al.,

2015) based on clustering weighted edges and gene expression

profile of proteins. M Li et al. designed two essential protein

recognitionmethods by combining PPI networks with subcellular

location information and complex centrality of proteins

respectively (Keretsu and Sarmah, 2016; Li et al., 2017; Chen

et al., 2020). J Luo et al. introduced a prediction method ECC

(edge clustering coefficient) based on the complex co expression

data of proteins and PPI networks (Luo and Wu, 2015). Bihai

Zhao et al. proposed a model based on multiple biological

networks (Zhao et al., 2020a) and a model based on diffusion

distance network (Zhao et al., 2020b) to predict essential proteins

respectively. S. Li et al. designed an iterative method called CVIM

(Li et al., 2020) based on topological and functional characteristics

of proteins to predict key proteins. Lei X et al. proposed a

necessary protein prediction method AFSOEP (Lei et al., 2018)

to infer protein complexes through AFSO (Artificial Fish Swarm

Optimization). BH Zhao et al. designed an iterative method to

identify potential essential proteins (Zhao et al., 2019) based on

heterogeneous PPI networks. Dai W et al. proposed a method to

discover key genes based on protein-protein interaction network

embedding (Dai et al., 2020). Fengyu Zhang et al. predicted the

key gene (Zhang et al., 2019) by fusing the dynamic PPI network.

Chen Z et al. proposed an essential protein prediction model

NPRI based on heterogeneous network, and established

heterogeneous protein domain network (Chen et al., 2020)

according to initial PPI network, protein domain network and

gene expression data.

All these above methods show that the identification

accuracy of models can be significantly improved by

combining biological information of proteins with topological

features of PPI networks. However, through analyzing results

achieved by these existing methods, it is not difficult to find that

the prediction accuracies of these algorithms decline fast with the

increasing of predicted essential proteins. Hence, inspired by

recognition models based on the Markov chain and the Transfer

algorithm, we designed a new neural network called TNN in this

manuscript, based on which, a novel model named TNNM was

proposed to predict essential proteins. TNN can be divided into

three parts, namely, probability transfer matrix, antecedent

output and bias term. In addition, in order to evaluate the

performance of TNNM, we compared it with existing

representative models such as IC (Stephenson and Zelen,

1989), DC (Hahn and Kern, 2005), SC (Maliackal et al.,

2005), NC (Wang et al., 2012), PeC (Li et al., 2012), ION

(Peng et al., 2012), CoEWC (Zhang et al., 2013), POEM

(Zhao et al., 2014), CVIM (Li et al., 2020), NPRI (Chen et al.,

2020) and RWHN (Zhao et al., 2014) separately. Experimental

results show that TNNM is far superior to these traditional

models in terms of both predictive accuracy and decline rate

of accuracy.

The rest of this paper is organized as follows: The

experimental data and specific steps are organized in Section

2. In Section 3, the influence of parameters and comparison with

other methods are shown. Section 4 describes the shortcomings
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of the model and future improvement goals. Finally, a summary

is made in Part 5.

2 Method and materials

The flow chart of TNNM is shown in Figure 1. Through

observing Figure 1, it is easy to see that TNNM consists of the

following three major parts. Firstly, based on prior knowledge,

topological features and biological features of each protein will be

extracted from PPI networks, gene expression data, subcellular

localization and ortholog data of proteins separately. And then,

the Transfer Neural Network (TNN) will be designed. Finally,

through adopting TNN, the prediction model TNNM will be

constructed to infer essential proteins based on these newly

extracted features.

2.1 Experimental data

In order to evaluate the prediction performance of TNNM,

during experiments, we first downloaded known PPIs from

different benchmark databases such as DIP 2010 (Xenarios

et al., 2002) and Gavin (Gavin et al., 2006) respectively. After

preprocessing, a dataset containing 5093 proteins and

24,743 known PPIs was finally obtained from the

DIP2010 database, and a dataset containing 1855 proteins and

7669 known PPIs was obtained from the Gavin database. In

addition, based on databases including MIPS (Mewes et al.,

2006), SGD (Cherry et al., 1998), DEG (Zhang and Lin, 2009)

and SGDP (StanfordMedicine, 2012), a benchmark dataset

containing 1285 essential proteins was constructed, based on

which, 1167 and 714 essential proteins were screened from the

DIP2010 and Gavin databases respectively. Moreover, based on

the dataset provided by Tu BP et al. (Tu et al., 2005), a dataset

containing the gene expression data of 6776 proteins was

obtained, which consists of the gene expression level data of

proteins in the continuous metabolic cycle. Simultaneously, the

homologous information of proteins was downloaded from the

Inparanoid database (seventh edition), including paired

comparison (Gabriel et al., 2010) between 100 whole genomes,

and the number of times that proteins have homologous

information in the reference organism. Finally, we

downloaded the dataset containing subcellular localization

information of proteins from the COMPART-MENTS

database (Binder et al., 2014) (2014 version), and retained

only 11 types of subcellular localization data closely related to

essential proteins, such as cytoplasm, cytoskeleton, Golgi

apparatus, cytoplasm, vacuoles, mitochondria, endosomes,

plasma, nucleus, peroxisomes and extracellular enzymes, etc.

Based on above newly-downloaded datasets, firstly, we

constructed an original PPI network. And then, through

combining with the existing complex network topological

features including degree centrality, closeness centrality, node

betweenness centrality and edge betweenness centrality, some

new important protein topological features are extracted from

the PPI network, including the degree of contact between the

protein node and the neighborhood nodes, the importance of the

protein node relative to the total distance, and the importance of

the protein node relative to the carrying capacity.

FIGURE 1
Flowchart of TNNM.
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Simultaneously, we would further extract some biological

features for proteins, including the importance of protein

node relative to the Pearson correlation coefficient, the

importance of protein node relative to the subcellular

locations, and the importance of protein node relative to the

homologous information, from multiple biological information

existed in above newly-downloaded datasets.

2.2 Topological feature extraction

Let the undirected graph G � (V, E) represent the original

PPI network formed by a dataset downloaded from any given

base database, V � p1, p2,/, pN{ } denote the set of different

proteins in the downloaded dataset, then, for any two given

proteins pi and pj in V, we define that there is an edge e(pi, pj)
between pi and pj, if and only if there is a known interaction

between them. And for convenience, we define that E �
e(pi, pj)|pi, pj ∈ V{ } represents the set of edges in G. Hence,

we can obtain the adjacency matrix A � [aij]N×N corresponding

to G as follows: if there is e(pi, pj) ∈ E, then there is aij � 1,

otherwise there is aij � 0.

For any given protein p ∈ V in G, let N(P) be the set of

neighboring nodes of p, then we have:

N p( ) � q
∣∣∣∣q ∈ V, e p, q( ) ∈ E{ } (1)

Based on above formula (1), we define that the degree of

contact between p and its neighboring nodes as follows:

TF1 p( ) � ∑q∈Ng p( )Tris p, q( )
N p( )∣∣∣∣ ∣∣∣∣ (2)

Here, |N(p)| represents the number of elements in N(p), and
Tris(p, q) denotes the number of common neighbors of p and q,

which can be calculated as follows:

Tris p, q( ) �
N p( ) ∩ Ng q( )∣∣∣∣ ∣∣∣∣

min N p( )∣∣∣∣ ∣∣∣∣, N q( )∣∣∣∣ ∣∣∣∣{ }, p ∈ N q( ), q ∈ N p( )
0, otherwise

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(3)

Here, |N(p)∩N(q)| represents the number of elements in

N(p)∩N(q).
It is reasonable to consume that the smaller the total distance

between a protein and all other proteins, the more important the

protein will be. Hence, let l (p, q) denote the length of the shortest

path from protein p to the protein q in G, if there is no path

between p and q in G, then we define the length of the shortest

path between p and q is a constant number N (>1). Therefore, we
can calculate the importance of p related to the total distance as

follows:

TF2 p( ) � N − 1
∑q∈Vl p, q( ) (4)

Moreover, it is also reasonable to assume that the more

important a protein p is, the more proteins that have the shortest

path through p. This indicator reflects the carrying capacity of p

between other nodes in G. it is obvious that the larger the value,

the greater the impact of p in the network, which also means that

pwill be more important. Hence, we can calculate the importance

of p related to the carrying capacity as follows:

TF3 p( ) � ∑
p≠q≠q′∈V

kqq′ p( )
kqq′

(5)

Here, kqq’ represents the number of shortest paths between q and

q′ in G, and kqq′p) denotes the number of shortest paths between

q and q′ in G, which pass through p.

2.3 Biological feature extraction

Let ge (p, t) represent the gene expression value of the protein

p at the time point t, ge(p) denote the average expression level of

p at all n time points, and σ(p) be the standard variance of the

gene expression level of p at all n time points, then we can

calculate the Pearson correlation coefficient between p and q as

follows:

PCC p, q( ) � 1
n − 1

∑n
t�1

ge p, t( ) − ge p( )
σ p( )[ ] ge q, t( ) − ge q( )

σ q( )[ ]
(6)

Based on above formula (6), we can calculate the importance

of p related to the Pearson correlation coefficient as follows:

BF1 p( ) � ∑
q∈Ng p( )PCC p, q( ) (7)

It is reasonable to consume that essential proteins tend to be

connected rather than independent. Therefore, we can believe

that proteins closely related to essential proteins are more likely

to be essential proteins. Thus, we can obtain another importance

indicator of p as follows:

BF2 p( ) � ∑q∈Ng p( )Bsub p, q( )
Ng p( )∣∣∣∣ ∣∣∣∣ (8)

Where Bsub(p, q) can be obtained as follows:

Bsub p, q( ) � Sub p( ) ∩ Sub q( )∣∣∣∣ ∣∣∣∣
Sub p( ) ∪ Sub q( )∣∣∣∣ ∣∣∣∣ + 1

(9)

Here, Sub(p) represents the set of subcellular locations of the

protein p, |Sub(p)∩Sub(q)| denotes the number of elements in

Sub(p)∩Sub(q), and |Sub(p)∪Sub(q)| is the number of elements in

Sub(p)∪Sub(q).
Moreover, based on the reasonable assumption that the

evolution of essential proteins is more conservative than that

of non-essential proteins, and considering that the homologous

information of proteins can objectively reflect the degree of
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FIGURE 2
Comparison between TNNM and 11 competitive methods based on the DIP 2010. (A) The number of key proteins in the top 1% candidate
proteins. (B) Number of key proteins in the top 5% candidate proteins. (C) Number of key proteins in the top 10% candidate proteins. (D) Number of
key proteins in the top 15% candidate proteins. (E) Number of key proteins in the top 20% candidate proteins. (F) Number of key proteins in the top
25% candidate proteins. In above figures, the number in parentheses represents the number of proteins in each interval.
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evolutionary conservatism of proteins, letOs(p) denote the value
of homologous score of p, then it is obvious that the higher the

value of Os(p), the more conservative the evolution of p will be,

i.e., the more important the protein p will be. Thus calculate the

importance of p related to the homologous information as

follows:

BF3 p( ) � Os p( )
max
q∈V Os q( ){ } (10)

2.4 Construction of the TNN

A Markov chain is a stochastic process, whose characteristic

can be summarized as “the future depends on the past only

through the present”, that is, the probability distribution of the

next state can only be determined by the current state, and the

events before it in the time series are independent of it. In a

Markov chain, let Tn denote the state space at time step n, and Q

represent the transition probability matrix, then there is:

Tn+1 � QTn (11)

Due to strong predictive ability, Markov chains have been

widely used in natural language processing, multivariate factor

analysis, time series prediction and other fields. Inspired by the

idea of Markov chains, in this manuscript, we designed a novel

Transfer Neural Network called TNN, whose destination is being

able to learn inherent feature representations from input data just

like a Markov chain. In TNN, we introduced three main

parameters such as the transition probability matrix W, the

antecedent memory coefficient α with value between 0 and 1,

and a bias term b. Let Xi denote the input data of the ith layer in

TNN, then similar to the principle of Markov chains, we define

its output Xi+1 as follows:

Xi+1 � α*W*Xi + 1 − α( )*Xi + b (12)

In the training process, TNN will adopt the gradient

descent algorithm to optimize all parameters including W,

α and b in above Eq. 12, and can automatically find a set of

optimal values for all these parameters. Thereafter, in the

comparative experiments, through a series of complex

calculations performed by itself and previous layers in

TNNM based on these optimized parameters, TNN is able

to assign larger weight values to more important features of

proteins, and extract the most important features of proteins

from the input data of TNNM, thus achieving satisfactory

feature enhancement.

2.5 Construction of TNNM

Firstly, as illustrated in Figure 1, let X0 �
[X0(p1), X0(p2), . . . , X0(pN)]T denote the input data of the

input layer in TNNM, then for any given protein pi ∈ V, there is:

X0 pi( ) � < TF1 pi( ) TF2 pi( ) TF3 pi( ) BF1 pi( ) BF2 pi( ) BF3 pi( ) >
(13)

Secondly, considering thatX0 is aN × 6 dimensional matrix,

during experiments, we set the input and output dimensions of

the first Linear layer in TNNM as six and 8 separately.

Thirdly, in the ReLU layer of TNNM, we adopt the following

activation function:

Xi
jk � Xi−1

jk : if Xi−1
jk > 0

0: otherwise
{ (14)

Here, Xi
jk denotes the element in the jth row and kth column of

Xi. And Xi and Xi−1 represent the input and output data of the

ReLU layer respectively.

Moreover, in order to solve the problem of over fitting and

reduce the training time of TNNM, we introduced two Dropout

layers before and after the TNN layer. When each round of samples

is inputted into TNNM for training, a probability p will be set in the

Dropout layer so that each neuron will participate in training with

the probability 1-p, that is, each neuron has a probability p of death.

During experiments, we will set 0.7 to p in this manuscript.

Next, in the TNN layer, it is obvious that its input data is a

N × 8 dimensional matrix, and for each protein, an 8-

dimensional feature vector will be extracted by TNN as its

output. Hence, in the second Linear layer of TNNM, we will

set its input and output dimensions as eight and six respectively.

Finally, in order to estimate the criticality of proteins, we will

set the input and output dimensions of the last Linear layer in

TNNM as six and 1 separately, that is, TNNM will output 0 or

1 as its final predicted score.

Especially, in each Linear layer of TNNM, we will adopt the

following Linear function:

Xi+1 � XiW′ + b (15)

TABLE 1 Values of K in different database.

PPI database N 3 days K N/K N/K > 3 days

DIP2010 5093 18 9 565.89 True

Gavin 1855 18 8 231.88 True

From observing above table 1, it is easy to see that the value of K shall be nine on the DIP2010 database and eight on the Gavin database.
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Here,W′ is a matrix withm rows and n columns, wherem and n

denote the dimensions of input and output data of the Linear

layer respectively. For instance, it is obvious that in these three

Linear layers of TNNM, the dimensions of matrixW′ will be 6 ×
8, 8 × 6 and 6 × 1 respectively. And additionally, Xi+1 and Xi

represent the input and output data of the Linear layer

respectively.

2.6 Identification algorithm based on
TNNM

Based on above description, we can present the identification

algorithm based on TNNM as follows:

Step1: Based on the datasets of known PPIs downloaded from

well-known public databases, constructing the original PPI

network G and the corresponding adjacency matrix A.

Step2: According to Eqs. 2 and 4, 5, extracting three kinds of

important topological features for proteins from G respectively.

Step3: According to Eqs. 7, 8 and 10, extracting three kinds of

important biological features for proteins separately.

Step4: According to methods proposed in section 2.4 and

section 2.5, constructing the TNN based identification model

TNNM first, and then, obtaining the predicted criticality scores

for proteins through taking the matrixX0 computed by Eq. 13 as

the input data of TNNM.

3 Experimental results and analysis

During experiments, we will first divide the dataset of

downloaded known PPI data into K subsets of proteins with

the same size and proportion according to the proportion of

essential proteins and non-essential proteins. And then, the

K-fold cross validation will be adopted to evaluate the

prediction performance of TNNM in this section.

3.1 Value selection of the parameter K

According to known results (Jung, 2017), the parameter K

shall satisfy K ≈ log(N) and N/K > 3 days, where d is the number

of extracted features. Hence, we can obtain the possible values of

K as the following Table 1.

3.2 Comparison with representative
methods

In this section, TNNM will be compared with 11 advanced

competitive methods based on the DIP2010 database. Figure 2

shows the comparison results of the numbers of real essential

proteins identified by TNNM and 11 recognition methods based

on the DIP2010 database. During experiments, proteins will be

sorted first in descending order according to predicted scores

calculated by each competing methods, such as DC, IC, NC, SC,

Pec, POME, CoEWC, ION, CVIM, NPRI, RWHN and TNNM.

And then, we will select the top 1%, 5%, 10%, 15%, 20% and 25%

proteins as candidate essential proteins. Finally, by comparing with

the downloaded dataset of known essential proteins, the number of

real essential proteins in the candidate essential proteins identified

by each method will be calculated, and used to compare and

evaluate the recognition ability of essential proteins of different

methods.

FIGURE 3
Comparison results between TNNM and 11 competitive methods based on the jackknife method and the DIP2010 database. (A) Shows
comparison results between BC, CC, DC, IC, NC, SC and TNNM, and (B) shows comparison results between Pec, CoEWC, POEM, ION, CVIM and
TNNM. The X-axis represents the number of potential essential proteins predicted by eachmethod, while the Y-axis represents the cumulative count
of real essential proteins.
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FIGURE 4
Performance comparison of TNNMby adopting TNN and six representative neural networks based on the DIP2010 database. (A) The number of
essential proteins in the top 1% candidate proteins. (B) The number of essential proteins in the top 5% candidate proteins. (C) The number of essential
proteins in the top 10% candidate proteins. (D) The number of essential proteins in the top 15% candidate proteins. (E) The number of essential
proteins in the top 20% candidate proteins. (F) The number of essential proteins in the top 25% candidate proteins. In above figures, the number
in parentheses represents the number of proteins in each interval.
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FIGURE 5
Performance comparison between TNNM and 11 competitive algorithms based on the Gavin database. (A) The number of essential proteins in
the top 1% candidate proteins. (B) The number of essential proteins in the top 5% candidate proteins. (C) The number of essential proteins in the top
10% candidate proteins. (D) The number of essential proteins in the top 15% candidate proteins. (E) The number of essential proteins in the top 20%
candidate proteins. (F) The number of essential proteins in the top 25% candidate proteins. In above figures, the number in parentheses
represents the number of proteins in each interval.
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From observing Figure 2, it is easy to know that TNNM

outperforms all these competitive state-of-the-art prediction

methods significantly based on the experimental results on

DIP2010 database. And especially, among the top 1%, top 5%,

and top 10% candidate key proteins, TNNM can achieve

recognition accuracies of 96.07%, 99.21%, and 97.45%

separately, which are all higher than 97%. Besides, among the

top 15% and 20% candidate key proteins, the recognition

accuracy rates of TNNM are all higher than 94%. Even for

the top 25% candidate proteins, TNNM can maintain the

accuracy rate above 85%.

3.3 Evaluation based on the folding knife
curve

In this section, the Jackknife method (Holman et al., 2009) will

be used, based on the top 1000 candidate essential proteins predicted

on theDIP2010 database by TNNMand 11 competitivemethods, to

compare their performance in identifying essential proteins.

Comparison results are shown in Figure 3.

From Figure 3A and Figure 3B, it can be seen that with

the increasing of the number of predicted proteins, the gap in

term of essential protein recognition performance between

TNNM and these competitive methods will grow wider and

wider, which means that the prediction performance of

TNNM is much better than that of these 11 competitive

methods.

3.4 Comparison between TNN and
representative neural networks

In order to verify the contribution of TNN to TNNM, we

will compare TNN with six commonly used neural networks

in this section based on the DIP2010 database, and

comparison results is illustrated in Figure 4. During

experiments, in TNNM, the TNN layer will be replaced by

competitive neural networks such as Linear, CNN, RNN,

GRU, LSTM and Transformer in turn. And then, the top 1%,

5%, 10%, 15%, 20% and 25% predicted proteins will be

compared with downloaded dataset of known essential

proteins. Finally, the number of real essential proteins in

the candidate essential proteins identified by each method

will be calculated, and used to compare and evaluate the

recognition ability of essential proteins of different methods.

From Figure 4, it is easy to see that if the TNN in TNNM is

replaced by Linear, CNN, RNN, GRU, LSTM or Transformer, the

prediction performance of TNNM will turn to be poorer, which

reflects that TNN plays a positive role in the prediction performance

of TNNM.

3.5 Recognition performance based on
the gavin database

To prove the universal applicability of TNNM, in this section,

we further compared TNNM with 11 competitive recognition

methods based on the Gavin database, and illustrated

comparison results in Figure 5.

From Figure 5, it is obvious that the recognition

performance of TNNM is significantly superior to all these

11 competing methods. Especially, among the top 1%, top 5%,

and top 10% candidate essential proteins, TNNM can achieve

accuracies of 94.73%, 98.92%, and 96.77% respectively, which

are all higher than 94%. Besides, among the top 15% and 20%

candidate essential proteins, the recognition accuracies of

TNNM are higher than 86% as well. Even in the top 25%

candidate proteins, TNNM can also maintain its accuracy

rate above 85%. Hence, we can say that TNNM has much

better universal applicability than all these competitive

methods.

4 Conclusion

In thismanuscript, a novel predictionmodel namedTNNMwas

designed to identify essential proteins, and through intensive

experiments, we demonstrated that TNNM outperformed various

advanced algorithms in terms of both prediction accuracies and

decline rate of accuracies. The major contributions of TNNM

include: 1) we designed a new Transfer Neural Network (TNN),

which can extract raw features frommultiple biological information

of proteins efficiently. 2) we introduced a TNN layer into the

prediction model TNNM, which can not only improve the

prediction accuracy of TNNM, but also enhance both the

robustness and the non-linear expression ability of TNNM.

Intensive experiments have demonstrated that TNNM can

achieve satisfactory prediction accuracy in different databases,

and simultaneously, TNN plays an irreplaceable positive role in

TNNM as well.
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