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Background: Anoikis is considered as a particular type of programmed cell death,

the weakness or resistance of which contributes greatly to the development and

progression ofmostmalignant solid tumors. However, the latent impact of anoikis-

related genes (ARGs) on gastric cancer (GC) is still ambiguous. Based on these, this

study established an anoikis-related prognostic model of GC to identify the

prognosis of patients and provide more effective treatment in clinical practice.

Methods: First, we extracted four public datasets containing the gene expression

and clinicopathological information of GC, which were worked as the training and

validating sets, separately. Then, an anoikis-related survival-predictedmodel of GC

was developed via Lasso and COX regression analyses and verified by using the

Kaplan-Meier (KM) curve and receiver operating characteristic (ROC) curve

analyses. Next, we assigned GC patients to two groups characterized by the risk

score calculated andanalyzed somaticmutation, functional pathways, and immune

infiltration between the different two groups. Finally, a unique nomogram was

offered to clinicians to forecast the personal survival probability of GC patients.

Results: Based on seven anoikis-related markers screened and identified, a

carcinogenic model of risk score was produced. Patients placed in the high-

score group suffered significantly worse overall survival (OS) in four cohorts.

Additionally, the model revealed a high sensitivity and specificity to

prognosticate the prognoses of GC patients [area under the ROC curve

(AUC) at 5-year = 0.713; GSE84437, AUC at 5-year = 0.639; GSE15459, AUC

at 5-year = 0.672; GSE62254, AUC at 5-year = 0.616]. Apart from the excellent

predictive performance, the model was also identified as an independent

prediction factor from other clinicopathological characteristics. Combining

anoikis-related prognostic model with GC clinical features, we built a more

comprehensive nomogram to foresee the likelihood of survival of GC patients in

a given year, showing a well-accurate prediction performance.

Conclusion: In summary, this study created a new anoikis-related signature for

GC, which has potentially provided new critical insights into survival prediction

and individualized therapy development.
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Introduction

Statistically, gastric cancer (GC) ranks fifth in morbidity and

fourth in mortality in all malignant solid tumors in the whole

world (Sung et al., 2021). Though the rapid advancement of

endoscopic technology facilitates the early diagnosis of GC, the

prognosis of patients has not significantly improved, owing to the

non-specific symptoms and notorious aggressiveness of GC

(Krejs, 2010; Li et al., 2022a; He et al., 2022). The vast

majority of death from cancer is not due to a primary tumor

but a sequel of metastatic cells within the tumor disorder (Sethi

and Kang, 2011; Adeshakin et al., 2021). Consequently,

identifying effectual metastasis-related prognostic biomarkers

is vital to early intervention and prognosis prediction of GC.

Anoikis, a particular form of apoptosis, is stimulated by the

absence of the attachment between cells or between cells and

nearby extracellular matrix (Frisch and Francis, 1994; Paoli et al.,

2013). It prevents dysplastic cells, pre-cancerous epithelial cells,

from departing from their primary location and spreading

elsewhere, avoiding the aggressive behavior of the detached

tumor cells (Taddei et al., 2012). Anoikis resistance, which is

the breakdown or avoidance of anoikis, is expected to confer

selective superiority upon the detached cancer cells, affording

them an increased anchorage-independent survival time, thereby

facilitating eventual reattachment and uncontrolled growth of

other sites (Frisch and Screaton, 2001; Guadamillas et al., 2011;

Khan et al., 2022). Anoikis is envisioned as a pivotal defense in

combating tumor metastasis and maintaining normal tissue

homeostasis (Kim et al., 2012; Paoli et al., 2013). However,

few studies have evaluated anoikis-related signatures in GC.

Thus, in this study, we concentrated on the predictive

performance of anoikis-related genes (ARGs) in the prognosis

of GC and developed an anoikis-related risk score model. We

further explored and compared the differences in the genetic

mutation, functional enrichment, and immune

microenvironment between the two risk groups.

Materials and methods

Data acquisition and preprocessing

The RNA-sequencing and relevant clinical information data

of GC patients used as a training set were downloaded from The

Cancer Genome Atlas (TCGA) database (https://portal.gdc.

cancer.gov/). All of the raw counts were transformed to

transcripts per million (TPM) and log2-modified before

analysis. For validation, three microarray datasets (GSE84437,

GSE15459, GSE62254) along with related clinical data were

acquired from Gene Expression Omnibus (GEO) database

(https://www.ncbi.nlm.nih.gov/geo/) and easyGEO database

(https://easygeo.cn/). The raw data of GSE84437 were quantile

normalized and log2-modified before analysis. After removing

duplication, 740 ARGs were integrated from the GeneCards

database (https://www.genecards.org/), Harmonizome database

(https://maayanlab.cloud/Harmonizome/), and National Center

for Biotechnology Information (NCBI) database (https://www.

ncbi.nlm.nih.gov/) (Supplementary Table S1) (Rouillard et al.,

2016).

Identification of anoikis-related
prognostic markers

First, we intersected the gene symbols from TCGA-STAD

and GSE84437 cohorts to guarantee that the genes achieved from

the following analysis were shared and removed the batch effect

between the data of two datasets by operating the “sva” R package

to ensure the comparability. Then, the “limma” R package was

utilized to analyze the genes with differences in expression

between tumor and adjacent normal tissues in the TCGA

cohort (Ritchie et al., 2015). Setting the criteria of absolute

fold change (|logFC|) > 1.0 and adjusted p-value <0.05, we
selected 1,482 differentially expressed genes (DEGs). Further,

taking the intersection of ARGs and DEGs, extracting the

expression matrix of intersectant genes, and combining the

matched survival information, univariable Cox regression

analysis was performed on TCGA-STAD and GSE84437

cohorts separately to pick out potential genes affecting the

outcome of GC patients (p < 0.05). The Venn diagram was

depicted to show the intersectant genes via the “VennDiagram” R

package.

Functional enrichment analysis

Based on anoikis-related DEGs, Gene Ontology (GO), Kyoto

Encyclopedia of Genes and Genomes (KEGG), and Gene Set

Enrichment Analysis (GSEA) enrichment analyses were

conducted to seek out underlying functional pathway, by using

multiple R packages (“clusterProfiler”, “enrichplot”, and “ggplot2”)

(Kanehisa and Goto, 2000; Subramanian et al., 2005; Kanehisa et al.,

2021). Two gene sets (“c2.cp.kegg.v2022.1.Hs.symbols.gmt”,

“h.all.v2022.1.Hs.symbols.gmt”) were collected from the

Molecular Signatures Database (https://www.gsea-msigdb.org/

gsea/msigdb) for GSEA analysis (Subramanian et al., 2005).

Risk score calculation

The TCGA-STAD data were worked as the training set as

noted before. We made use of The Least Absolute Shrinkage and

Selection Operator (LASSO) Cox regression technology to

identify the promising prognostic markers and produce the

anoikis-related gene prognostic score (ARGPS) model. The

expression level of the candidate genes and the corresponding
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regression coefficients were employed as the key components of

the models. The formula for calculating ARGPS is ARGPS = ∑

(regression coefficient of genen × expression level of genen).

Development and validation of the ARGPS
model

Using the median ARGPS as the cut-off value, we divided

335 GC patients into high-and low-risk groups and plotted

Kaplan-Meier (KM) survival curves to probe into the

significant differences in the overall survival (OS) between the

two groups. The prognostic value of the ARGPS model was

assessed through receiver operating characteristic (ROC) curves.

By computing the area under the ROC curve (AUC) in a given

year in R software, we can estimate the efficiency and accuracy of

the model. As for three GEO datasets (GSE84437, GSE15459,

GSE62254), the validating sets, the same processes were applied

to test the predictive performance of the ARGPS system.

Moreover, we adopted univariable and multivariable Cox

regression analyses to evaluate the independent prognosis-

related significance of this model. A nomogram was made to

probably calculate the survival probability for GC patients. The

C-index, calibration curve, and decision curve analysis (DCA)

were served to estimate the performance and credibility of the

nomogram (Vickers and Elkin, 2006; Fitzgerald et al., 2015; Kerr

et al., 2016; Vickers et al., 2016).

Immune cell infiltration analysis

The CIBERSORT, a computational method, and Single-

sample GSEA (ssGSEA), an extension of Gene Set Enrichment

Analysis (GSEA), were applied synergistically to contrast the

tumor immune microenvironment between the two groups

(Newman et al., 2015). A leukocyte gene signature matrix file

gained from CIBERSORTx website (https://cibersortx.stanford.

edu/), was engaged to clarify the genetic signatures of

22 traditional immune cells. The four R packages (“GSVA”,

“GSEABase”, “limma” and “Hmisc”) and two websites

[TIMER (https://cistrome.shinyapps.io/timer/) and TIMER 2.0

(http://timer.cistrome.org/)] were exploited to measure the

correlation between markers, markers and immune cells

(Ritchie et al., 2015; Li et al., 2016; Li et al., 2017; Li et al., 2020).

Mutation analysis

The somatic mutation of GC patients in the TCGA cohort

was also obtained from the TCGA database (https://portal.gdc.

cancer.gov/). The differences in somatic mutation data between

the two risk groups were examined and took the form of waterfall

graphs. The “maftool” R package was applied to calculate tumor

mutation burden (TMB), referring to the number of tumor

mutations per megabase in each tumor sample.

Statistical analysis

R software version 4.2.0 served as the tool for statistical

analyses. p-value <0.05 was viewed as statistically significant.

Results

Identification of anoikis-related
prognostic genes

Figure 1 displayed the flow diagram of this study.

15,121 genes were retained through batch effect removal.

1482 DEGs were filtered in the variance analysis between

cancerous and adjacent normal samples in the TCGA dataset

(|logFC| > 1.0, p.adj< 0.05) (Supplementary Table S2; Figure 2A).

Then, we got 141 anoikis-related DEGs by intersecting DEGs

with ARGs, which was displayed by the Venn diagram

(Figure 2B). GO and KEGG functional enrichment analysis on

these genes were carried out to scrutinize the function of the

ARGs on GC development. The result of GO analysis revealed

that they were enriched in the intrinsic, extrinsic, and regulated

apoptotic signaling pathways in the biological process part, and

collagen-containing extracellular matrix, an indispensable

substance for anoikis, in the cell component part, signifying

that anoikis played a huge part in the development of GC

(Figure 2C). In the KEGG analysis, the most plenteous

pathways were “Human papillomavirus infection”,

“MicroRNAs in cancer” and “Human T-cell leukemia virus

one infection” (Figure 2D). By performing a univariable Cox

regression analysis on GC patients of TCGA-STAD and

GSE84437 cohorts, we gained 20 and 43 ARGs significantly

associated with GC prognosis, separately. The forest plots

described the detail (Figures 3A,B).

Development and validation of the ARGPS
model

We intersected the results of two univariable Cox

regression analyses and got 10 potential ARGs markers

(PDK4, SKP2, EZH2, NOX4, PDGFRB, MMP11,

SERPINE1, DNMT1, THY1, SNCG). Taking the TCGA

cohort as the training set, lasso Cox regression was carried

out on the ten candidate genes to identify the prognostic

markers (Figures 3C,D). According to the regression analysis

result, an ARGPS model was established as follows: ARGPS =

0.116 ✕ PDK4 exp + (−0.340) ✕ EZH2 exp +0.297 ✕

NOX4 exp +0.108 ✕ MMP11 exp +0.247 ✕ SERPINE1 exp
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+ (−0.412) ✕ DNMT1 exp +0.243 ✕ SNCG exp. Based on the

median ARGPS, GC patients of the TCGA cohort were

classified into the high- and low-risk groups. The risk score

distribution and scatter plots were mapped to indicate that GC

patients with a high-risk score, had shorter survival times and

a higher proportion of death (Figure 4A). Then, the KM curve

illustrated that the OS of patients in the high-risk group was

lower, meaning a poorer prognosis (Figure 4B). Next, we

calculated the three- and five-year AUC values under the

time-dependent ROC curves were 0.643 and 0.713,

respectively, suggesting specificity and sensitivity of the

ARGPS in prognostic prediction (Figure 4C). Furthermore,

to evaluate whether the ARGPS model is suitable for other

datasets, we selected GSE84437 and two additional

independent GEO datasets (GSE15459, GSE62254) as

validation cohorts, grouped GC patients, and did the same

analyses. The same results as the training set (TCGA) were

also observed, proving the excellent stability and predictive

efficacy of the ARGPS (Figures 4D–L). The clinical

characteristics of GC patients in four cohorts were shown

in Table 1.

Validation of a nomogram

A heat map illustrated the differences in the seven model

genes expression and the distribution of clinicopathological

features between two risk groups in the training set

FIGURE 1
Drawing of the flow chart in this study.
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(Figure 5A). In combination with the clinical features of GC

patients, we performed the univariable and multivariable Cox

regression analyses and the result showed the independent

prognostic predictability of the ARGPS (Figures 5B–D).

Given the inconvenient clinical utility of the ARGPS, a

hybrid nomogram model was created for predicting the

survival probability of GC patients in a given year

(Figure 5E). The result showed that C-index was 0.687,

denoting the great reliability of the nomogram. Calibration

curves of the OS at 1, 3, and 5 years were evenly distributed

diagonally, proving the pretty fitness of the model

(Figure 5F). Additionally, from DCA curves and AUC

values, in clinical decision-making, the ARGPS model

was found to be able to serve as the most effective

prognostic indicator among other clinical characteristics

(Figures 5D,G).

ARGPS model and functional analysis,
gene mutation

For the purpose of further elucidating the underlying

mechanisms of the impact of ARGPS on prognosis, KEGG

and HALLMARK gene sets were selected to search for

significantly enriched pathways between the two risk groups.

In the high-risk group, the genes were mostly enriched in

antigen processing and presentation, extracellular matrix

(ECM) receptor interaction, protein export, proteasome, and

ribosome in the KEGG part, and angiogenesis, mitotic spindle,

protein secretion, reactive oxygen species pathway, and TGF-

beta signaling in the HALLMARK part (Figures 6A,B). Detailed

enrichment pathways and parameters are shown in

Supplementary Tables S3, S4. Waterfall plots were exploited

to analyze the somatic mutations in the two risk groups. From

FIGURE 2
Identification of the anoikis-related prognostic genes. (A) The variance analysis between tumor and adjacent normal tissues in the TCGA dataset
(|logFC| > 1.0, p.adj< 0.05). (B) The insection between 1482 DEGs and 740 ARGs is displayed by the Venn diagram. The dot plots of GO (C) and KEGG
(D) enrichment analysis are based on 141 anoikis-related DEGs. TCGA, The Cancer Genome Atlas; DEGs, differentially expressed genes; ARGs,
anoikis-related genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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FIGURE 3
Univariable Cox regression analysis. The results of univariable Cox regression analyses of TCGA (A) and GEO (B) cohorts. (C,D) The results of
LASSO analysis of ten prognostic ARGs. TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; LASSO, Least Absolute Shrinkage and
Selection Operator; ARGs, anoikis-related genes.
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Figures 6C,D, the most common type of mutations in both

groups was missense mutations, followed by Multi_Hit, which

means that a gene has multiple mutations in the same sample.

In the high-risk group, the overall levels of TMB were lower

than those in the other group, which is contrary to our

conventional understanding. Besides that, all mutant genes

shown in the graphs were mutated less frequently in the

high-risk group.

ARGPS model and immune infiltration

To explore whether and how the ARGPS model influenced

the tumor immune landscape, bar graphs were first drawn to

show the relative proportion of 22 different immune cells in

every sample of the TCGA cohort (Figure 7A). The ssGSEA

analysis was applied to study deeply the discrepancy between

the immune status of the two risk groups. For type analysis of

FIGURE 4
Construction and validation of the ARGPS model. (A,D, G,J) Distribution of ARGPS and relationship between ARGPS and survival status in the
training and three testing sets. (B,E,H,K) The K-M survival curves of the high- and low-ARGPS groups in the training and three testing sets. (C,F,I,L)
The time-dependent ROC curves for predicting OS at 3 and 5 years in the training and three testing sets. ARGPS, anoikis-related gene prognostic
score; KM, Kaplan-Meier; ROC, receiver operating characteristic; OS, overall survival.
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TABLE 1 Clinical characteristics of GC patients in TCGA and three GEO cohorts.

Characteristics TCGA-STAD (n = 335) GSE84437 (n = 433) GSE15459 (n = 192) GSE62254 (n = 300)

No. of patients (%) No. of patients (%) No. of patients (%) No. of patients (%)

Age

≤65 153 (45.67) 283 (65.36) 101 (52.60) 172 (57.33)

>65 179 (53.43) 150 (34.64) 91 (47.40) 128 (42.67)

unknown 3 (00.90) 0 (0.00) 0 (0.00) 0 (0.00)

Gender

Male 217 (64.78) 296 (68.36) 125 (65.10) 199 (66.33)

Female 118 (35.22) 137 (31.64) 67 (34.90) 101 (33.67)

Grade

G1 9 (2.69) NA NA NA

G2 120 (35.82) NA NA NA

G3 197 (58.80) NA NA NA

Unknown 9 (2.69) NA NA NA

Stage

Stage I 44 (13.13) NA 31 (16.15) 30 (10.00)

Stage II 107 (31.94) NA 29 (15.10) 96 (32.00)

Stage III 137 (40.90) NA 72 (37.50) 95 (31.67)

Stage IV 33 (9.85) NA 60 (31.25) 77 (25.66)

Unknown 14 (4.18) NA 0 (0.00) 2 (0.67)

T

T1 15 (4.48) 11 (2.54) NA 0 (0.00)

T2 73 (21.79) 38 (8.78) NA 186 (62.00)

T3 155 (46.27) 92 (21.24) NA 91 (30.33)

T4 88 (26.27) 292 (67.44) NA 21 (7.00)

Unknown 4 (1.19) 0 (0.00) NA 2 (0.67)

N

N0 98 (29.25) 80 (18.48) NA 38 (12.67)

N1 91 (27.17) 188 (43.42) NA 131 (43.67)

N2 67 (20.00) 132 (30.49) NA 80 (26.66)

N3 68 (20.30) 33 (7.62) NA 51 (12.00)

Unknown 11 (3.28) 0 (0.00) NA 0 (0.00)

M

M0 302 (90.15) NA NA 273 (91.00)

M1 21 (6.27) NA NA 27 (9.00)

Unknown 12 (3.58) NA NA 0 (0.00)

TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus.
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FIGURE 5
Validation of ARGPS’s ability to predict the prognosis of gastric cancer. (A) The differences in the expression of seven markers and the
distribution of clinicopathological features between the two risk groups in the TCGA cohort were plotted by the heat map. The results of univariable
(B) and multivariable Cox regression analysis (C) between ARGPS and clinicopathological factors. (D) The ROC curves based on the ARGPS model
and other clinicopathological factors in the TCGA cohort. (E)Nomogram based on ARGPS and clinicopathological features in the TCGA cohort.
(F)Calibration curves for the validation of the nomogram. (G)DCA curves of the clinical utility between ARGPS and other clinical factors regarding the
overall survival (OS) in the TCGA cohort. TCGA, The Cancer Genome Atlas; ARGPS, anoikis-related gene prognostic score; ROC, receiver operating
characteristic; DCA, Decision curve analysis.
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28 immune cells, we discovered that compared to GC patients

with a lower risk score, those with a higher risk score had

significantly higher infiltration of multiple cells (including

activated B cell, central and effector memory T cell,

immature B cell, regulatory T cell, T follicular helper cell,

type 1 T helper cell, activated dendritic cell, CD56 bright

natural killer cell, eosinophil, immature dendritic cell,

macrophage, mast cell, MDSC, natural killer cell, natural

killer T cell, and plasmacytoid dendritic cell), whereas lower

infiltration of activated CD4 T cell (Figure 7B). For type analysis

of 13 immune pathways, multiple pathways (including APC co-

stimulation, CCR, check-point, HLA, parainflammation, type I

and II interferon response) of the high-risk group were also

significantly more vibrant than those of the low-risk group,

which may work for the worse prognosis of the GC patients

(Figure 7C). Furthermore, the heat maps were painted to show

the strong relationship of the seven markers to immune cells

and pathways (Figures 8A,B). In addition, the TIMER database

was available to predict the relation between the markers.

Figure 8C plotted the linear correlation of each of the two

markers, indicating the intense relationship between the seven

markers.

FIGURE 6
Analysis of enrichment function and genetic mutation at a different risk score. (A,B) Part of significantly upregulated pathways in the high-risk
group enriched by GSEA analysis. (C,D) Comparison of genetic mutation between the high- and low-risk groups utilized by the “maftool” R package.
GSEA, Gene Set Enrichment Analysis.
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FIGURE 7
Evaluation of the immune microenvironment of gastric cancer. (A) The proportion and distribution of 22 immune cells in each sample of the
TCGA cohort were calculated by the CIBERSORT algorithm. The sum of all estimated cell scores in each sample is 1. The difference of (B) 28 immune
cells and (C) 13 immune pathways infiltration levels between the high- and low-risk groups compared by the ssGSEA analysis. ns > 0.05, *<0.05,
**<0.01, ***<0.001. TCGA, The Cancer Genome Atlas; ssGSEA, Single-sample Gene Set Enrichment Analysis.
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FIGURE 8
Estimation of the correlation between markers and immune infiltration. The correlation between the seven markers and (A) 28 immune cells
and (B) 13 immune pathways showed by heat maps. (C) The linear relation of each of the two markers in the model is predicted by TIMER. *< 0.05,
**< 0.01.
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Discussion

Previously, there were some reports in the literature about the

effects of anoikis on GC. Kai Wang et al. sequenced the whole

genomes of gastric cancer tissues and performed comprehensive

molecular profiling, discovering that RHOA hotspot mutants

could facilitate anoikis escape in the organoid cultures (Wang

et al., 2014a). Numbers of molecules and pathways have been

confirmed to be involved in the anoikis resistance, which resulted

in the metastasis and progression of GC (Li et al., 2020b; Ye et al.,

2020; Zhang et al., 2022a; Li et al., 2022b). In addition, by

reducing anoikis resistance and cancer cell mobility, some

drugs could trigger apoptosis and inhibit metastasis, thereby

delaying the progression of GC (Kim et al., 2022). All of the above

emphasized that the notion of targeting genes associated with

anoikis might be imperative to control tumor development and

progression. As we know, in GC, this study is the first to identify

anoikis-related prognostic biomarkers and construct a relevant

predictive model to evaluate patient outcomes.

In this research, we screened out seven genes related to the

prognosis of GC, which contained PDK4, EZH2, NOX4,

MMP11, SERPINE1, DNMT1, and SNCG, and created a

predictive risk score model, namely ARGPS model. Certain

interactions between these markers and tumor initiation and

progression have been described in studies before. For example,

Zimu Zhang et al. disclosed that PDK4 promoted invasion and

migration ability of GC cells (Zhang et al., 2022b). In the high-

PDK4 group, enriched functional pathways were correlated with

cell adhesion regulation and synaptic activity, which were

substantial in cancer anoikis resistance, proliferation, invasion,

and metastasis (Zhong and Rescorla, 2012; Alanko et al., 2015;

Zhang et al., 2022b). In vitro studies demonstrated that

EZH2 bound to the vital tumor suppressor PTEN locus and

led to proliferation, invasion, and pluripotent phenotype of

GC cells (Gan et al., 2018). IL-6/STAT3 signaling, whose

aberrant expression in GC cells was thought to be a main

mechanism for tumorigenesis and pathogenesis, drove

EZH2 transcriptional stimulation and mediated unfortunate

outcome (Yu and Jove, 2004; Yu et al., 2009; Li et al., 2010;

Pan et al., 2016). NOX4, one of the major origins of reactive

oxygen species (ROS), played a crucial role in genomic instability,

resistance to anoikis, migration, and extravasation into distant

sites (Bedard and Krause, 2007; Liou and Storz, 2010; Peiris-

Pages et al., 2015; Schumacker, 2015). The expression of NOX4 in

GC was significantly relevant to tumor size, lymph node

metastasis, venous invasion, and unfortunate survival (Du

et al., 2019). What is interesting is that NOX4 could enhance

cell propagation by activating the GLI1 transcription factor,

which was a distinguished molecule in the Hedgehog signaling

pathway (Briscoe and Therond, 2013; Tang et al., 2018).

Meanwhile, it was verified that the suppression of

GLI1 protein could evoke anoikis in vitro and prevent tumor

formation in vivo (Kandala and Srivastava, 2012). Similarly,

SERPINE1, a key inhibitor of tissue plasminogen activator

and urokinase, is abundant in tumor tissues and strongly

interrelated with the propagation and invasiveness of GC cells

(Chen et al., 2022). SERPINE1 could induce angiogenesis and

tumor inflammatory microenvironment, in which anoikis was a

critical player, by regulating the expression level of VEGF and IL-

6 via VEGF and JAK-STAT3 inflammatory pathways (Sakamoto

and Kyprianou, 2010; Feng et al., 2014; Teng et al., 2021; Chen

et al., 2022). Y-B Kou et al. discovered that the growth, expansion,

and invasion activities of GC cells could be inhibited by the

knockdown of MMP11, probably through downregulation of the

PCNA, IGF-1, and VEGF (Kou et al., 2013). In addition,

MMP11 in exosomes secreted from gastric cancer-associated

fibroblasts can be delivered into GC cells to partially accelerate

their progression and metastasis (Xu et al., 2019). DNMT1,

whose full name is DNA methyltransferase 1, is one of the

DNA-modifying enzymes (Lyko, 2018). It might participate in

the modulation of DNA methylation levels and give rise to the

development of an anoikis-resistance phenotype (Campos et al.,

2007; Lyko, 2018). Recently, a study suggested that lncRNA

SAMD12-AS1 potentially played oncogenic roles in GC by

directly bounding to DNMT1 and enabling DNMT1 to

restrain the P53 signal pathway (Lu et al., 2021a). A strong

interaction between the expression level of SNCG, a pro-

metastatic oncogene, in primary and metastatic sites has been

revealed in many solid tumor types (Liu et al., 2005). In addition,

SNCG expression in GC tissues, particularly in metastatic tissues,

was relevant to tumor microenvironment and metastasis (Hu

et al., 2009; Wang et al., 2014b). Thus, hypoxia-inducible

lncRNA-AK058003 could increase GC metastasis by targeting

SNCG (Wang et al., 2014b). It is worth noting that markers did

not work alone but had some linkages. For instance, the

synergistic mediation of methylation by EZH2 and

DNMT1 contributed to the progression of GC (Ning et al., 2015).

Based on ARGPS we calculated, GC patients were separated

into high- and low-risk groups. Follow-up analyses revealed that

the GC patients with the high-risk score correlated with a poorer

prognosis, which was confirmed by three testing cohorts

(GSE84437, GSE15459, GSE62254). The results of univariable

and multivariable Cox analyses with other clinical confounding

factors showed extraordinary standalone prediction value of

ARGPS. Then, a nomogram was built to accurately quantify

personalized predictive scores and survival probabilities. Both

C-index and the calibration curves showed superb consistency.

Additionally, decision curve analysis was used to suggest the

potential clinical utility of the model.

We compared the differences in functional pathways and

somatic mutations between the two groups. GSEA analyses have

enriched ECM receptor interaction and reactive oxygen species

pathways, which were highly related to anoikis (Tang et al.,

2018). Moreover, these results suggested that anoikis might

closely connect with immune invasion, material

transportation, and angiogenesis in GC. Intriguingly, not only
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the overall pattern of gene mutations was lower in the high score

group but also the mutation frequency of commonly mutated

genes was lower. The difference in TMB between the two groups

was confirmed to be statistically significant by theWilcoxon rank

sum test. Although most genetic mutations (such as missense

mutations) were harmful or lethal to the body, the possibility of

beneficial effects could not be entirely ruled out. A panel-based

sequencing study of advanced gastric cancer showed that patients

with elevated TMB had higher objective response rates and

longer progression-free survival, suggesting that TMB could

be employed as a potential predictive biomarker (Kim et al.,

2020). Among patients with advanced gastric cancer who

received neoadjuvant chemotherapy before radical

gastrectomy, those with high TMB showed favorable

treatment response and better disease-free survival (Li et al.,

2021). Besides, in multiple cancer types, TMB was considered as

another indicator of patients’ response to immunotherapy

because a positive correlation between TMB and benefit of

immunotherapy was observed in a comprehensive analysis

(Hodges et al., 2017; Yarchoan et al., 2017).

Epigenomic alterations in cancer interact with the immune

microenvironment to dictate tumor evolution and therapeutic

response (Sundar et al., 2022). Though a variety of programmed

cell death modes (e.g., necroptosis, pyroptosis, ferroptosis, etc.)

have been showed to be associated with tumor immunity, the

correlation between anoikis and immunity is still unclear (Gao

et al., 2022; Niu et al., 2022). We managed to explore the

differences in the immune landscape between the two groups,

showing that in the high score group with the worrisome

outcomes, the proportion of most immune cells and functions

were significantly increased, representing that anoikis may

regulate tumor progression by affecting immune infiltration

levels. If we think about this among all the different immune

cells, there are both protumorigenic and antitumorigenic cells.

One should note that one of the most crucial elements of the

tumor immunosuppressive microenvironment are myeloid-

derived suppressor cells (MDSCs), which plays an important

role in Helicobacter pylori-induced intestinal metaplasia and

tumor progression (Ding et al., 2016; Ding et al., 2020; Ding

et al., 2022). Based on our results, MDSCs infiltration level was

relatively high in the high-ARGPS group and was significantly

related to SNCG, MMP11, NOX4 and SERPINE1. Besides,

EZH2 and DNMT1 could regulate the differentiation and

accumulation of MDSCs (Huang et al., 2019; Smith et al.,

2020; Lu et al., 2021b; Yang et al., 2022). Due to the certainty

of immunity on tumor progression and the uncertainty of anoikis

on the immune landscape, the interaction between anoikis and

immunity (especially MDSCs) might be an interesting field to

research.

Though this study has made a breakthrough, it still is

limited by some aspects. First, this study was confined to

mining and analyzing public databases. Second, although the

established model and nomogram had a pretty good predictive

capability, taking the heterogeneity of the cells in tumor

tissues into consideration, studies on anoikis executed at

the single-cell level may shed light on the critical role of

anoikis on the outcome of GC patients more accurately.

Third, despite this study showing that there was a powerful

relationship between the ARGs and immunity, the detailed

mechanism was still not fully explained. Finally, the study has

a lack of validation in vivo or in vitro. Through combined the

results of this study with previous literature, we reasonably

believe that the underlying mechanism of anoikis-related

markers and gastric cancer immune microenvironment

(especially MDSCs) seems to be full of promises and

worthful for future investigation.

Conclusion

To sum up, our seven-gene ARGPS model is capable of

predicting the outcome of GC patients, and the nomogram can

assist the clinician to develop personalized treatment plans for

various patients. More research in the future into the molecular

interaction between anoikis and tumor is required to provide the

theoretical basis for clinical practice and a road map for precision

medicine.

Data availability statement

Publicly available datasets were analyzed in this study. This

data can be found here: TCGA: https://portal.gdc.cancer.gov/

GEO: https://www.ncbi.nlm.nih.gov/geo/.

Author contributions

ZZ: conceptualization, methodology, software, data curation,

and original draft writing. CL, YP, RL, and QL: data review. QL

makes a great contribution to data analysis, manuscript review,

and study supervision.

Funding

The study was funded by the National Natural Science

Foundation of China (No. 81974064).

Acknowledgments

We are grateful for the public databases and various

analytical methods used in this article.

Frontiers in Genetics frontiersin.org14

Zhao et al. 10.3389/fgene.2022.1087201

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1087201


Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fgene.

2022.1087201/full#supplementary-material

References

Adeshakin, F. O., Adeshakin, A. O., Afolabi, L. O., Yan, D., Zhang, G., and Wan,
X. (2021). Mechanisms for modulating anoikis resistance in cancer and the
relevance of metabolic reprogramming. Front. Oncol. 11, 626577. doi:10.3389/
fonc.2021.626577

Alanko, J., Mai, A., Jacquemet, G., Schauer, K., Kaukonen, R., Saari, M., et al.
(2015). Integrin endosomal signalling suppresses anoikis. Nat. Cell Biol. 17 (11),
1412–1421. doi:10.1038/ncb3250

Bedard, K., and Krause, K. H. (2007). The NOX family of ROS-generating
NADPH oxidases: Physiology and pathophysiology. Physiol. Rev. 87 (1),
245–313. doi:10.1152/physrev.00044.2005

Briscoe, J., and Therond, P. P. (2013). The mechanisms of Hedgehog signalling
and its roles in development and disease. Nat. Rev. Mol. Cell Biol. 14 (7), 416–429.
doi:10.1038/nrm3598

Campos, A. C., Molognoni, F., Melo, F. H. M., Galdieri, L. C., Carneiro, C. R. W.,
D’Almeida, V., et al. (2007). Oxidative stress modulates DNA methylation during
melanocyte anchorage blockade associated with malignant transformation.
Neoplasia 9 (12), 1111–1121. doi:10.1593/neo.07712

Chen, S., Li, Y., Zhu, Y., Fei, J., Song, L., Sun, G., et al. (2022).
SERPINE1 overexpression promotes malignant progression and poor prognosis
of gastric cancer. J. Oncol. 2022, 2647825. doi:10.1155/2022/2647825

Ding, L., Chakrabarti, J., Sheriff, S., Li, Q., Thi Hong, H. N., Sontz, R. A., et al.
(2022). Toll-like receptor 9 pathway mediates schlafen(+)-MDSC polarization
during helicobacter-induced gastric metaplasias. Gastroenterology 163 (2),
411–425 e4. doi:10.1053/j.gastro.2022.04.031

Ding, L., Hayes, M. M., Photenhauer, A., Eaton, K. A., Li, Q., Ocadiz-Ruiz, R., et al.
(2016). Schlafen 4-expressing myeloid-derived suppressor cells are induced during
murine gastric metaplasia. J. Clin. Invest. 126 (8), 2867–2880. doi:10.1172/JCI82529

Ding, L., Li, Q., Chakrabarti, J., Munoz, A., Faure-Kumar, E., Ocadiz-Ruiz, R.,
et al. (2020). MiR130b from Schlafen4(+) MDSCs stimulates epithelial proliferation
and correlates with preneoplastic changes prior to gastric cancer. Gut 69 (10),
1750–1761. doi:10.1136/gutjnl-2019-318817

Du, S., Miao, J., Lu, X., Shi, L., Sun, J., Xu, E., et al. (2019). NADPH oxidase 4 is
correlated with gastric cancer progression and predicts a poor prognosis. Am.
J. Transl. Res. 11 (6), 3518–3530.

Feng, M. X., Ma, M. Z., Fu, Y., Li, J., Wang, T., Xue, F., et al. (2014). Elevated
autocrine EDIL3 protects hepatocellular carcinoma from anoikis through RGD-
mediated integrin activation. Mol. Cancer 13, 226. doi:10.1186/1476-4598-13-226

Fitzgerald, M., Saville, B. R., and Lewis, R. J. (2015). Decision curve analysis.
JAMA 313 (4), 409–410. doi:10.1001/jama.2015.37

Frisch, S. M., and Francis, H. (1994). Disruption of epithelial cell-matrix
interactions induces apoptosis. J. Cell Biol. 124 (4), 619–626. doi:10.1083/jcb.
124.4.619

Frisch, S. M., and Screaton, R. A. (2001). Anoikis mechanisms. Curr. Opin. Cell
Biol. 13 (5), 555–562. doi:10.1016/s0955-0674(00)00251-9

Gan, L., Xu, M., Hua, R., Tan, C., Zhang, J., Gong, Y., et al. (2018). The polycomb
group protein EZH2 induces epithelial-mesenchymal transition and pluripotent
phenotype of gastric cancer cells by binding to PTEN promoter. J. Hematol. Oncol.
11 (1), 9. doi:10.1186/s13045-017-0547-3

Gao, W., Wang, X., Zhou, Y., Wang, X., and Yu, Y. (2022). Autophagy,
ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Signal
Transduct. Target. Ther. 7 (1), 196. doi:10.1038/s41392-022-01046-3

Guadamillas, M. C., Cerezo, A., and Del Pozo, M. A. (2011). Overcoming
anoikis--pathways to anchorage-independent growth in cancer. J. Cell Sci. 124
(19), 3189–3197. doi:10.1242/jcs.072165

He, X., Wu, L., Dong, Z., Gong, D., Jiang, X., Zhang, H., et al. (2022). Real-time
use of artificial intelligence for diagnosing early gastric cancer by magnifying image-
enhanced endoscopy: A multicenter diagnostic study (with videos). Gastrointest.
Endosc. 95 (4), 671–678 e4. doi:10.1016/j.gie.2021.11.040

Hodges, T. R., Ott, M., Xiu, J., Gatalica, Z., Swensen, J., Zhou, S., et al. (2017).
Mutational burden, immune checkpoint expression, and mismatch repair in
glioma: Implications for immune checkpoint immunotherapy. Neuro. Oncol. 19
(8), 1047–1057. doi:10.1093/neuonc/nox026

Hu, H., Sun, L., Guo, C., Liu, Q., Zhou, Z., Peng, L., et al. (2009). Tumor cell-
microenvironment interaction models coupled with clinical validation reveal
CCL2 and SNCG as two predictors of colorectal cancer hepatic metastasis. Clin.
Cancer Res. 15 (17), 5485–5493. doi:10.1158/1078-0432.CCR-08-2491

Huang, S., Wang, Z., Zhou, J., Huang, J., Zhou, L., Luo, J., et al. (2019).
EZH2 inhibitor GSK126 suppresses antitumor immunity by driving production
of myeloid-derived suppressor cells. Cancer Res. 79 (8), 2009–2020. doi:10.1158/
0008-5472.CAN-18-2395

Kandala, P. K., and Srivastava, S. K. (2012). Diindolylmethane-mediated
Gli1 protein suppression induces anoikis in ovarian cancer cells in vitro and
blocks tumor formation ability in vivo. J. Biol. Chem. 287 (34), 28745–28754.
doi:10.1074/jbc.M112.351379

Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M., and Tanabe, M.
(2021). Kegg: Integrating viruses and cellular organisms. Nucleic Acids Res. 49 (D1),
D545–D551. doi:10.1093/nar/gkaa970

Kanehisa, M., and Goto, S. (2000). Kegg: Kyoto Encyclopedia of genes and
genomes. Nucleic Acids Res. 28 (1), 27–30. doi:10.1093/nar/28.1.27

Kerr, K. F., Brown, M. D., Zhu, K., and Janes, H. (2016). Assessing the clinical
impact of risk prediction models with decision curves: Guidance for correct
interpretation and appropriate use. J. Clin. Oncol. 34 (21), 2534–2540. doi:10.
1200/JCO.2015.65.5654

Khan, S. U., Fatima, K., and Malik, F. (2022). Understanding the cell survival
mechanism of anoikis-resistant cancer cells during different steps of metastasis.
Clin. Exp. Metastasis 39 (5), 715–726. doi:10.1007/s10585-022-10172-9

Kim, J., Kim, B., Kang, S. Y., Heo, Y. J., Park, S. H., Kim, S. T., et al. (2020). Tumor
mutational burden determined by panel sequencing predicts survival after
immunotherapy in patients with advanced gastric cancer. Front. Oncol. 10, 314.
doi:10.3389/fonc.2020.00314

Kim, M. J., Kawk, H. W., Kim, S. H., Lee, H. J., Seo, J. W., Lee, C. Y., et al. (2022).
The p53-driven anticancer effect of ribes fasciculatum extract on AGS gastric cancer
cells. Life (Basel) 12 (2), 303. doi:10.3390/life12020303

Kim, Y. N., Koo, K. H., Sung, J. Y., Yun, U. J., and Kim, H. (2012). Anoikis
resistance: An essential prerequisite for tumor metastasis. Int. J. Cell Biol. 2012,
306879. doi:10.1155/2012/306879

Kou, Y. B., Zhang, S. Y., Zhao, B. L., Ding, R., Liu, H., and Li, S. (2013).
Knockdown of MMP11 inhibits proliferation and invasion of gastric cancer cells.
Int. J. Immunopathol. Pharmacol. 26 (2), 361–370. doi:10.1177/
039463201302600209

Krejs, G. J. (2010). Gastric cancer: Epidemiology and risk factors. Dig. Dis. 28 (4-
5), 600–603. doi:10.1159/000320277

Frontiers in Genetics frontiersin.org15

Zhao et al. 10.3389/fgene.2022.1087201

https://www.frontiersin.org/articles/10.3389/fgene.2022.1087201/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.1087201/full#supplementary-material
https://doi.org/10.3389/fonc.2021.626577
https://doi.org/10.3389/fonc.2021.626577
https://doi.org/10.1038/ncb3250
https://doi.org/10.1152/physrev.00044.2005
https://doi.org/10.1038/nrm3598
https://doi.org/10.1593/neo.07712
https://doi.org/10.1155/2022/2647825
https://doi.org/10.1053/j.gastro.2022.04.031
https://doi.org/10.1172/JCI82529
https://doi.org/10.1136/gutjnl-2019-318817
https://doi.org/10.1186/1476-4598-13-226
https://doi.org/10.1001/jama.2015.37
https://doi.org/10.1083/jcb.124.4.619
https://doi.org/10.1083/jcb.124.4.619
https://doi.org/10.1016/s0955-0674(00)00251-9
https://doi.org/10.1186/s13045-017-0547-3
https://doi.org/10.1038/s41392-022-01046-3
https://doi.org/10.1242/jcs.072165
https://doi.org/10.1016/j.gie.2021.11.040
https://doi.org/10.1093/neuonc/nox026
https://doi.org/10.1158/1078-0432.CCR-08-2491
https://doi.org/10.1158/0008-5472.CAN-18-2395
https://doi.org/10.1158/0008-5472.CAN-18-2395
https://doi.org/10.1074/jbc.M112.351379
https://doi.org/10.1093/nar/gkaa970
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1200/JCO.2015.65.5654
https://doi.org/10.1200/JCO.2015.65.5654
https://doi.org/10.1007/s10585-022-10172-9
https://doi.org/10.3389/fonc.2020.00314
https://doi.org/10.3390/life12020303
https://doi.org/10.1155/2012/306879
https://doi.org/10.1177/039463201302600209
https://doi.org/10.1177/039463201302600209
https://doi.org/10.1159/000320277
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1087201


Li, B., Severson, E., Pignon, J. C., Zhao, H., Li, T., Novak, J., et al. (2016).
Comprehensive analyses of tumor immunity: Implications for cancer
immunotherapy. Genome Biol. 17, 174. doi:10.1186/s13059-016-1028-7

Li, J., Zhu, Y., Dong, Z., He, X., Xu, M., Liu, J., et al. (2022). Development and
validation of a feature extraction-based logical anthropomorphic diagnostic system
for early gastric cancer: A case-control study. EClinicalMedicine 46, 101366. doi:10.
1016/j.eclinm.2022.101366

Li, S., Wu, T., Lu, Y. X., Wang, J. X., Yu, F. H., Yang, M. Z., et al. (2020). Obesity
promotes gastric cancer metastasis via diacylglycerol acyltransferase 2-dependent
lipid droplets accumulation and redox homeostasis. Redox Biol. 36, 101596. doi:10.
1016/j.redox.2020.101596

Li, T. W., Fan, J., Wang, B., Traugh, N., Chen, Q., Liu, J. S., et al. (2017). Timer: A
web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer
Res. 77 (21), E108–E110. doi:10.1158/0008-5472.CAN-17-0307

Li, T. W., Fu, J., Zeng, Z., Cohen, D., Li, J., Chen, Q., et al. (2020). TIMER2.0 for
analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 48 (W1),
W509–W514. doi:10.1093/nar/gkaa407

Li, Y., de Haar, C., Chen, M., Deuring, J., Gerrits, M. M., Smits, R., et al. (2010).
Disease-related expression of the IL6/STAT3/SOCS3 signalling pathway in
ulcerative colitis and ulcerative colitis-related carcinogenesis. Gut 59 (2),
227–235. doi:10.1136/gut.2009.184176

Li, Y., Liu, C., Zhang, X., Huang, X., Liang, S., Xing, F., et al. (2022). CCT5 induces
epithelial-mesenchymal transition to promote gastric cancer lymph node metastasis
by activating the Wnt/β-catenin signalling pathway. Br. J. Cancer 126 (12),
1684–1694. doi:10.1038/s41416-022-01747-0

Li, Z., Jia, Y., Zhu, H., Xing, X., Pang, F., Shan, F., et al. (2021). Tumor mutation
burden is correlated with response and prognosis in microsatellite-stable (MSS)
gastric cancer patients undergoing neoadjuvant chemotherapy. Gastric Cancer 24
(6), 1342–1354. doi:10.1007/s10120-021-01207-3

Liou, G. Y., and Storz, P. (2010). Reactive oxygen species in cancer. Free Radic.
Res. 44 (5), 479–496. doi:10.3109/10715761003667554

Liu, H., Liu, W., Wu, Y., Zhou, Y., Xue, R., Luo, C., et al. (2005). Loss of epigenetic
control of synuclein-gamma gene as amolecular indicator ofmetastasis in awide range of
human cancers. Cancer Res. 65 (17), 7635–7643. doi:10.1158/0008-5472.CAN-05-1089

Lu, G. H., Zhao, H. M., Liu, Z. Y., Cao, Q., Shao, R. D., and Sun, G. (2021).
LncRNA SAMD12-AS1 promotes the progression of gastric cancer via DNMT1/
p53 Axis. Arch. Med. Res. 52 (7), 683–691. doi:10.1016/j.arcmed.2021.04.004

Lu, W., Cao, F., Feng, L., Song, G., Chang, Y., Chu, Y., et al. (2021). LncRNA
Snhg6 regulates the differentiation of MDSCs by regulating the ubiquitination of
EZH2. J. Hematol. Oncol. 14 (1), 196. doi:10.1186/s13045-021-01212-0

Lyko, F. (2018). The DNA methyltransferase family: A versatile toolkit for
epigenetic regulation. Nat. Rev. Genet. 19 (2), 81–92. doi:10.1038/nrg.2017.80

Newman, A. M., Liu, C. L., Green, M. R., Gentles, A. J., Feng, W., Xu, Y., et al.
(2015). Robust enumeration of cell subsets from tissue expression profiles. Nat.
Methods 12 (5), 453–457. doi:10.1038/nmeth.3337

Ning, X., Shi, Z., Liu, X., Zhang, A., Han, L., Jiang, K., et al. (2015). DNMT1 and
EZH2 mediated methylation silences the microRNA-200b/a/429 gene and
promotes tumor progression. Cancer Lett. 359 (2), 198–205. doi:10.1016/j.canlet.
2015.01.005

Niu, X., Chen, L., Li, Y., Hu, Z., and He, F. (2022). Ferroptosis, necroptosis, and
pyroptosis in the tumor microenvironment: Perspectives for immunotherapy of
SCLC. Semin. Cancer Biol. 86 (3), 273–285. doi:10.1016/j.semcancer.2022.03.009

Pan, Y. M., Wang, C. G., Zhu, M., Xing, R., Cui, J. T., Li, W. M., et al. (2016).
STAT3 signaling drives EZH2 transcriptional activation and mediates poor prognosis
in gastric cancer. Mol. Cancer 15 (1), 79. doi:10.1186/s12943-016-0561-z

Paoli, P., Giannoni, E., and Chiarugi, P. (2013). Anoikis molecular pathways and
its role in cancer progression. Biochim. Biophys. Acta 1833 (12), 3481–3498. doi:10.
1016/j.bbamcr.2013.06.026

Peiris-Pages, M., Martinez-Outschoorn, U. E., Sotgia, F., and Lisanti, M. P.
(2015). Metastasis and oxidative stress: Are antioxidants a metabolic driver of
progression? Cell Metab. 22 (6), 956–958. doi:10.1016/j.cmet.2015.11.008

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015).
Limma powers differential expression analyses for RNA-sequencing and
microarray studies. Nucleic Acids Res. 43 (7), e47. doi:10.1093/nar/gkv007

Rouillard, A. D., Gunderson, G. W., Fernandaz, N. F., Wang, Z., Monterio, C. D.,
McDermott, M. G., et al. (2016). The harmonizome: A collection of processed datasets
gathered to serve and mine knowledge about genes and proteins. Oxford: Database.

Sakamoto, S., and Kyprianou, N. (2010). Targeting anoikis resistance in prostate
cancer metastasis. Mol. Asp. Med. 31 (2), 205–214. doi:10.1016/j.mam.2010.02.001

Schumacker, P. T. (2015). Reactive oxygen species in cancer: A dance with the
devil. Cancer Cell 27 (2), 156–157. doi:10.1016/j.ccell.2015.01.007

Sethi, N., and Kang, Y. (2011). Unravelling the complexity of metastasis -
molecular understanding and targeted therapies. Nat. Rev. Cancer 11 (10),
735–748. doi:10.1038/nrc3125

Smith, A. D., Lu, C., Payne, D., Paschall, A. V., Klement, J. D., Redd, P. S., et al.
(2020). Autocrine IL6-mediated activation of the STAT3-DNMT Axis silences the
tnfα-RIP1 necroptosis pathway to sustain survival and accumulation of myeloid-
derived suppressor cells. Cancer Res. 80 (15), 3145–3156. doi:10.1158/0008-5472.
CAN-19-3670

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette,
M. A., et al. (2005). Gene set enrichment analysis: A knowledge-based approach for
interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102
(43), 15545–15550. doi:10.1073/pnas.0506580102

Sundar, R., Huang, K. K., Kumar, V., Ramnarayanan, K., Demircioglu, D., Her, Z.,
et al. (2022). Epigenetic promoter alterations in GI tumour immune-editing and
resistance to immune checkpoint inhibition. Gut 71 (7), 1277–1288. doi:10.1136/
gutjnl-2021-324420

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A.,
et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and
mortality worldwide for 36 cancers in 185 countries. Ca. Cancer J. Clin. 71 (3),
209–249. doi:10.3322/caac.21660

Taddei, M. L., Giannoni, E., Fiaschi, T., and Chiarugi, P. (2012). Anoikis: An
emerging hallmark in health and diseases. J. Pathol. 226 (2), 380–393. doi:10.1002/
path.3000

Tang, C. T., Lin, X. L., Wu, S., Liang, Q., Yang, L., Gao, Y. J., et al. (2018). NOX4-
driven ROS formation regulates proliferation and apoptosis of gastric cancer cells
through the GLI1 pathway. Cell. Signal. 46, 52–63. doi:10.1016/j.cellsig.2018.02.007

Teng, F., Zhang, J. X., Chen, Y., Shen, X. D., Su, C., Guo, Y. J., et al. (2021). LncRNA
NKX2-1-AS1 promotes tumor progression and angiogenesis via upregulation of
SERPINE1 expression and activation of the VEGFR-2 signaling pathway in gastric
cancer. Mol. Oncol. 15 (4), 1234–1255. doi:10.1002/1878-0261.12911

Vickers, A. J., and Elkin, E. B. (2006). Decision curve analysis: A novel method for
evaluating prediction models. Med. Decis. Mak. 26 (6), 565–574. doi:10.1177/
0272989X06295361

Vickers, A. J., Van Calster, B., and Steyerberg, E. W. (2016). Net benefit
approaches to the evaluation of prediction models, molecular markers, and
diagnostic tests. BMJ 352, i6. doi:10.1136/bmj.i6

Wang, K., Yuen, S. T., Xu, J., Lee, S. P., Yan, H. H. N., Shi, S. T., et al. (2014).
Whole-genome sequencing and comprehensive molecular profiling identify new
driver mutations in gastric cancer.Nat. Genet. 46 (6), 573–582. doi:10.1038/ng.2983

Wang, Y., Liu, X., Zhang, H., Sun, L., Zhou, Y., Jin, H., et al. (2014). Hypoxia-
inducible lncRNA-AK058003 promotes gastric cancer metastasis by targeting
gamma-synuclein. Neoplasia 16 (12), 1094–1106. doi:10.1016/j.neo.2014.10.008

Xu, G., Zhang, B., Ye, J., Cao, S., Shi, J., Zhao, Y., et al. (2019). Exosomal miRNA-
139 in cancer-associated fibroblasts inhibits gastric cancer progression by
repressing MMP11 expression. Int. J. Biol. Sci. 15 (11), 2320–2329. doi:10.7150/
ijbs.33750

Yang, S. C., Wang, W. Y., Zhou, J. J., Wu, L., Zhang, M. J., Yang, Q. C., et al.
(2022). Inhibition of DNMT1 potentiates antitumor immunity in oral squamous
cell carcinoma. Int. Immunopharmacol. 111, 109113. doi:10.1016/j.intimp.2022.
109113

Yarchoan, M., Hopkins, A., and Jaffee, E. M. (2017). Tumor mutational burden
and response rate to PD-1 inhibition. N. Engl. J. Med. 377 (25), 2500–2501. doi:10.
1056/NEJMc1713444

Ye, G., Yang, Q., Lei, X., Zhu, X., Li, F., He, J., et al. (2020). Nuclear MYH9-
induced CTNNB1 transcription, targeted by staurosporin, promotes gastric cancer
cell anoikis resistance and metastasis. Theranostics 10 (17), 7545–7560. doi:10.7150/
thno.46001

Yu, H., and Jove, R. (2004). The STATs of cancer--new molecular targets come of
age. Nat. Rev. Cancer 4 (2), 97–105. doi:10.1038/nrc1275

Yu, H., Pardoll, D., and Jove, R. (2009). STATs in cancer inflammation and
immunity: A leading role for STAT3.Nat. Rev. Cancer 9 (11), 798–809. doi:10.1038/
nrc2734

Zhang, T., Wang, B., Su, F., Gu, B., Xiang, L., Gao, L., et al. (2022).
TCF7L2 promotes anoikis resistance and metastasis of gastric cancer by
transcriptionally activating PLAUR. Int. J. Biol. Sci. 18 (11), 4560–4577. doi:10.
7150/ijbs.69933

Zhang, Z., Han, S., Ouyang, S., Zeng, Z., Liu, Z., Sun, J., et al. (2022).
PDK4 constitutes a novel prognostic biomarker and therapeutic target in gastric
cancer. Diagn. (Basel) 12 (5), 1101. doi:10.3390/diagnostics12051101

Zhong, X. L., and Rescorla, F. J. (2012). Cell surface adhesionmolecules and adhesion-
initiated signaling: Understanding of anoikis resistance mechanisms and therapeutic
opportunities. Cell. Signal. 24 (2), 393–401. doi:10.1016/j.cellsig.2011.10.005

Frontiers in Genetics frontiersin.org16

Zhao et al. 10.3389/fgene.2022.1087201

https://doi.org/10.1186/s13059-016-1028-7
https://doi.org/10.1016/j.eclinm.2022.101366
https://doi.org/10.1016/j.eclinm.2022.101366
https://doi.org/10.1016/j.redox.2020.101596
https://doi.org/10.1016/j.redox.2020.101596
https://doi.org/10.1158/0008-5472.CAN-17-0307
https://doi.org/10.1093/nar/gkaa407
https://doi.org/10.1136/gut.2009.184176
https://doi.org/10.1038/s41416-022-01747-0
https://doi.org/10.1007/s10120-021-01207-3
https://doi.org/10.3109/10715761003667554
https://doi.org/10.1158/0008-5472.CAN-05-1089
https://doi.org/10.1016/j.arcmed.2021.04.004
https://doi.org/10.1186/s13045-021-01212-0
https://doi.org/10.1038/nrg.2017.80
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1016/j.canlet.2015.01.005
https://doi.org/10.1016/j.canlet.2015.01.005
https://doi.org/10.1016/j.semcancer.2022.03.009
https://doi.org/10.1186/s12943-016-0561-z
https://doi.org/10.1016/j.bbamcr.2013.06.026
https://doi.org/10.1016/j.bbamcr.2013.06.026
https://doi.org/10.1016/j.cmet.2015.11.008
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1016/j.mam.2010.02.001
https://doi.org/10.1016/j.ccell.2015.01.007
https://doi.org/10.1038/nrc3125
https://doi.org/10.1158/0008-5472.CAN-19-3670
https://doi.org/10.1158/0008-5472.CAN-19-3670
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1136/gutjnl-2021-324420
https://doi.org/10.1136/gutjnl-2021-324420
https://doi.org/10.3322/caac.21660
https://doi.org/10.1002/path.3000
https://doi.org/10.1002/path.3000
https://doi.org/10.1016/j.cellsig.2018.02.007
https://doi.org/10.1002/1878-0261.12911
https://doi.org/10.1177/0272989X06295361
https://doi.org/10.1177/0272989X06295361
https://doi.org/10.1136/bmj.i6
https://doi.org/10.1038/ng.2983
https://doi.org/10.1016/j.neo.2014.10.008
https://doi.org/10.7150/ijbs.33750
https://doi.org/10.7150/ijbs.33750
https://doi.org/10.1016/j.intimp.2022.109113
https://doi.org/10.1016/j.intimp.2022.109113
https://doi.org/10.1056/NEJMc1713444
https://doi.org/10.1056/NEJMc1713444
https://doi.org/10.7150/thno.46001
https://doi.org/10.7150/thno.46001
https://doi.org/10.1038/nrc1275
https://doi.org/10.1038/nrc2734
https://doi.org/10.1038/nrc2734
https://doi.org/10.7150/ijbs.69933
https://doi.org/10.7150/ijbs.69933
https://doi.org/10.3390/diagnostics12051101
https://doi.org/10.1016/j.cellsig.2011.10.005
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1087201


Glossary

APC co_stimulation antigen-presenting cell co-inhibition

APC co_inhibition antigen-presenting cell co-inhibition

ARGPS anoikis-related gene prognostic score

ARGs anoikis-related genes

AUC area under the ROC curve

CCR C-C chemokine receptor

DEGs differentially expressed genes

DNMT1 DNA methyltransferase 1

EZH2 enhancer of zeste homologue 2

EMT epithelial–mesenchymal transition

exp expression

GC gastric cancer

GEO Gene Expression Omnibus

GSEA Gene Set Enrichment Analysis

GLI1 GLI family zinc finger 1

GO Gene Ontology

HLA human lymphocyte antigen

IL-6 interleukin-6

IGF-1 insulin-like growth factors-1

lncRNA long non-coding RNA

JAK Janus tyrosine Kinase

KM Kaplan-Meier

LASSO least absolute shrinkage and selection operator

MMP11 matrix metalloproteinase 11

NOX4 NADPH oxidase 4

MDSC Myeloid-derived suppressor cells

MHC_class_I major histocompatibility complex class I

NCBI National Center for Biotechnology Information

OS overall survival

PCNA proliferating cell nuclear antigen

PDK4 pyruvate dehydrogenase kinase-4

ROC receiver operating characteristic

ROS reactive oxygen species

STAD stomach adenocarcinoma

TCGA The Cancer Genome Atlas

ssGSEA Single-sample Gene Set Enrichment Analysis

TMB tumor mutation burden

SKP2 s-phase kinase associated protein 2

PDGFRB platelet derived growth factor receptor Beta

SERPINE1 serine protease inhibitor clade E member 1

SNCG γ-synuclein
STAT3 signal transducer and activator of transcription 6

THY1 Thy-1 cell surface antigen

Type_I_IFN_Reponse type I interferon response

Type_II_IFN_Reponse type II interferon response

VEGF vascular endothelial growth factor.
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