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Tumor development is frequently accompanied by abnormal expression of

multiple genomic genes, which can be broadly viewed as decreased expression

of tumor suppressor genes and upregulated expression of oncogenes. In this

process, epigenetic regulation plays an essential role in the regulation of gene

expression without alteration of DNA or RNA sequence, including DNA

methylation, RNA methylation, histone modifications and non-coding RNAs.

Therefore, drugs developed for the above epigenetic modulation have entered

clinical use or preclinical and clinical research stages, contributing to the

development of antitumor drugs greatly. Despite the efficacy of epigenetic

drugs in hematologic caners, their therapeutic effects in solid tumors have been

less favorable. A growing body of research suggests that epigenetic drugs can

be applied in combination with other therapies to increase efficacy and

overcome tumor resistance. In this review, the progress of epigenetics in

tumor progression and oncology drug development is systematically

summarized, as well as its synergy with other oncology therapies. The future

directions of epigenetic drug development are described in detail.
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1 Introduction

Cancers are the second leading cause of human death, second only to cardiovascular

disease (Siegel et al., 2021). The origination and development of cancer is usually a

synergistic effect of epigenetic alterations, genetic mutations, accompanied with

environmental factors. Epigenetic regulation is distinguished from genetic mutation

and refers to a form of regulation that can regulate gene expression without alteration

of DNA sequence (Bird, 2007). Epitranscriptomics has emerged as another level of

epigenetic regulation similar to DNA and histone modifications. The epitranscriptomic

regulation refers to the relevant functional changes of the transcriptome without any

alteration of the RNA sequence (Meyer et al., 2012). Recent studies have found that

epigenetic regulation and relevant therapeutics play an irreplaceable role in the
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mechanism research of cancer occurrence and development and

in the process of cancer treatment.

Due to the heterogeneity of tumor cells, tumor recurrence and

drug resistance frequently occur, which are the main reasons for the

high mortality of cancer. In the early stage of tumor development,

numbers of epigenetic changes occur in tumor cells (Ka-Yue Chow

et al., 2022; Zandieh et al., 2022). Therefore, it is essential to find

drugs that can regulate the abnormal epigenetic regulation of tumor

cells. Epigenetic regulation of genes includes DNA methylation,

RNAmethylation, histone modifications and non-coding RNAs. At

present, great progress has been made in the development of

antitumor drugs targeting various epigenetic regulation, and

multiple drugs have entered the clinical use or clinical research stage.

Although epigenetic drugs have made great progress in the

treatment of hematological tumors, they are less effective in solid

tumors. With the proposal of drug combination regimens, the

combination of epigenetic drugs and other therapies has achieved

good efficacy in several solid tumors, such as radiation therapy,

chemotherapy, hormone therapy, targeted therapy and

immunotherapy. Numerous completed and ongoing clinical

trials have been conducted to evaluate the plausibility of

combination schemes integrating epigenetic drugs.

It is of great significance to analyze the mechanism of gene

irregulation in cancer cells and to identify agents that could modify

the abnormal expression of genes. In this review, we reviewed the

recent progress of epigenetics in tumor progression and anticancer

therapeutics development. In addition, the combination of

epigenetic drugs and other oncology therapies are specially reviewed.

2 Epigenetic phenomenon and
cancer

2.1 DNA methylation and cancer

DNA methylation is the firstly recognized epigenetic

alterations and it is closely connected with the development of

cancer. When the promoter region of genes was methylated, the

accessibility to regulatory regions in the DNA was blocked and

the transcription factors or other transcriptional regulators can’t

bind with the promoter of genes, which lead to the repression of

gene transcription (Jurmeister et al., 2022). Specifically, various

tumor suppressor genes (TSGs) were identified to be

hypermethylated thus facilitating the development of cancer

via TSGs silencing, such as BRCA1 (Das et al., 2022) and

CDKN2A (Maeda et al., 2003). On the contrary,

hypomethylation of the DNA will lead to the overexpression

of genes. It will turn on the expression of oncogenes which

contributes to the tumorigenesis (Beetch et al., 2021).

Furthermore, the abnormal DNA methylation, such as site-

specific hypermethylation and genome-wide hypomethylation,

are frequently recognized in the CpG islands of the gene

regulatory region of tumor cells (Saghafinia et al., 2018).

The process of DNA methylation is modulated by the DNA

methyltransferases (DNMTs) family, which contains DNMT1,

DNMT2, DNMT3A, DNMT3B and DNMT3L (Tajima et al.,

2016). DNMT1 is the most plentiful enzyme in the DNMTs

family which accounts for modulating the methylation of newly

synthesized DNA (Lee et al., 2001), while the DNMT3 enzymes

primarily participates in de novo methylation (Chedin, 2011).

Abnormal alterations of 5-methylcytosine (5 mC) could indorse

unrestrained cell propagation thus promoting tumor

progression. The ten-eleven translocation (TET) family of

DNA hydroxylases could catalyze 5 mC to various oxidative

mediates, such as 5-formylcytosine (5 fC), 5-

hydroxymethylcytosine (5hmC) and 5-carboxylcytosine (5caC)

and unmethylated cytosine (Strzyz, 2022). The related enzymes

of methylation are recognized as potential targets of cancer.

2.2 RNA modifications and cancer

The methylation in the N6-position of adenosine on

eucaryotic mRNA (N6-methyladenosine, m6A) could regulate

the metabolism of RNA, such as splice, transport, degradation,

translation and miRNA modulation (Wang et al., 2020a). Recent

studies suggested that m6A could modulate the proliferation,

apoptosis and metastasis of cancer cell, through regulating the

cancer-associated genes (He et al., 2019). There are three main

types of regulators responsible for m6A regulation, including

writers, readers and erasers. The methyltransferase complex

(MTC) is the writer to catalyze the methylation of mRNA,

whereas the demethylase erases the m6A. The MTC takes

charge of the catalysis of m6A, which include METTL3 and

other assistant units (Jansens et al., 2022). And the RNA reader

protein identified the m6A to exert relevant effects (Zhou et al.,

2020). The eraser is demethylase which eliminates m6A with α-
ketoglutarate as co-substrate and ferrous iron as cofactor. FTO

and ALKBH5 are the identified m6A erasers so far. FTO could

regulate the splicing of mRNA via blocking the binding of

SRSF2 at RNA splice sites (Zhao et al., 2014). Many FTO

inhibitors have been found to have antitumor effects and are

currently in preclinical studies.

Multiple evidence suggested that the m6A modification has

dual role in cancer. The m6A modification promote tumor

progression via upregulating the expression of oncogenes or

inhibiting the expression of tumor suppressor genes. On the

contrary, the m6A modification could also inhibit the expression

of oncogenes and elevate the expression of tumor suppressor

genes (He et al., 2019).

2.3 Histone modifications and cancer

Histone Modifications could regulate the accessibility and

conformation of chromatin thereby modulating gene expression
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(Morgan and Shilatifard, 2020). The positively charged histone

proteins offer competent integration with DNA of negative

charge. The N-terminal of histone proteins are abundant in

arginine and lysine residues that could be frequently modified

(Zhou et al., 2019). The related histone-modifying enzymes

modify the relevant residues of the tails of histone via

methylation, acetylation, phosphorylation. Besides, histone

modifications are being discovered gradually, such as the

ubiquitination, citrullination, ADP-ribosylation, formylation,

deamination, propionylation, O-GlcNAcylation, butyrylation,

proline isomerization, crotonylation and lactylation. There are

three types of proteins interacted with the histone, (I) the readers

which identify the modifications of histone, (II) the writers which

regulate the modifications of histone, (III) the erasers which

remove the modifications of histone (Millan-Zambrano et al.,

2022).

2.3.1 Acetylation of histone
Histone acetylation is modulated via histone deacetylases

(HDACs) and histone acetyltransferases (HATs) in a reversible

and dynamic way (Icardi et al., 2012). The primary function of

HATs is adding the acetyl group (-CH3CO) to lysine residues

which are related to the activation of gene transcription. On the

contrary, the HDACs are erasers which are responsible for

removal of the acetyl groups (Shvedunova and Akhtar, 2022).

The charge neutralization model was applied for the

explanation of the mechanism of histone acetylation. Histones

tightly bind with negatively charged DNA through the lysine

residues with positive charge on H3/H4. When histones are

acetylated, chromatin configuration will no longer be tight

and transformed to euchromatin with loose state. Therefore,

the transcriptional factors (TFs) will be recruited for activation of

gene transcription (Nicolas et al., 2018). In contrast, HDACs

could remove the acetylation of lysine residues and the

configuration of chromatin converts to condensed

heterochromatin. The acetylation of H4 at the lysine-16

(H4K16) is essential for the chromatin folding and the

transition of euchromatin to heterochromatin (Wang et al.,

2020b). In addition, the acetylation of histone could provide

the binding site for the proteins which participate in the

activation of genes, such as the proteins of the bromodomain-

containing family (Qin et al., 2019).

Bromodomain and extraterminal domain (BET) proteins are

readers of the acetylated proteins, which contains a couple of

tandem bromodomains, a C-terminal domain and an extra-

terminal domain. The BRD family includes BRD2, BRD3,

BRD4 and BRDT. The first three are commonly distributed in

tissues, and BRDT is only expressed in the testis (Boyson et al.,

2021). The BET families are principally responsible for the

recognition of the acetylation of histone H4, but also

recognize the acetylation of non-histone proteins, like

transcription factors. For example, BRD4 could bind with the

TWIST which is an essential transcription factor in the

metastasis of cancer (Shi et al., 2014). It also plays an

important part in the regulation of oncogene MYC (Devaiah

et al., 2020). The inhibitors of BET (BETi) are recognized as an

important item for the research and development of antitumor

drugs.

2.3.2 Methylation of histone
Histones can be methylated at the arginine or lysine residues

which are mediated via the histone methyl transferases (HMTs),

whereas the histone demethylases (HDMs) regulate the

elimination of methylation. The consequence of histone

methylation can be repression or activation of transcription,

depending on the methylated residues (Black et al., 2012). In

general, trimethylation of lysine 4 on H3 (H3K4me3) (Hughes

et al., 2020) signifies activation of gene transcription, whereas the

trimethylation of lysine 9 (H3K9me3) (Feng et al., 2020) and 27

(H3K27me3) (Raas et al., 2022) on H3 represents inhibition of

gene transcription. EZH2 belongs to the polycomb repressive

complex 2 (PRC2), which is responsible for the catalysis of

methylation of lysine 27 of histone H3 (Pan et al., 2016; Jiang

et al., 2021). EZH2 is an essential therapeutic target of various

cancers, and multiple inhibitors of EZH2 have entered clinical or

preclinical studies. Furthermore, the levels of lysine methylation

are also related to the transcription repression or activation,

which could be identified via diverse methyl-lysine-binding

domains. Tumor cells are usually found to possess abnormal

histone modifications at single gene or global nuclei levels

(Cornett et al., 2019).

2.4 Non-coding RNAs

The sequencing of the entire human genome has shown that

only ~2% of the genome is translated. The non-coding RNAs

(ncRNAs) could be generally characterized to small and large

ncRNAs (lncRNA, more than 200 nucleotides) (Anastasiadou

et al., 2018). These ncRNAs were identified as an essential

regulator in the development of various disease including

cancer (Esteller, 2011). The small ncRNAs comprise small

interfering RNAs (siRNAs), PIWI interacting RNAs (piRNAs),

microRNAs (miRNAs) and small nucleolar RNAs (snoRNAs).

The small ncRNAs are participated in the silencing of targeted

gene with high level of sequence conservation among different

species (Matsui and Corey, 2017). On the contrary, the lncRNAs

possess low level of sequence conservation across species and the

mechanisms in the transcription regulation are more

complicated (Zhu et al., 2013). Particularly, the lncRNAs is

identified as molecular scaffolds for the multiple regulators of

chromatin (Rinn, 2014), whereas the function is disrupted in the

various cancers. The lncRNA HOTAIR was found to be

upregulated in multiple cancers (Qu et al., 2019) and act as a

molecular scaffold for the PRC2 complex to target the chromatin

(Tsai et al., 2010). Silencing of HOTAIR could inhibit the
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metastasis of colorectal cancer and breast cancer via regulating

PRC2 occupancy (Kogo et al., 2011).

3 Epigenetic therapeutics for cancer

3.1 DNA methyltransferase inhibitor

The DNMT inhibitors are classified to two types generally:

nucleoside analogues and non-nucleoside analogues. The

nucleoside analogues are modified molecule of cytidine

which could covalently interact with the catalytic positions

of DNMTs in an irreversible way (Yu et al., 2019). Two

DNA methyltransferase inhibitors (DNMTi), 5-azacitidine

(Vidaza) and its deoxyanalogue decitabine (Dacogen), have

been approved for clinical use, which increases survival time

and ameliorates life quality of patients. Azacitidine (Cogle et al.,

2015) and decitabine (Dhillon, 2020) are usually used for the

treatment of myelodysplastic syndrome (MDS), acute myeloid

leukemia (AML) or chronic myelomonocytic leukemia

(CMML). The derivate of decitabine, SGI-110, is a novel

hypomethylating compound for the treatment of AML and

MDS that has undergone phase II clinical trial (Garcia-Manero

et al., 2019a). CP-4200 was designed as a pro-drug of

azacytidine. It was an elaidic acid ester for azacytidine,

which exerted better therapeutic effect than azacytidine

(Brueckner et al., 2010). Besides, RX-3117 was also a

nucleoside analogue which could suppress DNMT1 and

could inhibit the proliferation of cancer in vivo (Balboni

et al., 2019). Unfortunately, overall hypomethylation of

genome could happen due to the non-specificity of

nucleoside analogues (Flausino et al., 2021). Therefore, some

non-nucleoside inhibitors of DNMTs are exploited. The non-

nucleoside inhibitors can bind the catalytic site of DNMTs

without binding the DNA directly. Hydralazine which is

indicated for the management of hypertension has been

studied for its potential as a DNMT inhibitor. It was

demonstrated that in prostate cancer cells hydralazine

treatment lowered the production of DNMT1, DNMT3a and

DNMT3b mRNA suggesting its potential in reducing the

malignant growth through epigenetic alteration (Graca et al.,

2014). An antisense oligonucleotide designed to bind with the

3′ untranslated region of DNMT1 mRNA and hindering with

its transcription is MG98. It is a second generation DNMT

inhibitor specifically inhibiting DNMT1 without altering

DNMT3 expression. Clinical study has been carried out with

MG98 in combination with interferon for the treatment of

metastatic renal cell carcinoma and was proven to be safe at a

particular dosage (Amato et al., 2012). SGI-1027 is a derivative

of quinoline which could suppress DNMT1, DNMT3A and

DNMT3B without binding with DNA. SGI-1027 could

upregulate the TSGs of which the transcription is blocked in

tumor cells (Sun et al., 2018) (Table 1).

3.2 RNA methyltransferase inhibitor

Studies suggested that inhibition of m6A was able to

facilitate development of various cancers. So far, the first

METTL3 inhibitor, STC-15, has entered phase I clinical

trials for the treatment of advanced malignancies (Holz,

2022). STM2457, which is also an inhibitor of METTL3,

leads to reduced AML growth, and an increase in

differentiation and apoptosis of AML cells in vitro.

Furthermore, STM2457 could also contribute to impaired

engraftment and prolonged survival in various AML mouse

models (Yankova et al., 2021). Meclofenamic acid (MA) is a

selective inhibitor of FTO via preempting binding sites of FTO

(Huang et al., 2015). MA2 is an ethyl ester derivative of MA and

it could inhibit the proliferation of glioblastoma stem-like cell

both in vitro and in vivo (Xiao et al., 2020). FB23-2 was also

identified as an inhibitor of FTO. It could promote the

differentiation and inhibit the proliferation of AML cells

(Huang et al., 2019). R-2- hydroxyglutarate (R-2HG) is a

metabolite of mutant IDH1/2 enzymes, which increased the

m6A level and accelerated the degradation of oncogenes (Dang

et al., 2009). The research of m6A is an emerging field.

Currently, the research and development of m6A inhibitors

are in the pre-clinical stage. It is believed that many m6A

inhibitors will enter the clinical trials or even market stage in

the future (Table 1).

3.3 Drugs regulating histone modification

3.3.1 Inhibitors of histone methyltransferases
HMTs are identified to be highly expressed in a variety of

cancers, indicating HMTs to become latent therapeutic target for

cancers (Liu and Wang, 2016). The inhibitor of lysine

methyltransferase DOT1L (Vatapalli et al., 2020), EPZ004777,

was designed basing on the S-adenosyl methionine binding

domain. It could suppress the activity of DOT1L enzyme, thus

downregulating the methylation level at H3K79 (Gao and Ge,

2018). Besides, EPZ-5676 was also a DOT1L inhibitor which

could significantly inhibit the progression of leukemia via

reducing the methylation of H3K27 (Waters et al., 2015).

EZH2 is the main element of PRC2 which is related to the

H3K27 methylation, contributing to the inhibition of TSGs.

EZH2 was found to upregulate in various cancers, such as

breast cancer and prostate cancer (Duan et al., 2020).

EZH2 inhibitor tazemetostat have been proven effective in

patients with relapsed or refractory, BAP1-inactivated

malignant pleural mesothelioma in a multicentre, open-label,

phase 2 study (Zauderer et al., 2022). The S-adenosyl-L-

homocysteine hydrolase inhibitor DZNep could degrade the

expression of EZH2 and inhibit the proliferation and

metastasis of chondrosarcoma (Girard et al., 2014).

EPZ005687 and EPZ-6438 (Knutson et al., 2014) are selective
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TABLE 1 Epigenetic anticancer therapeutics.

Type Status Category Compound Applications Reference

DNMTi Approved Nucleoside analogues 5-azacitidine MDS, AML,CMML Cogle et al. (2015)

Approved Nucleoside analogues Decitabine MDS, AML,CMML Dhillon, (2020)

Phase II Nucleoside analogues SGI-110 MDS, AML Garcia-Manero et al. (2019a)

Phase I/II Nucleoside analogues RX-3117 Pancreatic cancer Balboni et al. (2019)

Preclinical (In vitro,
In vivo)

Nucleoside analogues CP-4200 AML Brueckner et al. (2010)

Phase I/II Non-nucleoside analogues Hydralazine MDS, CTCL, solid tumors Graca et al. (2014)

Phase I/II Non-nucleoside analogues MG98 DMS, AML, renal cancer Amato et al. (2012)

Preclinical (In vitro) Non-nucleoside analogues SGI-1027 Solid tumors Sun et al. (2018)

HMTi Phase I DOT1L inhibitor EPZ-5676 Hematological malignancy Gao and Ge, (2018)

Preclinical (In vitro) DOT1L inhibitor EPZ004777 Mixed lineage leukemia Liu and Wang, (2016)

Phase II EZH2 inhibitor Tazemetostat Lymphoma and solid tumors Duan et al. (2020)

Preclinical (In vitro,
In vivo)

EZH2 inhibitor EPZ005687 Lymphoma Girard et al. (2014)

Preclinical (In vitro) EZH2 inhibitor DZNeP Colon, breast cancer Zauderer et al. (2022)

Preclinical (In vitro) SMYD2 inhibitor AZ505 Glioma Kojima et al. (2020)

Preclinical (In vitro) SMYD2 inhibitor LLY-507 Ovarian clear cell carcinoma Knutson et al. (2014)

Preclinical (In vitro) SMYD2 inhibitor A-893 Lung cancer Pan et al. (2022)

Preclinical (In vitro,
In vivo)

G9a inhibitor BIX-01294 Colon cancer Padeken et al. (2022)

Preclinical (In vitro,
In vivo)

G9a inhibitor UNC0638 Renal cancer Chae et al. (2019)

HDMi Phase I LSD1 inhibitor Tranylcypromine
analogue

AML Ojha et al., (2021); Wass et al., (2021)

Preclinical (In vitro,
In vivo)

LSD1 inhibitor Pargyline Prostate cancer Fang et al. (2019)

Preclinical (In vitro) LSD1 inhibitor Polyamine analogues Breast cancer Dai et al. (2020)

Preclinical (In vitro,
In vivo)

LSD1 inhibitor Namoline Prostate cancer Sharma et al. (2010)

Preclinical (In vitro,
In vivo)

LSD1 inhibitor HCI-2509 Prostate cancer Sharma et al. (2010)

HATi Preclinical (In vitro,
In vivo)

p300 inhibitor C646 AML Li et al. (2022)

Preclinical (In vitro) Tip60 inhibitor Anacardic acid Breast cancer Ghizzoni et al. (2009)

Preclinical (In vitro,
In vivo)

Tip60 inhibitor 6-alkyl salicylates Cancer Wu et al. (2009)

Preclinical (In vitro,
In vivo)

Pyridoisothiazole
derivative

PU139 Neuroblastoma Ghizzoni et al. (2012)

Preclinical (In vitro,
In vivo)

Pyridoisothiazole
derivative

PU141 Neuroblastoma Ghizzoni et al. (2012)

(Continued on following page)
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inhibitors of EZH2 which possess excellent inhibitory activity

against lymphoma. SMYD2 is another lysine methyltransferase

which mainly modulate the methylation of H2B, H3 and H4.

Several inhibitors of SMYD2, like LLY-507 (Kojima et al., 2020),

AZ505 (Pan et al., 2022) and A-893 (Sweis et al., 2015) could

significantly suppress the proliferation of various cancer cells.

The methyltransferase G9a is responsible for the methylation of

H3K9 (Padeken et al., 2022). It is overexpressed in various

cancers and its inhibitors, BIX-01294 (Chae et al., 2019) and

UNC0638 (Li et al., 2021) are able to inhibit the activity of G9a

selectively with anti-tumor effects. Studies have found that Set 7/

9 could both regulate the methylation of H3K4 and estrogen

receptor (ER). Cyproheptadine was recognized as a Set 7/

9 inhibitor which could inhibit the proliferation of breast

cancer cells by modulating the expression of ER (Takemoto

et al., 2016) (Table 1).

3.3.2 Inhibitors of histone demethylase
There are two main categories of the inhibitors of HDMs.

One type is the Lysine-specific demethylases LSD1/2 with the

amine oxidases properties, belonging to the

HDM1 subgroup. The remaining HDM2-8 subgroups

contains jumonji C domain which is α-ketoglutarate and iron

dependent (Nowak et al., 2016).

TABLE 1 (Continued) Epigenetic anticancer therapeutics.

Type Status Category Compound Applications Reference

HDACi Approved Hydroxamic acid
derivatives

Vorinostat CTCL Willmann et al. (2012)

Approved Hydroxamic acid
derivatives

Pracinostat AML Bird et al. (2020)

Approved Hydroxamic acid
derivatives

Panobinostat Multiple myeloma Ho et al. (2020)

Phase I/II Hydroxamic acid
derivatives

Abexinostat Relapsed/Refractory
lymphoma

Garcia-Manero et al. (2019b)

Phase II Hydroxamic acid
derivatives

Resminostat Pancreatic cancer, lymphoma Galli et al. (2010)

Phase II Hydroxamic acid
derivatives

Givinostat Multiple myeloma Ribrag et al. (2017)

Phase II Cyclic Peptides Romidepsin CTCL, PTCL Damaraju et al. (2012)

Phase II Benzamide derivative Mocetinostat MDS, Relapsed/Refractory
lymphoma

Witta et al. (2012)

Phase III Benzamide derivative Entinostat Melanoma, leukemia, breast
cancer

(Sborov et al., (2017); Connolly et al.,
(2021); Ny et al., (2021))

Preclinical (In vitro) Short chain fatty acids Phenylbutyrate Glioblastoma, CRC Arvidsson et al. (2016)

Preclinical (In vitro) Short chain fatty acids Valproic acid Solid tumors, glioma Richards et al. (2006)

BETi Phase I/II Thienotriazolodiazepine OTX015 Leukemia Delmore et al. (2011)

Phase I/II Benzoisoxazoloazepine CPI-0610 Relapsed/Refractory
lymphoma

Berthon et al. (2016)

Preclinical (In vitro,
In vivo)

Benzodiazepene derivative JQ1 Multiple myeloma Byun et al. (2019)

m6Ai Phase I METTL3 inhibitor STC-15 Advanced malignancies Holz, (2022)

Preclinical (In vitro,
In vivo)

METTL3 inhibitor STM2457 AML Yankova et al. (2021)

Preclinical (In vitro) FTO inhibitor MA Cervical cancer Huang et al. (2015)

Preclinical (In vitro,
In vivo)

FTO inhibitor MA2 Glioblastoma Xiao et al. (2020)

Preclinical (In vitro) FTO inhibitor FB23-2 AML Huang et al. (2019)

Preclinical (In vitro) FTO inhibitor R-2HG Leukemia, glioma Dang et al. (2009)
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A variety of LSD1 inhibitors are currently in clinical or

preclinical studies (Fang et al., 2019). LSD1 inhibitor pargyline

was reported to suppress the growth and epithelial-to -

mesenchymal transformation (EMT) of prostate carcinoma

cells (Ojha et al., 2021). The antidepressant drug

tranylcypromine was also identified as a LSD1 inhibitor with

antineoplastic activity (Wass et al., 2021). Besides, there are

several LSD1 inhibitors derivated on tranylcypromine

structure undergoing clinical research for the treatment of

Leukemia (Dai et al., 2020). The derivatives of polyamine

could upregulate the methylation of H3K4 in triple negative

breast cancer cells via inhibiting LSD1 (Zhu et al., 2012).

Similarly, derivatives of biguanides or guanidines could also

suppress the activity of LSD1, thus inhibiting the proliferation

of lung cancer cells through upregulating H3K4 methylation

(Sharma et al., 2010). In addition, LSD1 inhibitors Namolineand

HCI-2509 can inhibit the proliferation of prostate cancer in like

manner (Willmann et al., 2012).

On the other hand, the derivative of hydroxamic acid SAHA

(vorinostat) was proved as an effective inhibitor of KDM4E and

its derivative IOX1 was also demonstrated to inhibit various

types of HDMs (Siegel et al., 2009). In particular, various

flavonoid compounds, such as caffeic acid and myricetin, have

presented inhibitory activity on numerous jumonji C HDMs (Li

et al., 2022) (Table 1).

3.3.3 Inhibitors of histone acetyltransferase
The HATs play an essential role in the modulation of

transcription and are promising therapeutic target of cancer.

The HATs inhibitor C646, which could competitively inhibit the

activity of p300, could significantly block cell cycle and induce

cell apoptosis of acute myeloid leukemia (AML) cells (Gao et al.,

2013). The isothiazolone is both the inhibitor of p300 and PCAF

and was demonstrated effectively in inhibiting colorectal cancer

(Ghizzoni et al., 2009). The natural product anacardic acid was

demonstrated as the inhibitor of MYST family (Wu et al., 2009)

and its analogs 6-alkylsalicylate was identified as the inhibitor of

Tip60 (Ghizzoni et al., 2012). They have been found to inhibit the

growth of pancreatic cancer, breast cancer and prostate cancer.

Especially, PU139 and PU141, which are derivatives of

pyridoisothiazolone, could suppress the activity of p300, CBP,

Gcn5 and PCAF both in vitro and in vivo (Ramakrishnan et al.,

2022). The antineoplastic activity of the above compounds was

also proved both in neuroblastoma cells and xenografts models in

mice (Table 1).

3.3.4 Inhibitors of histone deacetylase
The application of inhibitors of HDAC (HDACis) was

successfully proved in the treatment of cancer in clinical

practice. The HDACis are able to inhibit the proliferation of

cancer cells through inducing cell apoptosis and suppressing the

process of EMT by inhibiting the expression related to the cell

migration and angiogenesis (Ho et al., 2020).

The derivative of hydroxamic acid Vorinostat was the first

HDACi authorized by the Food and Drug Administration (FDA)

for the therapeutic of cutaneous T cell lymphoma (CTCL) (Siegel

et al., 2009). Since then, numerous derivatives of hydroxamic acid

have been developed for preclinical or clinical studies, such as

Pracinostat, Abexinostat, Givinosta, Resminostat and

Panobinostat (Bird et al., 2020). Pracinostat has been

approved for the treatment of AML as a breakthrough

therapy, combined with azacytidine (Garcia-Manero et al.,

2019b). Besides, Abexinostat has also been approved for the

treatment of follicular lymphoma after achieving favorable

treatment results in clinical trials (Ribrag et al., 2017).

Givinostat has been undergoing phase II clinical trial for the

treatment of multiple myeloma (Galli et al., 2010). Similarly,

Resminostat has been evaluated for the treatment of relapsed

Hodgkin lymphoma in phase II clinical study now (Walewski

et al., 2019). In addition, 4SC-202 was a novel HDACi and

undergoing in the phase I clinical trial for the treatment of

advanced hematological cancers (von Tresckow et al., 2019).

Tasquinimod, which is an anti-angiogenic compound for the

therapeutic of castration resistant prostate cancer, is identified as

an allosteric regulator of HDAC4 (Isaacs et al., 2013). AR-42 is a

pan-HDAC inhibitor which is effectively demonstrated in phase I

research for the treatment of B-, T-cell lymphomas and multiple

myeloma (Sborov et al., 2017).

Another major class of HDACi is the derivatives of

benzamide, such as entinostat, mocetinostat and tacedinaline

(CI-994). Entinostat was effectively examined without severe

toxic effects in breast cancer (Connolly et al., 2021),

melanoma (Ny et al., 2021) and metastatic non-small cell lung

cancer (NSCLC) (Witta et al., 2012) in phase II/III clinical trials,

either alone or in combination with other drugs. Mocetinostat is

also in the phase II clinical study which is applied for the

metastatic leiomyosarcoma (Choy et al., 2018) and relapsed

classical Hodgkin’s lymphoma (Younes et al., 2011) with

promising activity with manageable toxicity as single agent.

Tacedinaline could inhibit the proliferation of cell lines of

NSCLC in vitro and tacedinaline will exert better effect when

it with combined with other anticancer agents, like docetaxel and

gemcitabine (Loprevite et al., 2005). However, results of a phase

II multicenter study suggested that gemcitabine combined with

tacedinaline presented no benefit than gemcitabine alone in

advanced pancreatic cancer patients with advanced pancreatic

cancer (Richards et al., 2006).

The valproic acid (VPA) and phenylbutyrate, which belongs

to the short chain fatty acid type, are also found to inhibit the

activity of HDAC with anti-cancer activity. VPA was effectively

demonstrated in the neuroendocrine tumors (Arvidsson et al.,

2016). In vitro studies have suggested that phenylbutyrate is able

to inhibit the proliferation of glioblastomas cells (Ye et al., 2019).

Various natural products were found to exert HDAC suppressing

activity, such as cyclopeptide, amamistatin and chlamydocin

(Byun et al., 2019) (Table 1).
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3.4 Drugs regulating BET proteins

TherearenumerousBETisundergoingtheclinicalorpreclinical

studies currently. JQ1 is the first designed BETi which could bind

with the bromodomains or the acetyl-lysine competitively

(Filippakopoulos et al., 2010). JQ1 could arrest cell cycle and

induce cell senescence in multiple myeloma through inhibiting

the expression of c-Myc (Delmore et al., 2011).

Thienotriazolodiazepine OTX015 is the first BETi which enters

clinical trials.OTX015couldarrestcell cycle, induceapoptosisofcell

andinhibit thegrowthofacute leukemiacell linesbydownregulating

BRD2, BRD4 and MYC expression (Coude et al., 2015). In the

clinical trials,OTX015presentedfavorabletherapeuticeffectswithin

the tolerable dose in the treatment of AML (Berthon et al., 2016).

CPI-0610isalsoaBETiwithbenzoisoxazoloazepinestructurewhich

is undergoing phase I clinical trial for the treatment of refractory or

relapsed lymphomas (Albrecht et al., 2016) (Table 1).

4 Epigenetic drugs in combination
with other therapies

4.1 Epigenetic drugs in combination with
radiotherapy

The combinations of radiotherapy and inhibitors of DNMT,

HDAC, BET and EZH2 have been demonstrated to increase the

sensitivity of radiotherapy to patients in preclinical research

through arresting cell cycle, upregulating oxidative stress and

preventing DNA-damage repair. The above studies suggest the

great potential of epigenetic drugs in combination with

radiotherapy. In a phase I trials, the combination of vorinostat

and radiotherapy with capecitabin significantly increased the

overall survival of patients of pancreatic ductal adenocarcinoma

(Tinari et al., 2012). In addition, the combination of vorinostat and

radiotherapy could improve the objective response rate of

refractory neuroblastoma (Mueller et al., 2011) and

gastrointestinal carcinoma (Ree et al., 2010), compared with

using the radiotherapy alone. Unfortunately, not all the

epigenetic drugs in combination with radiotherapy will exert

the above effect, whereas leading to severe toxic effect sometimes.

4.2 Epigenetic drugs in combination with
chemotherapy

In preclinical research, the combinations of chemotherapy with

the DNMT (Gravina et al., 2010) and HDAC inhibitors (Arrighetti

et al., 2015) significantly strengthen the killing effect of

chemotherapeutics on tumor cells by promoting DNA damage

and inhibiting the repair of DNA damage. Besides, the drug

resistance of chemotherapeutics could be overcome when in

combinations of DNMT or HDAC inhibitors (Wang et al., 2020c).

Unfortunately, although the preclinical experiments suggested that

the combination of chemotherapy and epigenetic drugs could

improve the efficacy of chemotherapy, the clinical trials frequently

presented unfavourable results due to no significant improvement in

efficacy accompanied by serious adverse effects (Choy et al., 2015).

4.3 Epigenetic drugs in combination with
hormone therapy

In the preclinical studies, the HDACi could exaggerate the

therapeutic effect and overcome drug resistance of the hormone

therapy in breast cancer animal models (Bijian et al., 2018).

Besides, the inhibitors of BET could be used in combination

with fulvestrant to inhibit the proliferation of tamoxifen-

resistant breast cancer cells both in vitro and in vivo (Li et al.,

2020). CPI-1 is a specific inhibitor of CBP and p300 which could

combine with the anti-oestrogen therapies for the treatment of

breast cancer by inhibiting the ERα pathway (Waddell et al., 2021).

Not only that, the combination of epigenetic drugs and

hormone therapy is also proven safely and effectively in the

clinical trials. A phase II trial suggested that the patients with

endocrine-resistant metastatic breast cancer that treated tamoxifen

combined with vorinostat had high therapeutic responses with

favorable tolerability (Peterson et al., 2021). Similarly, exemestane

combined with entinostat (HDAC inhibitor) significantly

improved the progression free survival (PFS) of hormone

receptor-positive, advanced-stage, endocrine -resistant breast

cancer in postmenopausal women, which was approved by the

FDA as a breakthrough therapy (Connolly et al., 2021).

The combination of BET inhibitor JQ1 and anti-androgen

enzalutamide could significantly inhibit the proliferation of

prostate cancer xenografts which is enzalutamide-resistant

(Asangani et al., 2014). Similar results were obtained for the

combination of BET inhibitor OTX-015 and AR-agonist ARN-

509 (Asangani et al., 2016). At present, these drug combinations

are in clinical trial studies. In addition, the addition of HDAC

inhibitor (Panobinostat) could overcome the resistance of the

second-line anti-androgen therapy of prostate cancer, which

remarkably improve the PFS of patients (Ferrari et al., 2019).

4.4 Epigenetic drugs in combination with
targeted therapy

Preclinical studies suggested that the application of

epigenetic drugs could overcome the drug resistance to the

HER family receptor tyrosine kinases (RTKs). Using BETs

remarkably upregulated the sensitivity of head and neck

squamous cell cancer (HNSCC) to anti-EGFR antibody

(Leonard et al., 2018) and the sensitivity of HER2-positive

breast carcinoma to lapatinib (Stuhlmiller et al., 2015).

Unfortunately, the combination of RTK inhibitors and
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epigenetic drugs usually exhibited greater toxicity in the clinical

experiments, which made it difficult to achieve the desired

efficacy (Pili et al., 2017).

In addition, numerous clinical trials have demonstrated that

the combination of anti-angiogenic therapeutics and HDAC

inhibitors could remarkably improve the efficacy of the

treatment for various cancers with favorable safety profile. The

drug combinations have achieved good efficacy and safety, such as

sorafenib and resminostat (HDACi) in treatment of hepatocellular

cancer (Bitzer et al., 2016), bevacizumab and vorinostat (HDACi)

in clear cell renal cell cancer (RCC) (Pili et al., 2017), bevacizumab

and panobinostat (HDACi) in high-grade glioma (Lee et al., 2015).

Besides, the epigenetic drugs could also be combined with the

MEK/BRAF inhibitors and PARP inhibitors (Thy et al., 2021).

However, the toxicity and tolerability of these drug combinations is

the biggest question in clinical trials.

4.5 Epigenetic drugs in combination with
immunotherapies

The epigenetic regulation was found to overcome drug

resistance of the immune-checkpoint blockade (ICB). The

combinations of epigenetic drugs and immune-checkpoint

inhibitors were demonstrated effective for the treatment of

cancers which were refractory or resistant to ICB, both in

preclinical and clinical studies. The combinations of HDACi

and ICB have received favorable clinical effect in the clinical

trials, such as vorinostat and pembrolizumab (anti-PD-

1 antibody) for the treatment of ICB-resistant metastatic

NSCLC (Rodriguez et al., 2020), entinostat and pembrolizumab

for the treatmentofmicrosatellite-stableCRC(MedinaLopezetal.,

2022). It is worth mentioning that the combinations of epigenetic

drugsandimmune-checkpoint inhibitorsareusuallywell tolerated

withoutsevere toxiceffects,whicharesuperior tothecombinations

with targeted therapy.

Nonetheless, extended application of epigenetic drugs could

induce harmful influence in the antitumor immunity. For

instance, the BETi could cause severe depletion of T cells in

the tumor environment (Wu et al., 2021). Therefore, the

sequential or intermittent dosage regimen was adopted to

induce the initiation of the epigenetic regulation and create an

anti-cancer microenvironment during the treatment.

5 Epigenetic biomarker development

Epigenetic biomarkers are able to provide relevant

information for diagnosis, prognosis and therapy optimization

in routine clinical treatment and drug discovery. Epigenetic

biomarkers may provide a rationale for patient stratification

and precision medicine, thus maximizing the chances of

treatment success while minimizing unwanted effects.

Epigenetic biomarkers can also provide extra advantages,

FIGURE 1
Recent advances in epigenetic anticancer therapeutics.
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including low patient invasiveness. For example, variations in

DNA methylation can be detected in body fluids and liquid

biopsies (Liu et al., 2018). The development of accurate

measurements of epigenetic alterations of specific targets in

patients will greatly guide the clinical application of epigenetic

drugs. The DNA repair gene O6-methylguanine-DNA

methyltransferase (MGMT) methylation status is the first

discovered biomarker in neuro-oncology. The promoter

methylation of MGMT in glioblastomas could predict the

therapeutic effect of temozolomide (Hegi et al., 2005). It has

been shown in vitro that azacytidine and decitabine use different

human nucleoside transporters (hNTs), and that cytotoxicity is

dependent on hNT presence. These observations suggest that

hNTs may be useful biomarkers for the efficacy of DNMTis, but

clinical data are still not available (Damaraju et al., 2012).

Unfortunately, the most extensively studied biomarker for

HDACi activity is acetylation levels of the target proteins

before and after treatment in peripheral blood or tumor

tissue, but no correlation to clinical response has been found.

Indeed, hyperacetylation was generally observed in all patients

irrespective of response to HDACi (Ellis et al., 2008; Haigentz

et al., 2012). The application of patient-stratified epigenetic

biomarker, along with predictive models, will take our

understanding and use of cancer epigenetics to a new level in

the diagnosis, prognosis and treatment of cancer patients.

6 Conclusion and future perspectives

Although epigenetic drugs have made great progress in

cancer drug development, the problems that arise are not to

be underestimated. The first and most serious problem is that the

low selectivity of epigenetic drugs leads to serious adverse

reactions, such as the HDACi. Therefore, the search for

epigenetic drugs with better selectivity that can target more

elaborate isoform of epigenetic target may be one of the

significant development directions in the future. In addition,

monotherapy of epigenetic drugs presented favorable efficacy in

hematologic cancer rather than in solid tumor. Therefore, the

combination of epigenetic drugs and other antitumor therapies

in the treatment of insensitive solid tumors and drug-resistant

recurrent tumors is in active development. Unfortunately, the

occurrence of serious toxic effects is still the main reason that

disturbs the application of combined therapy. Hence, the

exploration of optimizing the combination regimen and

reducing the administered dosage may be promising

directions for the extensive application of epigenetic drugs in

the future. In summary, this review systematically concluded the

recent progress of the epigenetic therapeutics in the treatment of

cancers (Table 1) and the combination strategy with other

therapies (Figure 1). Epigenetic drugs still have a broad

prospect in the treatment of cancers. Optimizing the

combination administration regimen to reduce toxic side

effects and developing new epigenetic drugs with less toxicity

may be two significant directions in the future.
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