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CRISPR-Cas9 system is one of the recent most used genome editing

techniques. Despite having a high capacity to alter the precise target genes

and genomic regions that the planned guide RNA (or sgRNA) complements, the

off-target effect still exists. But there are already machine learning algorithms

for people, animals, and a few plant species. In this paper, an effort has been

made to create models based on three machine learning-based techniques

[namely, artificial neural networks (ANN), support vector machines (SVM), and

random forests (RF)] for the prediction of the CRISPR-Cas9 cleavage sites that

will be cleaved by a particular sgRNA. The plant dataset was the sole source of

inspiration for all of these machine learning-based algorithms. 70% of the on-

target and off-target dataset of various plant species that was gathered was

used to train the models. The remaining 30% of the data set was used to

evaluate the model’s performance using a variety of evaluation metrics,

including specificity, sensitivity, accuracy, precision, F1 score, F2 score, and

AUC. Based on the aforementioned machine learning techniques, eleven

models in all were developed. Comparative analysis of these produced

models suggests that the model based on the random forest technique

performs better. The accuracy of the Random Forest model is 96.27%, while

the AUC valuewas found to be 99.21%. The SVM-Linear, SVM-Polynomial, SVM-

Gaussian, and SVM-Sigmoid models were trained, making a total of six ANN-

based models (ANN1-Logistic, ANN1-Tanh, ANN1-ReLU, ANN2-Logistic,

ANN2-Tanh, and ANN-ReLU) and Support Vector Machine models (SVM-

Linear, SVM-Polynomial, SVM-Gaussian However, the overall performance of

Random Forest is better among all other ML techniques. ANN1-ReLU and SVM-

Linear model performance were shown to be better among Artificial Neural

Network and Support Vector Machine-based models, respectively.
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1 Introduction

Genome editing (or gene editing) is nothing but the deletion,

insertion and replacement of DNA at an explicit site in the

genome of any organism. Molecular scissors, also known as

designed nucleases, is used in the molecular laboratory to alter

gene functions by editing or by modification of part of DNA

(Urnov et al., 2010; Perez-Pinera et al., 2012).

Although there are many different gene editing methods

(such as CRISPR-Cas9, ZFNs or TALENs etc.) available. Though

techniques have been extensively used in a wide variety of cells,

tissues and organisms (Sander and Joung 2014; Ma et al., 2017;

Musunuru 2017) but CRISPR-Cas9 is the most widely used

method by researchers worldwide.

CRISPR, Clustered Regularly Interspaced Short Palindromic

Repeats, is condensed segments of bacterial DNA that contain

repetitive base sequences. It plays a critical role in providing

natural immunity to bacteria against foreign DNA. With the event

of identification of any viral DNA, the bacterium produces guide

RNA, two strands of short RNA. Then, it forms a complex with an

endonuclease enzyme, which is named Cas9 (CRISPR Associated

Protein 9) (Barrangou et al., 2007; Terns and Terns 2011). The

CRISPR-Cas9 complex targets and cuts out the viral DNA rendering

the virus disabled. The Cas9 nuclease will not bind to the DNA if the

target sequence is not followed by the Protospacer Adjacent Motif, or

PAM,which helps the enzyme distinguish between the bacterial DNA

and the viral DNA target. The CRISPR-Cas9 system then has the

ability to store this viral data so that it will be able to recognize and

eliminate future viral threats. CRISPRs are generally found in roughly

50% and 90% of sequenced genomes of bacteria and archaea,

respectively (Sander and Joung 2014; Westra et al., 2014; Bortesi

and Fischer 2015; Ma et al., 2017; Musunuru 2017).

The flexibility of the CRISPR-Cas9 system and its ability to find

and modify particular genes can be used in research in the field of

medicine, drug discovery and agriculture. The recent discovery of

sequence-based genome editing technology for crop improvement

(Georges and Ray, 2017). Particularly, CRISPR-Cas9 has shown the

potential to address the emerging challenges of crop science and

agriculture. This technology is capable of modifying any genomic

sequence and can result in desired traits in organisms including crop

species provided that the protospacer adjacentmotif (PAM) sequence

is available. CRISPR-Cas9 is an efficient, cost-effective, easier and

highly precise genome editing tool as compared to other genome

editing tools viz. zinc finger nucleases (ZFNs) and transcriptional

activator-like effector nucleases (TALENs) (Wood et al., 2011). With

the introduction and demonstration of the CRISPR-Cas9 system in

2012, it has been widely accepted among researchers across the globe.

This genome editing system has been widely used and targeted many

important genes of various cell lines and organisms, including

bacteria, C. elegans, Xenopus tropicalis, yeast, zebrafish, Drosophila,

rabbits, plants,monkeys, humans, rats andmice. Several workers have

used this method and introduced single-point mutations, either

deletions or insertions, into a target gene by using sgRNA (Sander

and Joung 2014). Thus, CRISPR-Cas9 is one of the most emerging

technology in the editing of plant genomes to cope up with emerging

challenges of agriculture due to climate change and food security

(Sovová et al., 2016; Haque et al., 2018).

Though sgRNA aims to target a specific segment of DNA,

sometimes it is attached to other sites of DNA and unfortunately

causes off-target mutations. Again it can tolerate mismatches in

sgRNA-DNA at different positions but at the same time sensitive

to the position, number and distribution of mismatches. Alter gene

functions led by these off-target mutations can cause major genomic

instability and pose a major threat while using CRISPR-Cas9 gene

editing (Cho et al., 2014). It is imperative that altered but untargeted

gene functions caused by off-targeted gene mutation lead to Genomic

instability; it is one of the major problems associated with the

application of CRISPR-Cas9 gene editing (Hsu et al., 2013; Cho

et al., 2014). One way to safeguard from the ill effects of gene

editing is to accurate prediction of off-target sites of the genome.

Though, there are many off-target prediction methods available that

works on the principles of calculation of scores based on the positions

of the mismatches to the guide sequence (Haeussler et al., 2016; Xu

et al., 2017). The score of each base pair in sgRNA-DNA is imitatively

using the statistical analysis (Pearson correlation coefficient) of the

mismatch effects based on prior gene editing experiments. Most of the

current off-target prediction methods calculate scores, based on the

positions of the mismatches to the guide sequence (Haeussler et al.,

2016). The score of each base pair in sgRNA-DNA is imitatively using

the statistical analysis of the mismatch effects based on prior gene

editing experiments (Haeussler et al., 2016; Xu et al., 2017). For

example, CCTop considers the distance of the mismatch from the

PAM site when evaluating the specificity of candidate sgRNAs,

“Optimized CRISPR Design” incorporates a position-specific

mismatch penalty and additionally considers the spatial distribution

of mismatches, and the CFD score penalizes eachmismatch according

to its specific substitution type and position (Zhang et al., 2014), MIT

score only considered the positions and counts of themismatched sites

of sgRNA-DNA as the features to score the potential off-targets (Hsu

et al., 2013) and the CFD score penalizes each mismatch according to

its specific substitution type and position (Doench et al., 2016).

Importantly, while these and other widely-used methods have been

developed based on empirical data they mostly neglect the genomic

context surrounding the target sequence and instead focus on

predicting off-target effects for a given sgRNA using basic sequence

features. It is significant that, even though these and other widely-used

approaches were developed using empirical data, they primarily ignore

the genomic context around the target sequence and instead

concentrate on forecasting off-target effects for a given sgRNA

using simple sequence properties (Sanjana et al., 2014). For

accurately predicting cleavage sites, a variety of machine learning

and deep learning method-based tools are available for humans

(Abadi et al. 2017; Lin and Wong 2018) and plants (Hesami et al.

2021; Niu et al. 2021). These tools incorporate a wide range of features,

including those that are specific to the genomic target, features that

explain the sgRNA’s thermodynamics, and features about the pair-wise
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similarity between the sgRNA and the genomic target. To precisely

determine the cleavage location of a gene, machine learning techniques

are therefore quite advanced and effective.

Machine Learning is considered a subset of computational or

Artificial Intelligence and provides the capacity for computers to

learn from data without being explicitly programmed

(Pedregosa, 2011). Compared to the other programming

languages, it doesn’t have explicit and defined steps or

conditions to solve the problem. Rather, it enables to fit of the

programs, algorithms, or methods to learn a specific task from

TABLE 1 Crop wise number of sgRNA, on-target and off-target.

Sl. No. Crops
name

No. of
sgRNA

No. of on-
target

No. of off-
target

References

1 Rice 8 40 36 Li et al. (2016), Li et al. (2017b), Wang et al. (2017), Xu et al. (2014), Xu et al.
(2015), Zhou et al. (2014)

2 Wheat 5 19 30 Shan et al. (2014), Zhang et al. (2016), Kim et al. (2018)

3 Soybean 2 10 5 Cai et al. (2015), Sun et al. (2015)

4 Cotton 8 20 33 Chen et al. (2017), Gao et al. (2017), Li et al. (2017a), Wang et al. (2018)

5 Cucumber 2 2 5 Chandrasekaran et al. (2016)

6 Tobacco 2 6 5 Gao et al. (2014)

7 Strawberry 2 5 7 Martín-Pizarro et al. (2019)

8 Watermelon 2 2 2 Tian et al. (2016)

9 Tomato 4 10 13 Brooks et al. (2014), Čermák et al. (2015), Pan et al. (2016)

10 Grape 2 8 10 Nakajima et al. (2017)

11 Potato 2 5 3 Butler et al. (2015), Wang et al. (2015), Andersson et al. (2017)

12 Apple 1 6 4 Malnoy et al. (2016)

13 Orange 4 15 20 Jia and Nian (2014)

14 Maize 6 31 23 Feng et al. (2016), Svitashev et al. (2016), Feng et al. (2018)

15 Barley 1 5 9 Kapusi et al. (2017)

Total 51 174 205

TABLE 2 List of all the features used in this study.

Features derived from pair-wise sequence
alignment

Features derived from nucleotide
contents

Features derived from PAM
sites

■ Pair-wise alignment score ■ 20th position nucleotide ■ PAM type

■ Wobble total ■ MGW (minor groove width) at the PAM NNGGN ■ In exon (non-NGG strand)

■ RNA bulges ■ DNA enthalpy—extended 223 nt ■ Downstream nt—position 1

■ Mismatches in positions 17–20 ■ Nucleotide—position 2 ■ Downstream nt—position 5

■ Mismatches ■ DHS (DNAse hypersensitive site) signal value ■ Downstream nt—position 2

■ DNA bulges ■ Guanine occupancy ■ In exon (NGG strand)

■ Tv (transversion mismatches) total ■ Distance from nucleosome ■ NGG strand expression

■ RR (purine-purine) total ■ Nucleotides—positions 4–5 ■ Non-NGG strand expression

■ YY (pyrimidine-pyrimidine) total ■ Transcription region ■ PAM N nucleotide

■ Coding region

■ GC content—extended

■ Nucleotide—position 4
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the experimental data set (Mitchell et al., 2003). These trained

models help the machine to take decisions on different and

variable situations based on the learning upon a dataset. Machine

learning has been widely used in different fields of plant science

such as plant breeding (van Dijk et al., 2021), in vitro culture

(Hesami and Jones 2020), stress phenotyping (Singh et al., 2016),

stress physiology (Jafari and Shahsavar 2020), plant system

biology (Hesami et al., 2022), plant identification (Grinblat

et al., 2016), and pathogen identification (Mishra et al., 2019).

The currently available machine learning- or deep learning-

based algorithms for CRISPR off-target prediction are mostly

based on data either from animal or human genomes. Their

effectiveness on plant genomes has not been widely

demonstrated. As a result, we used plant data to create

machine learning-based models for plant genomes. The

development of machine learning-based models for the

prediction of CRISPR-cas9 off-target sites for plant genomes

and for assessing the effectiveness of these models were the key

contributions made in this study.

2 Materials and methods

2.1 Data collection

A thorough literature review has been conducted to gather

information on off-target and on-target sequences, as well as

associated sgRNA sequences, specific to crop species. We used

Google Scholar as a search engine to look up published and

accessible literature using terms like “off-target sites in crops,”

“off-target estimation,” “CRISPR-Cas9 on-target and off-target

sites,” “off-target effect minimization in a plant cell,” etc. Search

TABLE 3 Performance evaluation of developed six ANN models on plant dataset based on accuracy, precession, recall, FPR, specificity, F1 score, F2 score and
AUC (figures in percentage).

Models Accuracy Precession Recall FPR Specificity F1 score F2 score AUC

ANN1-Logistic 91.65 89.00 96.49 14.05 85.95 92.59 94.89 97.26

ANN2-Logistic 86.87 81.78 97.44 25.57 74.43 88.93 93.85 90.54

ANN1-Tanh 90.33 88.29 94.68 14.80 85.20 91.37 93.33 93.18

ANN2-Tanh 87.66 84.23 94.98 20.95 79.05 89.28 92.61 95.34

ANN1-ReLU 90.65 90.44 92.49 11.52 88.48 91.45 92.07 96.94

ANN2-ReLU 77.39 73.50 91.00 38.65 61.35 81.32 86.86 91.20

FIGURE 1
Graphical representation of six ANN model’s performance based on a different statistical measure.
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results from the last 5 years were used to choose a few research

papers that describe CRISPR-Cas9 experiments conducted on

various crop species. Then, wherever it was available, the

genomic sequence of the sgRNA, the on-targets, and the off-

target sites were collected from the shortlisted articles.

2.2 Data preparation

A computer program was created in the Python

programming language to extract the parameters from a

large number of sequences based on the pairwise alignment

of sgRNA and genome target sites, features regarding the

nucleotide contents of 20 nucleotide sites and their

contiguous genomic regions, and features regarding the

PAM sites and nearby the nucleotides (Abadi et al., 2017).

Then, using the constructed program, features based on the

aforementioned criteria were extracted from the sequences of

sgRNA, on-targets, and off-target sites of the genome. The

creation of classification models based on machine learning

uses these extracted characteristics as explanatory variables.

The related site-specific on-target and off-target information

were used to create a response variable, where respective on-

targets were labeled as 1 and off-targets as 0.

FIGURE 2
ROC curve of four SVMmodels performance based on AUC score: (A) SVM-Linear model ROC curve (B) SVM-Polynomial model ROC curve (C)
SVM-rbf model ROC curve (D) SVM-Sigmoid model ROC curve.
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2.3 Machine learning models/experiments

Recent machine learning-based classification modeling

techniques have been employed to create robust classification

models. The Artificial Neural Network (ANN), Support Vector

Machine (SVM), and Random Forest machine learning techniques

have all been investigated. In the process of creating a viablemodel, a

variety of different variations and structures connected to the above

modeling paradigm have also been tested.

2.3.1 Artificial neural network
Two Multi-layered perceptrons (MLP) structures

(Chatterjee et al., 2022) of ANN were chosen with three and

four hidden layers and named ANN1 and ANN2 respectively.

The layer-wise number of perceptron was arbitrarily taken as

25:25:25 for each layer in ANN1 whereas 30:20:10:5 for each of

the four layers in ANN2, starting from the input layer to the

output layer. To train the above ANN models, three different

activation functions have been considered here. They are

Logistic, Tanh and ReLu, thus altogether six ANNs, namely

ANN1-Logistics, ANN1-Tanh, ANN1-ReLu, ANN2-Logistics,

ANN2-Tanh, and ANN2-ReLu, were used to model the training

data. The MLPClassifier implemented in the python Scikit-

learn module (Pedregosa, 2011) was used for the training of the

ANN models using training data set. The following hyper-

parameters of MLPClassifier were used during the training. To

validate the model 5-fold cross-validation techniques

(Refaeilzadeh et al., 2009) were used. The following

parameters were used for developing the model.

hidden_layer_sizes: 25:25:25 and 30:20:10:5.

Activation: Used three activation functions i.e., logistic, tanh

and relu.

Solver: Adam solver was used for optimizing the weights.

learning_rate_init: Used initial learning rate as 0.001.

2.3.2 Support vector machine
Depending on the type of kernel function used, four SVM

models are developed, which are named as SVM-Linear, SVM-

Polynomial, SVM-Gaussian and SVM-Sigmoid. The Support

Vector Classifier (SVC) implemented in the python Scikit-learn

module (Pedregosa, 2011) was used for training the SVM models

using training data set. Polynomial kernel-based SVM model used

FIGURE 3
Graphical representation of developed SVM models performance based on evaluation parameters.

TABLE 4 Comparison of developed SVM models performance based on evaluation parameters (figures in percentage).

Models Accuracy Precision Recall FPR Specificity F1 score F2 score AUC

SVM-Linear 87.26 88.31 88.10 13.74 86.26 88.21 88.14 92.00

SVM-Polynomial 85.22 86.15 86.61 16.41 83.59 86.38 86.52 93.51

SVM-Gaussian 84.18 85.88 84.68 16.41 83.59 85.28 84.92 93.45

SVM-Sigmoid 54.09 54.09 100 100 0.00 70.21 85.49 50.00
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with the degree of 3. Here also, 5-fold cross-validation techniques

were used for validation of the model.

2.3.3 Random forest
For the training dataset and a given set of features, we

implemented the RF model using RandomForestClassifier

implemented in the python scikit-learn module (Pedregosa,

2011). We used 5-fold cross-validation techniques for the

validation of our model. In this study, we used it for

100 estimators and used the Gini index to measure the quality

of a split and for building the trees, a bootstrap method was used.

4 Results

4.1 Crop species wise sgRNA related on-
target and off-target sequence data

The research article containing sequence details about

sgRNA related to on-target and off-target data was discovered

in the following journals: Frontiers in plant science, Nature,

Scientific Reports, Plant Biotechnology Journal, PloS one,

Molecular plant pathology, Journal of Genetics and Genomics,

Nucleic acids research, Nature communications, Rice, Molecular

plant, Plant cell reports, Nature Biotechnology, Nature protocols,

Cell, Journal of molecular biology, Journal of Molecular Biology,

and Journal of Molecular Medicine. From a Google Scholar

search using the stated keyword, a total of 64 research

publications were found. Thirty two research publications

detail the sequence of a crop-specific sgRNA and its

FIGURE 4
ROC curve of four SVMmodels performance based on AUC score: (A) SVM-Linear model ROC curve (B) SVM-Polynomial model ROC curve (C)
SVM-rbf model ROC curve (D) SVM-Sigmoid model ROC curve.

TABLE 5 Different performance parameters of the random forest model
(figures in percentage).

Parameters RF model

Accuracy 96.27

Precision 94.75

Recall 98.56

FPR 6.44

Specificity 93.56

F1 score 96.62

F2 score 97.77

AUC 99.21
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associated on-target and off-target regions (Table 1). Table 1

perusal reveals that 15 important crop species were used to gather

the sequencing data for 51 sgRNA and the related 174 and

205 on-targets and off-targets sites, respectively. SgRNA was

between 17 and 20 nucleotides in length. The average length of

the off-target and on-target was determined to be 23 or longer

nucleotides. As a result, 51 sgRNA were the subject of a total of

379 data points collection, together with the matching on-target

and off-target locations. The values of 48 explanatory variables

and one response variable were obtained using a Python

program. The complete 379-point data set, which contained

48 variables, was divided into two halves by chance, with

265 and 114 entries for each of the 31 variables being used

for model building and model evaluation, respectively.

4.2 Importance of features

In addition to improving prediction abilities, the learning

strategy enabled researchers to thoroughly comprehend the most

crucial Cas9 traits. When the entire set of features was evaluated,

three clusters emerged among the top 30 features: 1) a pair-wise

similarity characteristic between the sgRNA and the DNA site

Along with the pair-wise alignment score, the number of

mismatches, the number of RNA/DNA bulges, and the kind

of mismatch (transversion, transversion, or wobble) were all

included in this cluster. 2) GC content, DNA enthalpy

(Breslauer et al., 1986), and several measures of DNA spatial

structure, such as minor groove width and bending stiffness

(Zhou et al., 2013), were among these. These characteristics are

related to the nucleotide composition of the 20-nt location and

the genomic region surrounding it. 3) The DNA geometry scores

calculated in and around this region, as well as PAM site

characteristics like the PAM type (NGG or NAG), were

among them. In this investigation, 30 feature numbers (Table

2) were used (Abadi et al., 2017).

4.3 Model results

Results from different machine learning-based developed

models and their comparisons in various aspects are given

below-

4.3.1 Artificial neural network model
Six ANNmodels were trained using training datasets, and the

effectiveness of each trained model was assessed using a variety of

evaluation parameters on the test dataset. In this research, we

used k-Fold, or k = 5 cross-validation approaches, for validation

purposes. All six evaluation parameter values have been shown

against the implemented ANN models (Table 3), which makes it

FIGURE 5
Graphical representation of developed Random Forest model performance based on evaluation parameters.

FIGURE 6
ROC curve of RF model performance based on AUC score.
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simple to grasp similar comparisons in a graphical style

(Figures 1, 2). This study is based on the Technique for Order

Preference by Similarity to Ideal Solution (TOPSIS) (Hwang and

Yoon 1981). From six ANN-based models, ANN1-Logistic

obtained a TOPSIS analysis score of 0.85134 and is ranked

one (Supplementary Material).

4.3.2 Support vector machine model
Four SVM models were trained on training datasets and the

performance of each of the trainedmodels was evaluated on test data

set by using several evaluation parameters. For validation purposes in

this paper, we used k-Fold i.e., k = 5 cross-validation techniques. In

this paper, we compare all four developed SVM models with each

other based on their evaluation parameters (Table 4). The SVM_

Linear model gives better accuracy (87.26%) and precision (88.31%)

in comparison to other models. So, among all the developed SVM

models the SVM-Linear model performs very well compared to the

other three models (SVM-Polynomial, SVM-Gaussian, SVM-

Sigmoid). The values of all six evaluation parameters have been

plotted against the undertaken SVM models (Figures 3, 4) which

show similar comparisons in a graphical format for easy

understanding. This study fits under the TOPSIS (Technique for

Order Preference by Similarity to Ideal Solution) framework (Hwang

and Yoon 1981). According to TOPSIS analysis result SVM.Linear

model got 1st rank (Supplementary Material).

4.3.3 Random forest model
Random Forest (RF) model was trained on training datasets

and the performance of the trained model was evaluated on test

data set by using several evaluation parameters. For validation

purposes in this paper, we used k-Fold i.e., k = 5 cross-validation

techniques. The value of RF model accuracy is 96.27% and its

AUC value is 99.21% (Table 5). The graphical representation of

the model performance is also shown in Figure 5. Here, the RF

model gives a very low score of false positive rate (FPR), which is

good for any model. From the ROC curve of the RF model

(Figure 6) it can be concluded that the developed model is

performing very well in the plant data set.

4.4 Comparison among developed
machine learning-based models

In this study, we developed three machine learning-based

models for the estimation of off-target sites. The performance of

these techniques is being evaluated by different statistical

measures viz. sensitivity/recall, specificity, accuracy, precision,

FPR, F1 score, F2 score and AUC (Table 6). Random Forest (RF)

model achieves the best accuracy which is 96.27% compare to

other models. RF model achieves the highest specificity value as

compared to the other ten models which are 93.56%. According

to the AUC score RF model cover, the maximum area under the

ROC curve is 99.21% compare to the other seven modelsTA
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(Figure 7). From the above comparisons, Random Forest (RF)

model perform comparatively better than the other ten models

on plant datasets and got 1st rank according to TOPSIS analysis

(Table 7).

5 Discussion

In CRISPR-Cas9 gene editing techniques, sgRNA seeks to

target a specific DNA segment but occasionally it may attach to

untargeted DNA locations, which regrettably results in off-target

mutations. Altering gene functionalities brought on by these off-

target mutations might generate significant genomic instability

and constitute a serious concern. This off-target induced

resultant genomic instability causes a major limitation in the

use of the CRISPR-Cas9 gene editing technique. Therefore, it is

essential to accurately predict the off-target site related to sgRNA.

In this study, we used a machine learning approach for

predicting off-targets in the CRISPR-Cas9 gene editing

technique. Here, a total of eleven machine learning-based

models for CRISPR-Cas9 cleavage site prediction (6-ANN, 4-

SVM, and 1-RF models) were constructed. Models were trained

by using three main types of features pair-wise alignment features

from the sgRNA-DNA sequence, features related to nucleotide

composition and PAM site characteristics. Training of the

various machine learning algorithms viz. ANN, SVM and RF

were carried out with different combinations of layer counts,

kernel types and tree counts respectively. The performance of the

training models was evaluated based on selected statistics within

and between groups of developed models.

In the case of Artificial Neural Networks (ANN), six models

were developed using different activation functions, different

hidden layers and different neuron numbers. Following

activation functions Logistic, Tanh and ReLU has been

applied with varying number of layers and neurons resulting

in six ANN-based models named as ANN1-Logistic, ANN2-

Logistic, ANN1-Tanh, ANN2-Tanh, ANN1-ReLU and ANN2-

ReLU. These models were trained on plant data sets and

performance was evaluated under 5-fold cross-validation.

Although, they have achieved more or less similar

FIGURE 7
Graphical representation of the performance of all models for off-target prediction developed using three groups of machine learning
techniques.

TABLE 7 TOPSIS analysis result for all eleven machine learning-developed
models on the plant dataset.

Models Score Rank

RF 0.961423 1

ANN1_logistic 0.789202 2

ANN1_ReLu 0.69774 3

ANN1_tanh 0.602147 4

ANN2_tanh 0.516367 5

SVM_linear 0.482942 6

ANN2_logistic 0.447746 7

SVM_polynomial 0.386691 8

SVM_rbf 0.327762 9

SVM_sigmoid 0.276047 10

ANN2_ReLu 0.166041 11
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performance but according to TOPSIS analysis ANN1-Logistic

model predicts off-target sites accurately as compared to the

other fivemodels i.e.ANN2-Logistic, ANN1-Tanh, ANN2-Tanh,

ANN1-ReLU and ANN2-ReLU.

In the instance of a Support VectorMachine (SVM), a total of

four models were developed using different kernel functions. The

following kernel functions: Linear, Polynomial, Gaussian and

Sigmoid have been used during the model training.Which results

in four SVM-based models named as SVM-Linear, SVM-

Polynomial, SVM-Gaussian and SVM-Sigmoid. These models

were trained using data sets related to plants. The relative

performance among the SVM-based models was evaluated

using 5-fold cross-validation and TOPSIS analysis. Based on

these evaluations, the SVM-Linear model predicts off-target sites

more accurately than the other three SVM models i.e., SVM-

Polynomial, SVM-Gaussian, and SVM-Sigmoid.

Random Forest (RF) experiments were carried out with

different numbers of tree sizes and a model with optimal tree

size was selected for further comparison with other

developed models.

We evaluated the relative accuracy of the three groups of

developed machine learning-based models for off-target

prediction, using the 5-fold cross-validation method and

TOPSIS analysis. The accuracy of the RF model was 96.27%,

and its area under the ROC curve (AUC) was 99.21%, which is

higher than that of the ANN and SVMmodels. Further, based on

the TOPSIS analysis, the Random Forest model was scored

highest among the group. This indicates the better

performance of the Random Forest model over SVM and

ANN-based models for the prediction of cleavage sites in the

CRISPR-Cas9 gene editing technique for plant systems.

In the future, the latest machine-learning techniques such as

deep learning etc. may be investigated further to enhance of the

modeling process. It is generally accepted that such cutting-edge,

computationally intelligent strategies will make future

predictions of CRISPR-Cas9 off-target sites even more accurate.

6 Conclusion

Gene editing, commonly known as molecular scissors, is the

process of insertion, deletion or replacement of DNA on a

particular position in the genome of any organism. We

demonstrated that the off-targets of CRISPR-Cas9 gene

editing can be reliably predicted by machine learning

approaches. In comparison to the other two conventional

machine learning methods, ANN and SVM; our final Random

Forest (RF) model better them all in terms of performance on the

plant dataset. We think that these intelligent methods can make a

significant contribution to CRISPR-Cas9 off-target predictions

or other problems of a similar nature.
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