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Copy number variation (CNV) is one of the main structural variations in the human
genome and accounts for a considerable proportion of variations. As CNVs can
directly or indirectly cause cancer, mental illness, and genetic disease in humans,
their effective detection in humans is of great interest in the fields of oncogene
discovery, clinical decision-making, bioinformatics, and drug discovery. The advent
of next-generation sequencing data makes CNV detection possible, and a large
number of CNV detection tools are based on next-generation sequencing data. Due
to the complexity (e.g., bias, noise, alignment errors) of next-generation sequencing
data and CNV structures, the accuracy of existing methods in detecting CNVs
remains low. In this work, we design a new CNV detection approach, called
shortest path-based Copy number variation (SPCNV), to improve the detection
accuracy of CNVs. SPCNV calculates the k nearest neighbors of each read depth
and defines the shortest path, shortest path relation, and shortest path cost sets
based on which further calculates the mean shortest path cost of each read depth
and its k nearest neighbors. We utilize the ratio between the mean shortest path cost
for each read depth and the mean of the mean shortest path cost of its k nearest
neighbors to construct a relative shortest path score formula that is able to determine
a score for each read depth. Based on the score profile, a boxplot is then applied to
predict CNVs. The performance of the proposed method is verified by simulation
data experiments and compared against several popular methods of the same type.
Experimental results show that the proposed method achieves the best balance
between recall and precision in each set of simulated samples. To further verify the
performance of the proposed method in real application scenarios, we then select
real sample data from the 1,000 Genomes Project to conduct experiments. The
proposed method achieves the best F1-scores in almost all samples. Therefore, the
proposed method can be used as a more reliable tool for the routine detection of
CNVs.
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1 Introduction

As one type of structural variation, copy number variation (CNV) plays an important role
in the formation and development of human cancers and diseases (Mccarroll and Altshuler,
2007; Stefansson et al., 2008; Beroukhim et al., 2010; Yuan et al., 2021a). Generally, CNV is
defined as a deletion or amplification of a genomic sequence that is no less than 1,000 to several
megabase pairs in length compared to a reference genome (Freeman et al., 2006; Zhao et al.,
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2013; Yuan et al., 2021b). The deletion and amplification of a copy
number can lead to the reorganization of the genome structure and the
change of base content, which further affects the level of human gene
expression (Sebat et al., 2004; Sharp et al., 2005). Studies have shown
that the occurrence of some common human diseases is closely related
to CNV, such as ovarian cancer (Adam and David, 2009; Fridley et al.,
2012), breast cancer (Tchatchou and Burwinkel, 2008; Kumaran et al.,
2017), autism (Sebat et al., 2007; Pinto et al., 2010), schizophrenia
(Stefansson et al., 2008; Stone et al., 2008), etc. In this context, next-
generation sequencing (NGS) technology has developed rapidly and is
able to provide rich data resources for the accurate detection of CNVs
in the human genome, higher resolution, and more flexible detection
methods (Meyerson et al., 2010). However, due to various factors, such
as bias, noise, and the uneven distribution of NGS data, the existing
detection methods are still not accurate for CNV detection.

A large number of CNV detection methods have been developed
around NGS data, and the vast majority of them are based on the read
depth (RD) method. The basic principle of RD-based CNV detection
methods is that the number of reads aligned at each position in the
reference genome is proportional to the copy number at that position
(Yoon et al., 2009). Compared with the normal region, the number of
reads in the copy number amplification region is higher, and the
number of reads in the copy number deletion region is lower (Teo
et al., 2012). The RD method can use single-end sequencing reads or
paired-end sequencing reads to detect CNVs. In principle, it can detect
the amplified and deleted regions of CNVs of any length. In practical
applications, this method is more sensitive for detecting long CNVs.
Therefore, it is more suitable for detecting copy number amplified
regions but cannot accurately detect variant boundaries, resulting in
detection results that contain a large number of false-positive
positions.

The basic process of RD-based methods for detecting CNVs
includes: 1) Reading the alignment and extracting RDs; 2)
Preprocessing the RDs; 3) Building the detection model
(statistical model, machine learning algorithm, etc.); 4) Selecting
a reasonable threshold strategy and predicting CNVs. Based on the
above workflow, some well-known RD-based CNV methods have
been proposed, mainly including FREEC (Boeva et al., 2012), CNV-
LOF (Yuan et al., 2021a), CNVnator (Abyzov et al., 2011), BIC-seq2
(Xi et al., 2016), SeqCNV (Chen et al., 2017), CNV_IFTV (Yuan
et al., 2021b), and iCopyDAV (Dharanipragada et al., 2018). FREEC
obtains the normalized read count profile by using GC-content or
mappability profiles and employs a lasso-based algorithm to
produce a smooth copy number profile that predicts genotype
status for each genomic segment. FREEC is more sensitive to
copy number gain regions than loss regions, and the detection
results have a large number of false-positive positions, resulting
in lower precision. CNV-LOF performs a segmentation procedure
on the RD profiles to obtain consecutive and non-overlapping RD
segment profiles. On this basis, a cyclic binary segmentation (CBS)
algorithm (Venkatraman and Olshen, 2007) is performed on each
segment to divide each one into a set of segments. CNV-LOF utilizes
the idea of a local outlier factor to assign an outlier score for each RD
segment. Based on the anomaly score profile, it predicts CNVs using
a boxplot procedure. It is not sensitive to the detection of loss
regions, and its performance is not well balanced between recall and
precision. CNVnator calibrates the GC content to normalize the RD
profile and uses a mean-shift approach to segment the RD profile to
predict CNVs. CNVnator is able to detect a large number of long

CNVs, the vast majority of which are false-positive events.
Therefore, it achieves low precision, especially in the detection of
low-purity samples. BIC-seq2 normalizes the RD profile at the
nucleotide level and uses the bayesian information criterion to
predict CNVs. While its performance is balanced between recall
and precision, it has low precision in detecting high-purity samples.
SeqCNV extracts the RD signal from paired samples, establishes a
maximum penalized likelihood estimation model, and selects a
threshold interval to predict CNVs. It is sensitive to short CNV
detection and is not suitable for the detection of low-purity samples.
CNV_IFTV utilizes the isolation forest algorithm to calculate an
anomaly score for each RD, smooths the anomaly score profile using
a total variation model, and uses the anomaly score to fit a gamma
distribution to predict CNVs. The difference between the
established statistical model and the actual distribution of RDs
affects the accuracy of the CNV_IFTV detection. iCopyDAV
automatically estimates bin size, calibrates GC-content and
mappability bias using the median method and mappability score
file, and performs segmentation using the CBS algorithm to predict
CNVs. It is suitable for testing high purity and medium coverage
samples. In general application scenarios, the above methods can
effectively detect a large number of CNVs. However, their
performance is uneven in the detection of samples of different
purity.

With consideration of the above issues, we propose a new
approach in this work to accurately detect CNVs using NGS data
from the whole genome. The method is called shortest path-based
CNV (SPCNV). The SPCNV calculates the k nearest neighbors of each
RD and defines the shortest path, the shortest path relation, and the
shortest path cost sets. Based on these three types of shortest path sets,
we calculate the mean shortest path cost of each RD and its k nearest
neighbors. A relative shortest path score equation is then built using
the ratio between themean shortest path cost of each RD and themean
of mean shortest path cost of its k nearest neighbors, which can
calculate a score for each RD (Tang et al., 2002). Based on the score
profile, a boxplot program is used to predict CNVs(Zijlstra et al.,
2007). The main contributions of the proposed method are as follows:
1) According to the basic principle of the RD method, the copy
number gain and loss correspond to larger and smaller RDs compared
to normal RDs, respectively. The two types of RDs have fewer ratios
among all RDs. Therefore, we treat the two types of RDs as outliers and
successfully transform a traditional outlier detection method into a
CNV detection method. 2) By extracting two features, the RD ratio
and the difference between adjacent RD ratios, we can observe the
difference between RDs from a global and local perspective, which is
conducive to detecting isolated variants and local small cluster
variants. 3) The proposed method uses the difference between the
shortest path of each RD and the average shortest path of its k nearest
neighbors to identify CNVs, which is beneficial for identifying a local
cluster of insignificant variations. As the traditional machine learning
method only relies on the distance between each RD to distinguish the
difference between them, it cannot detect a small local cluster variation
because their differences are very small.

The remainder of this work is organized as follows. Section 2 includes
the workflow of SPCNV, data preprocessing, construction of relative
shortest path score formula, and the forecasting of CNVs. Section 3
presents the simulation data and real data experiments and analyzes and
discusses the experimental results. Section 4 addresses the shortcomings
of the work and presents future work ideas.
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2 Method and materials

2.1 Overview of SPCNV

SPCNV is an RD-based CNV detection method that is suitable
for the detection of a single sample. Figure 1 shows the workflow of
SPCNV in detail, which consists of the following main five steps: 1)
The sequenced donor samples (Fastq) and reference genome
(Fasta) are prepared for input; 2) The reads are aligned to the
reference genome using BWA (Li and Durbin, 2010) to generate
sequence alignment files (SAM), which are converted to BAM
format using SAMtools (Li et al., 2009); 3) The data is
preprocessed. This step mainly includes read count (RC) profile
extraction with SAMtools, bin definition (Yuan et al., 2018),
anomalous bin removal, obtaining the read depth (RD) profiles,
GC bias calibration, noise removal, and the dimension
transformation of the RD profiles; 4) The relative shortest path
score is built and assigned for each RD; 5) Based on the score
profile, a boxplot is utilized to predict CNVs. The SPCNV software
is developed in R and Python languages. It can be downloaded from
https://github.com/gj-123/SPCNV/releases and is easy to install
and use after reading the user manual. In the following section,
each step in the workflow of SPCNV is analyzed and discussed in
detail.

2.2 Data preprocessing

The sequenced donor samples are aligned to the reference genome
using the BWA tool, which generates sequence alignment files in the
SAM format. The SAM files are further converted into binary
sequence alignment files in BAM format using SAMtools. The read
count (RC) profiles are then extracted with SAMtools from the BAM

files. We define a sliding window procedure (bin) (Yuan et al., 2018),
with which the RC profiles are divided continuously and are non-
overlapping to generate the RD profiles. This process is described
using Eq. 1.

RD � RD1, RD2, RD3, · · ·, RDn{ }, (1)
where RDn represents the RD value of the n-th bin, which is equal to
the mean RC in a bin. Since the reference genome contains a large
number of “N" positions, reads aligning to these positions will result in
RCs equal to 0 that will be mistaken for a loss at that position.
Therefore, if a bin contains “N" positions, we remove the bin from the
genome sequence (Yuan et al., 2021a). Due to the complexity of the
human genome, the distribution of GC-content is uneven, which can
lead to the misidentification of copy number deletions. The GC
content of each bin is calibrated using the median method (Yoon
et al., 2009). Factors such as alignment errors and biases can cause the
resulting sequencing data to be noisy. RD signal noise will seriously
affect the detection accuracy, which is a key step in the detection of
CNV. Here, the total variationmodel (Condat, 2013; Duan et al., 2013)
is used to smooth and segment the RD profile to generate an RD
segment (RDS) profile, which is represented by Eq. 2.

RDS � RDS1, RDS2, RDS3, · · ·, RDSn{ }, (2)
where RDSn represents the value of the n-th read depth segment,
which is equal to the mean of all RDs contained in this segment. The
RDS profile is converted to two-dimensional space to generate the
RDS′ profile (Liu et al., 2020), which is composed of the RDS ratio and
differences between adjacent RDS ratios and is expressed by Eq. 3.

RDS′ � RDSXi, RDSYi( )|i ∈ N, 1≤ i≤ n{ }, (3)
where RDSXi represents the value of the i-th RD ratio, RDSYi

represents the difference between the i-th RD ratio and its adjacent
RD ratios.

This transformation process can detect differences in RD from two
perspectives. The first dimension can approximately reflect the copy
number status corresponding to each RD from a global perspective.
The second dimension can approximately reflect the difference
between an RDS and its adjacent RDSs from a local perspective. By
extracting two features of RD, the proposed method can more easily
discover globally isolated and local small cluster variants. At the same
time, this step also provides an effective data platform for constructing
the relative shortest path score in the next section.

2.3 Establishment of relative shortest path
score

Based on RDS′ profile, we construct a relative shortest path
score (RSPS) to evaluate the degree of anomaly of each RDS. Here,
we regard each element in RDS′ as an object represented by o. The
RSPS fully reflects the closeness between an object and its
surrounding objects and is highly suitable for application in
CNV detection scenarios. The RSPS of an object depends on the
ratio between the object’s shortest path and the mean of its k
nearest neighbors’ shortest paths. Some related basic concepts and
definitions must be introduced before giving the definition of RSPS,
which mainly include the k-distance of an object, the k-distance
neighborhood of an object (Breunig et al., 2000), the shortest path
set, the shortest path relation set, and the shortest path cost set.

FIGURE 1
The workflow of SPCNV.
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Definition 1. The k-distance of an object o, which is defined using
Eq. 4.

k − dist o( ) � dist o, o′( ), (4)
where dist(o, o′) represents euclidean distance between object o and
object o′ ∈ RDS′\ o{ }, o′ indicates that the k-th object closest to o is
sorted in ascending order, k − dist(o) represents the k-distance of an
object o. Here, k is a positive integer.

Definition 2. The k-distance neighborhood of an object o is a
collection of objects whose distance from o is less than or equal to
k − dist(o), which is defined using Eq. 5.

Nk−dist o( ) � a
∣∣∣∣a ∈ RDS′\ o{ }, dist o, a( )≤ k − dist o( ){ }, (5)

where Nk−dist(o) represents the k-distance neighborhood of an object
o and a collection of objects, and the distance between each object in
the collection and o is not greater than k − dist(o).

The shortest path set (SPS) of an object o is composed of object o
and the k-distance neighborhood of object o, which are connected to
form a path with the shortest distance. The shortest path relation set
(SPRS) of an object o is defined as the edge between two objects on the
shortest path. The shortest path cost set (SPCS) of an object o is
defined as the distance between two objects on the shortest path.
Algorithm 1 describes the calculation process of SPS(o), SPRS(o), and
SPCS(o) in detail.

The following example is used to clearly explain the SPS, SPRS, and
SPCS calculation process of an object. As shown in Figure 2, there are a
total of 10 objects {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and their corresponding
values are {(0.5, 0.5), (0.13, 0.78), (0.18, 0.13), (0.2, 0.4), (0.32, 0.38), (0.47,
0.44), (0.56, 0.6), (0.6, 0.56), (0.87, 0.5), and (0.91, 0.93)}. We calculate the
SPS, SPRS, and SPCS of object one here, where the value of k is set to 5. Eq.
4 and 5 are employed to obtain the five nearest neighbors of object 1 (6, 7,
8, 5, 4). The distance from object one to object six is the smallest.
According to Algorithm 1, SPS (1) is equal to {1, 6}, SPRS (1) is equal to
{(1, 6)}, and SPC S(1) is equal to {0.07}. The distance between objects 7, 8,
5, 4, and objects 1, six is calculated to obtain a minimum distance, and the

distance between objects one and seven is the smallest. Similarly, SPS (1) is
equal to {1, 6, 7}, SPRS (1) is equal to {(1, 6), (1, 7)}, and SPCS (1) is equal
to {0.07, 0.12}. The procedure ends when each neighbor of object one
finds its closest object from SPS(1). Finally, SPS (1) is equal to {1, 6, 7, 8, 5,
4}, SPRS (1) is equal to {(1, 6), (1, 7), (7, 8), (6, 5), (5, 4)}, and SPCS (1) is
equal to {0.07, 0.12, 0.06, 0.16, 0.12}. As shown in Figure 2, the red line
segments form the final shortest path.

Algorithm 1. Calculate SPS, SPRS and SPCS of object o.

Based on the above definitions, the mean shortest path cost of an
object o (SPCm(o)) is defined by Eq. 6.

SPCm o( ) � 1
k
∑
k

i�1
SPCSi o( ), (6)

where SPCSi(o) represents the i-th element in SPCS(o).If the value of
SPCm(o) is larger, the distance between o and its k nearest neighbors is
sparser; if it is smaller, they are closer together.

After estimating the mean shortest path cost of all objects, we
further construct the relative shortest path score (RSPS) to measure
the degree of deviation between object o and its k nearest neighbors,
which is defined by Eq. 7.

RSPS o( ) � Nk−dist o( )| | · SPCm o( )
∑

a∈Nk−dist o( )
SPCm a( ) , (7)

where SPCm(o) represents the mean shortest path cost of o, SPCm(a)
represents the mean shortest path cost of one of its nearest neighbors,
|Nk−dist(o)| represents the number of elements inNk−dist(o), RSPS(o)
represents the ratio between SPCm(o) and the mean of mean shortest
path cost of its k nearest neighbors. If the value of RSPS(o) is larger,
the distance between o and its k nearest neighbors is sparser; if it is
smaller, they are closer together. This means that the higher the RSPS
of an object, the more likely the object is a CNV.

2.4 Prediction of CNVs

Although we have evaluated the relative shortest path score for
each object, it is not yet possible to distinguish abnormal objects from

FIGURE 2
An example of calculating the SPS, SPRS, and SPCS of object 1.
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normal objects. This step is critical in CNV detection, and a reasonable
threshold selection strategy will significantly improve the accuracy of
the detection results. Traditional threshold selection strategies mainly
include: 1) Fitting a statistical model using the score profile to evaluate
the significance of each object and using hypothesis testing to predict
CNVs; 2) Selecting an empirical value as a threshold to identify CNVs.
The limitation of the first strategy is that due to the bias and noise of
the sequencing data, the actual distribution of the data and the fitted
model are quite different, resulting in inaccurate detection results. The
limitation of the second strategy is that a fixed threshold can effectively
identify abnormal objects in some scenarios. However, the
performance of the method may drop significantly in certain
application scenarios. Considering the above two scenarios, we use
a boxplot to determine thresholds based on the score files. This
method does not require an assumption that the score profile
obeys a certain distribution in advance and is able to dynamically
determine thresholds according to different score files. Here, we use
Eq. 8 to estimate a threshold for judging anomalies.

τ � RSPSQ3 + λ · RSPSQ3 − RSPSQ1( ), (8)
where RSPSQ3 represents upper quartile of RSPS, RSPSQ1 represents
lower quartile of RSPS, λ represents multiple of interquartile range of
RSPS, τ represents the maximum value of the inner limit of RSPS,
which is used as the threshold. If an object’s RSPS is greater than the
threshold τ, it is considered to be a CNV. After predicting CNVs, we
further differentiate the types of CNV (gain and loss). If the RD of an
object is greater than or equal to the average RD of all normal objects,
it is regarded as a gain; if it is less, it is regarded as a loss.

3 Results and discussion

Along with the establishment of SPCNV, the design of a
reasonable experimental scheme is crucial for verifying the
effectiveness of the proposed method. In this study, the
experimental component was divided into simulation and real data
experiments. In the simulation data experiments, the performance of
the proposed method was compared with four well-known similar
methods (CNV-LOF, FREEC, CNVnator, and BIC-seq2) from five
perspectives: recall, precision, F1-score, the number of gain and loss
detections, and sensitivity of different size CNV detection. In order to
verify the performance of the proposed method in real data
applications, the above four comparison methods were also selected
for comparison with the proposed method. The experimental data was
a set of real human sequencing samples from the 1000 Genomes
Project. Some previous studies have tested these samples and saved the
test results to the Database of Genomic Variants (DGV), which was
used as ground truth to calculate recall, precision, and F1-score for
each method.

3.1 Application of simulation data

IntSIM (Yuan et al., 2017) simulation software was adopted to
generate the simulation data sets. Before using the software, the two
key parameters of sample tumor purity (TP) and sequencing coverage
(SC) were set from 0.2 to 0.8 and 5x, respectively. To ensure the
reliability of the test results, 50 samples were generated under each set
of configuration conditions and the average of which was used as the

test result. There were six gains and eight losses embedded in each
sample, whose lengths range from 10,000 to 50,000 bp.

Based on the simulated datasets, the performance of SPCNV and four
other alignmentmethods (CNV-LOF, FREEC, CNVnator, and BIC-seq2)
were tested by calculating their recall, precision, and F1-scores. Recall is
defined as the number of correctly detected CNV events divided by the
total number of simulated CNV events, which can be calculated by the
ground truth file (Magi et al., 2013). Precision is defined as the number of
correctly detected CNV events divided by the total number of detected
CNV events (Magi et al., 2013). The F1-score is defined as the harmonic
mean of recall and precision. The experimental results of eachmethod are
depicted in Figure 3, where the three-performance metrics (recall,
precision, and F1-score) of each method are compared in the four
simulation sample sets. According to the overall trend, the
performance of the majority of methods improves with increasing
tumor purity. For example, the recall of CNVnator is close to
0.2 when the tumor purity is equal to 0.2, and its recall exceeds
0.7 when the tumor purity is equal to 0.8. Correspondingly, its F1-
score increases from 0.18 to 0.58. Among the five methods, SPCNV
achieves the best F1-score in each dataset. BIC-seq2 obtains the lowest F1-
score at a purity equal to 0.8, but its F1-scores are better than other three
methods (CNV-LOF, FREEC, and CNVnator) at a purity equal to 0.6.
The above situations indicate that BIC-seq2 can provide base level
resolution and detect a large number of CNVs, but its precision is
very low when detecting high-purity samples. BIC-seq2 is not suitable
for the detection of high-purity samples. The F1-score of FREEC is better
than other three methods (CNV-LOF, BIC-seq2, and CNVnator) when
the tumor purity is equal to 0.8. When detecting low and medium purity
samples, its performance is relatively balanced between recall and
precision. When FREEC detects high-purity samples, its F1-score is
superior to the other three comparison methods, but its recall is
significantly higher than precision, which indicates that its
performance in detecting high-purity samples is uneven. The F1-scores
of CNV-LOF are better than other three methods (BIC-seq2, FREEC, and
CNVnator) when the tumor purity is equal to 0.2 and 0.4, which indicates
that it is suitable for detecting low and medium purity samples. Its
advantage is to obtain high precision when detecting low and medium
purity samples. In contrast, its recall rate is low. CNVnator obtains the
lowest F1-scores at purities equal to 0.2, 0.4, and 0.6, because the precision
of CNVnator is the lowest in all sample sets. CNVnator detects a large
number of longCNVs,most of which are false-positive positions. In terms
of recall, SPCNV achieves the best recall, except when the tumor purity is
equal to 0.6. In terms of precision, SPCNV obtains the best precision in
each sample set. Overall, the SPCNV gets the best trade-off between recall
and precision in each simulation sample set.

Based on the above analysis and discussion, we further analyze the
performance of eachmethod in detecting gains and losses. Figure 4 details
the performance of each method in detecting gains and losses in the four
datasets. In general, the number of gains detected by eachmethod is more
than losses. The performance of SPCNV in detecting the gain and loss is
relatively balanced compared to the other fourmethods.While CNV-LOF
detects the most gains in each sample set, it obtains the least losses in the
vast majority of cases. In most cases, FREEC detects far more gains than
losses. CNVnator detects the least gains in each sample set and obtains
fewer losses thanmost methods. BIC-seq2 detects the most losses in three
sets of samples, indicating that it is suitable for detecting losses. In
summary, SPCNV detects more gains and losses than most methods
in each simulation sample set, which shows that its performance is robust
in gain and loss detection.
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FIGURE 3
The performance of the fivemethods is compared in terms of recall, precision, and F1-score across four sets of simulation samples. Black curves indicate
that the F1-score levels are harmonic means of recall and precision ranging from 0.1 to 0.9. The equations on the left and right sides of the comma represent
the tumor purity (TP) and sequencing coverage (SC), respectively.

FIGURE 4
The performance of the five methods is compared in terms of the number of detected gains and losses across four sets of simulation samples. The
equations on the left and right sides of the comma represent the tumor purity (TP) and sequencing coverage (SC), respectively.
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As a supplement to the above experiments, we further analyzed the
sensitivity of each method to detect CNV of different lengths. Figure 5
details the sensitivity of five methods to detect three CNV lengths
(10 kb, 20 kb and 50 kb) in four sets of samples. The sensitivity is
defined as the ratio between the number of correctly detected CNVs
and the number of simulated CNVs. The proposed method achieves
the best sensitivity when the TP is equal to 0.2 and the CNV length is
equal to 50 kb, and ranks second when CNV sizes are equal to 10kb
and 20 kb. BIC-seq2 and CNV-LOF get the best sensitivity when the
TP is equal to 0.2 and CNV sizes are equal to 10 kb and 20 kb. CNV-
LOF achieves lower sensitivity at CNV sizes equal to 10 kb and 50 kb
than other three comparison methods (SPCNV, FREEC and BIC-
seq2). BIC-seq2 achieves lower sensitivity at CNV sizes equal to 20 kb
and 50 kb than SPCNV. The proposed method gets the best sensitivity
when the TP is equal to 0.4 and CNV sizes are equal to 20 kb and
50 kb, and ranks second when CNV size is equal to 10 kb. CNV-LOF
and BIC-seq2 get the best sensitivity when CNV size is equal to 10 kb,
and achieves lower sensitivity at CNV sizes equal to 20 kb and 50 kb
than the proposed method. The proposed method gets the best
sensitivity when the TP is equal to 0.6 and CNV size is equal to
20 kb, and ranks second when CNV sizes are equal to 10 kb and 50 kb.
At the same time, CNV-LOF and BIC-seq2 get the best sensitivity
when CNV size is equal to 10 kb and 50 kb, respectively. CNV-LOF
achieves lower sensitivity at CNV sizes equal to 20 kb and 50 kb than
SPCNV. BIC-seq2 achieves lower sensitivity at CNV sizes equal to
10 kb and 20 kb than SPCNV. The proposed method gets the best
sensitivity when the TP is equal to 0.8 and CNV size are equal to 20 kb
and 50 kb, and ranks second when CNV size is equal to 10 kb. CNV-
LOF gets the best sensitivity when CNV size is equal to 10 kb, and
achieves the lowest sensitivity at CNV sizes equal to 20 kb and 50 kb.

In general, the proposed method performs better than the other four
comparison methods in detecting CNVS of different sizes.

3.2 Application of real data

In order to verify the performance of the proposed method in real
application scenarios, we use six real data samples (NA12878, NA12891,
NA12892, NA19238, NA19239, and NA19240) from the 1,000 Genomes
Project, which can be downloaded for free from http://www.
internationalgenome.org/. Some of the test results for these samples
are recorded in the DGV, which is considered the ground truth for
calculating the recall, precision, and F1-scores for each method. Similarly,
we select the four methods (CNV-LOF, FREEC, CNVnator, and BIC-
seq2) of the above experiments to compare with the proposed method.
The experimental results are shown in Figure 6. SPCNV obtains the
highest F1-scores among the five samples and ranks second in the
NA19238 sample. CNV-LOF obtains the highest F1-score in the
NA19238 sample and ranks second in F1-score among the other five
samples. BIC-seq2 does not detect the correct CNVs in NA12878,
NA12891, and NA12892, and its F1-scores rank third in NA19238,
NA19239, and NA19240. The performance of FREEC and CNVnator
is relatively close, and their F1-scores are ranked third and fourth in
NA12878, NA12891, and NA12892 and in NA12878, NA12891, and
NA12892, respectively. In terms of recall, FREEC achieves the best recall
three times, CNVnator has the best recall twice, and CNV-LOF achieves
the best recall once. In terms of precision, SPCNV obtains the best
precision in five of the six samples, and CNV-LOF has the best precision
once. Overall, SPCNV has obvious advantages over the other four
methods in terms of precision and F1-score.

FIGURE 5
The sensitivity of fivemethods at the three CNV length levels under four sets of simulation configurations. The equations on the left and right sides of the
comma represent the tumor purity (TP) and sequencing coverage (SC), respectively.
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4 Discussion and conclusion

In this work, a new method called SPCNV was proposed to detect
CNVs using NGS data. SPCNV was developed based on the RD method
and could be used to detect a single genome-wide sample. The proposed
SPCNV method effectively removed abnormal bins, calibrated GC-
content bias, and denoised and transformed the dimension of the read
depth. Based on the preprocessed RD profile, it then computed the k
nearest neighbors for each object. On this basis, we constructed the
shortest path set, the shortest path relation set, and the shortest path cost
set for each object, by which the mean shortest path cost was defined. At
the same time, we computed the mean shortest path cost for each object
and used the ratio between the mean shortest path cost of each object and
the mean of the mean shortest path cost of its k nearest neighbors to
construct a relative shortest path score. Based on the relative shortest path

scores for each object, CNVs were predicted using boxplots. Both
simulation and real data experiments were then carried out to verify
the performance of the proposed method. In the simulation data
experiments, the performance of the proposed method was evaluated
from five aspects (recall, precision, F1-score, the number of gain and loss,
and sensitivity of detection of CNVwith different sizes). The experimental
results showed that the proposed method achieved the best balance
between recall and precision, gain and loss, as well as CNV of
different sizes, respectively. In real data applications, the proposed
method achieved the best F1-scores in most samples, indicating that
its performance was reliable and effective in real application scenarios.

Traditional CNVdetectionmethods generally assume in advance that
the RDs obey a statistical model, use the model to calculate a p-value for
each read depth, and use hypothesis testing methods or select a fixed
threshold to predict CNVs. Compared with the traditional methods, the

FIGURE 6
The performance of the five methods is compared in terms of recall, precision, and F1-score across six real data samples. Black curves indicate F1-score
levels that are harmonic means of recall and precision ranging from 0.1 to 0.9.

Frontiers in Genetics frontiersin.org08

Liu et al. 10.3389/fgene.2022.1084974

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1084974


proposed method has three different characteristics, which are
summarized as follows. 1) Compared with traditional density-based
methods, using objects to construct shortest paths can effectively
identify a small cluster of local variants, which have little difference
but are isolated relative to all objects. 2) We treat a CNV as an outlier and
effectively transform the outlier detection method into a CNV detection
method. 3) Extracting the RD ratio and difference of the RD ratio provides
a global and local perspective to capture the difference of the copy number
corresponding to each RD, which is more conducive to the detection of
local single isolated CNVs and local small clusters of CNVs.

Although the performance of the proposedmethodmeets the detection
needs to a certain extent, there are still some shortcomings that require
improvement. At this stage, the resolution of the proposedmethodmust be
further improved. In the next step, we will extract the read depth and split
reads to further enhance its resolution (Ye et al., 2009; Jiang et al., 2012).
The selection of the number of nearest neighbors is a key step that can affect
the accuracy of the detection results. In this study, the selection of this
parameter is based on reference to previous studies (Breunig et al., 2000; Jin
et al., 2006). While the performance of the method is good in most
application scenarios, it may not be suitable for some individual cases. In
future work, the selection method of this parameter will be improved to
realize automatic optimization. In addition, the functions of the proposed
method need to be further expanded for application to more scenarios. For
example, analyzing the biological significance of CNVs and mapping
oncogenes, which can provide strong support for targeted drug
development and clinical treatment.
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