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TTN is the most commonly mutated gene in skin cutaneous melanoma (SKCM).
Tumor mutational burden (TMB) can generate new antigens that regulate the
recognition of T cells, which will significantly affect the prognosis of patients. The
TTN gene has a long coding sequence and a high number of mutant sites, which
allows SKCM patients to produce higher TMB and may influence the immune
response. It has been found that the overall survival (OS) of SKCM patients with
TTN mutation was significantly higher than that of wild-type patients. However, the
effect of TTN mutation on the immune microenvironment of SKCM has not been
fully investigated. Here, we systematically explored the relationship and potential
mechanisms between TTN mutation status and the immune response. We first
revealed that TTN mutated SKCM were significantly associated with four
immune-related biological processes. Next, 115 immune genes differentially
expressed between TTN mutation and wild-type SKCM patients were found to
significantly affect the OS of SKCM patients. Then, we screened four immune-
related genes (CXCL9, PSMB9, CD274, and FCGR2A) using LASSO regression analysis
and constructed a TTNmutation-associated immune prognostic model (TM-IPM) to
distinguish the SKCM patients with a high or low risk of poor prognosis, independent
of multiple clinical characteristics. SKCM in the low-risk group highly expressed a
large number of immune-related genes, and functional enrichment analysis of these
genes showed that this group was involved in multiple immune processes and
pathways. Furthermore, the nomogram constructed by TM-IPM with other
clinicopathological parameters can provide a predictive tool for clinicians.
Moreover, we found that CD8+ T cells were significantly enriched in the low-risk
group. The expression level of immune checkpoints was higher in the low-risk group
than in the high-risk group. Additionally, the response to chemotherapeutic agents
was higher in the low-risk group than in the high-risk group, whichmay be related to
the long survival in the low-risk group. Collectively, we constructed and validated a
TM-IPM using four immune-related genes and analyzed the potential mechanisms of
TM-IPM to predict patient prognosis and response to immunotherapy from an
immunological perspective.
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Introduction

Melanoma is a type of cancer caused by malignant lesions of
melanocytes. Furthermore, skin cutaneous melanoma (SKCM) is
the most common subtype of melanoma, comprising over 90% of all
melanomas (Ali et al., 2013) and ranking 15th among most
common malignancy worldwide (Leonardi et al., 2018). With the
exception of non-melanoma skin cancer, newly diagnosed SKCM
accounts for approximately 1.7% of all primary malignancies in the
world (Schadendorf et al., 2018). Recent studies have found that
melanoma is very sensitive to immunomodulation and is gradually
becoming a major treatment (Weiss et al., 2019). However,
immunotherapy is only available for a subset of the population,
which is usually high in the expression of immune checkpoints. The
introduction of immune checkpoint inhibitors (ICIs) targeting
immune checkpoints such as cytotoxic T-lymphocyte antigen-4
(CTLA-4) and programmed death 1 (PD-1) has significantly
improved and extended the life span of patients (Weiss et al.,
2019). Therefore, it is crucial to develop an immune prognostic
model that can accurately predict whether SKCM patients will
respond to immunotherapy and their prognosis.

It is reported that about 65% of SKCM is caused by ultraviolet
radiation (UVR), which can cause DNA alteration (Emri et al.,
2018). Importantly, the gene with the highest mutation frequency
in SKCM is titin (TTN) (Kang et al., 2020). TTN is used to express
myosin, which is responsible for maintaining muscle tension
(Savarese et al., 2018). The TTN gene has a long coding
sequence and mutations at any site may lead to abnormal
myosin function, which will result in aberrant growth of muscle
fibers (Savarese et al., 2018). Numerous previous studies have found
that TTN mutation is associated with diseases such as tibial
muscular dystrophy (Hackman et al., 2002), moyamoya disease
(Xiao et al., 2022) and familial atrioventricular block (Liu et al.,
2020). However, recently scholars have focused on the relationship
between TTN mutation and immunotherapy for solid tumors
(Miao et al., 2018; Jia et al., 2019).

Recently, one study demonstrated that TTN mutation in lung
squamous carcinoma (LUSC) was positively associated with tumor
mutational burden (TMB) and served as an independent prognostic
factor and influenced the immune microenvironment of LUSC
(Zou et al., 2022). Higher TMB produces more neoantigens,
which increases the chance of recognition by T cells (Jardim
et al., 2021). Interestingly, in SKCM, TMB was positively
correlated with prognosis and response to immunotherapy. The
TTN gene, which has a high number of mutant loci, is an essential
component of TMB. However, the role of TTN mutation in SKCM
has not been clearly elucidated. In this study, based on The Cancer
Genome Atlas (TCGA) database, we compared immune-related
biological processes between TTN mutated and wild-type SKCM
and obtained immune-related genes. In addition, we constructed
and validated a TTN mutation-associated immune prognostic
model (TM-IPM) based on immune-associated genes and
developed a nomogram with clinical characteristics. In general,
the results of this study will provide a novel risk prediction model
for the diagnosis, prognosis and treatment of SKCM from an
immune perspective.

Materials and methods

Data source and mutation analysis

Transcriptome data (RNA-sequencing [RNA-seq] data, FPKM
format), genetic mutation and clinical data for 471 SKCM patients
were downloaded from TCGA (http://cancergenome.nih.gov)
database. Following the previous method of Bo Li et al. (Li et al.,
2010), we converted the FPKM format of the expression spectrum
from TCGA database to TPM format. Mutation data were analyzed
using the maftools package in R software. The histogram showed the
top 10 genes with the highest mutation frequency in SKCM patients.
Furthermore, we obtained 367 TTN mutated samples and 98 TTN
non-mutated samples from the TCGA database, which served as the
training cohort.

In addition, gene expression profile matrix files and clinical
information of GSE65904 (including 214 melanoma samples) based
on the GPL10558 platform were downloaded from the Gene
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/)
database. For the expression matrix of the above data, we removed
genes and samples with NA values greater than 50% and used the
impute.knn function of the impute package to perform missing value
completion, setting number of neighbors to 10 to complete the missing
data. Moreover, we performed a log2 (X+1) transformation on the
microarray data of GSE65904. It was then normalized using the
normalizeBetweenArrays function of the limma package. Further,
Q-Q plots were plotted to verify the normalized data (Figure S1).
The data of GSE65904 served as the validation cohort. The data for this
study were obtained from public databases, which do not require
ethical approval and informed consent.

Gene set enrichment analysis (GSEA)

To determine the differences in immune pathways and associated
immune genes between SKCM samples with (n = 367) and without
(n = 98) TTN mutation in the TCGA SKCM cohort, we performed
GSEA analysis. For the GSEA analysis, we used the R package
clusterProfiler. We selected c5.bp.v6.2.symbols.gm as the reference
gene set, which was downloaded from Molecular Signatures Database
(http://www.gsea-msigdb.org/gsea/downloads.jsp) (Liberzon et al.,
2011) to assess relevant biological functions. The minimum gene
set was set at five and the maximum gene set at 5,000, and the
sampling was repeated one thousand times. p-value < 0.05 and false
discovery rate (FDR) < 0.25 were considered statistically significant.
According to the GSEA results, we obtained 115 key immune-related
genes (IRGs).

Construction and validation of an immune-
related prognostic model

In this study, we evaluated the prognostic significance of each key
genes using the Cox method by the survival package. Then, we
identified prognostic risk characteristics using the Least Absolute
Shrinkage and Selection Operator (LASSO) regression method (Gui

Frontiers in Genetics frontiersin.org02

Wang et al. 10.3389/fgene.2022.1084937

http://cancergenome.nih.gov
https://www.ncbi.nlm.nih.gov/geo/
http://www.gsea-msigdb.org/gsea/downloads.jsp
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1084937


and Li, 2005). LASSO regression was performed by using the glmnet
package of R software, which was used to integrate survival time,
survival status and gene expression data. Further, we set up a 10-fold
cross validation to obtain the optimal model. Then, the final four genes
were identified for the construction of our signature. The risk score
was calculated using the following formula: Risk Score =

∑
i�1
(coefi*Expri), where coefi is the coefficient and Expri is the

related expression value. The 214 samples in GSE65904 were used
to validate this prognostic risk model. Subsequently, we evaluated the
performance of the prognostic model. The maxstat package was used
to find the optimal cutoff point for SKCM patients classified as low-
and high-risk groups. Further, we analyzed the prognostic differences
between the two groups using the survival package, and assessed the
significance of prognostic differences between the samples of different
groups using the log-rank test method. The overall survival (OS) of the
patients is presented by the Kaplan-Meier (K-M) curves. Moreover, we
plotted receiver operating characteristic (ROC) curves by the pROC
package.

Identification of differentially expressed
genes and immune-related genes

The limma package (version 3.40.6) of R software was used to
perform differential analysis to obtain differential expressed genes
(DEGs) between low- and high-risk groups. Absolute fold
change ≥3 and adjusted p-value < 0.05 were considered
significant. The volcano plots and heatmaps were drawn in R
using the ggplot2 and pheatmap package, respectively. Using
Euclidean distance metric and complete agglomeration method,
hierarchical clusters were generated. Next, we downloaded the
immune-related gene list from the Immport website (https://
www.immport.org/home). By taking the intersection of DEGs
with immune-related genes, we obtained the differential
immune-related genes (IRGs). This was shown with a Venn
diagram.

Functional enrichment analysis

According to the DEGs obtained in the previous step, we
performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analyses for upregulated genes (high-
risk group) and downregulated genes (low-risk group), respectively.
For the GO and KEGG analysis, we used the R package clusterProfiler
and org.Hs.eg.db.

Univariate and multivariate Cox regression
analysis

The 355 SKCM samples with survival information from the TCGA
database contained various clinical features, including age, sex, T/N/M
stage, and pathologic stage. To verify whether the prognostic model
predictions were independent of traditional clinical characteristics
(including age, sex, T/N/M stage, and pathologic stage), we performed
univariate and multivariate Cox regression analyses on SKCM
patients.

Construction and evaluation of nomogram
and decision curve analysis (DCA)

Based on the results of the multivariate analysis, a nomogram was
constructed to estimate the predicted survival probability for 1 year,
3 years, and 5 years. The rms package (version 6.2–0) was used to build
the nomogram, which was calibrated using calibration plots.
Moreover, the nomogram’s performance was assessed using the
concordance index (C-index). Furthermore, the DCA was used to
evaluate the clinical benefits of the nomogram over a single prognostic
factor.

Immune infiltration analysis

From gene expression data, the 64 immune and stromal cell
types in SKCM tumors were evaluated by the xCell, CIBERSORTx,
quanTIseq and ESTIMATE algorithms (Aran et al., 2017; Rusk,
2019; Plattner et al., 2020). The estimate package was used to assess
the immune microenvironment of SKCM: the presence of stroma
(Stromal Score), the level of immune cells infiltrations (Immune
Score), and the sum of stromal score and immune score (Estimate
Score) (Yoshihara et al., 2013). We used heat maps to show the
scores of immune and stromal cells in all samples and ranked the
samples using risk score. Further, we showed the scores of cell
types that were significantly different in the high-risk and low-risk
groups in the form of bar charts, which were statistically
performed using independent samples t-tests. We analyzed the
expression levels of six immune checkpoint-related genes
(PDCD1, TIGIT, CD160, TIM3, CTLA4, and LAG3) in both
groups, which were statistically performed using independent
samples t-tests.

Chemotherapy response prediction

Based on the public database of Genomics of Drug Sensitivity in
Cancer (GDSC; https://www.cancerrxgene.org), we evaluated the half-
maximal inhibitory concentration (IC50) of response to
chemotherapy drugs in different risk groups using the pRRophetic
package (Geeleher et al., 2014). We compared the difference in
IC50 values between the low- and high-risk groups by Wilcoxon
analysis. Additionally, the NCI-60 database is now widely used to
explore the correlation between gene expression and drug sensitivity
in different cancer cell lines and is available through the CellMiner
database (https://discover.nci.nih.gov/cellminer) (Shankavaram et al.,
2009). Pearson correlation analysis was performed to investigate
potential differences in drug sensitivity between the high- and low-
risk groups.

Statistical analyses

In this study, all analyses were performed using R software
(version 3.6.3) and the Sangerbox online platform (Shen et al.,
2022). Pearson’s rank tests were used to explore the correlation.
The specific statistical methods are described in detail in the
methods above. All statistical tests were two-tailed, and p-value <
0.05 was considered statistically significant.
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Results

Association of immunophenotypes with TTN
mutation in SKCM

The TTN mutation is the most common type of mutation in
SKCM (Figure 1A). The somatic mutation rate of TTN reached

72%. In addition, the proportion of mutations in the high and low
expression groups of TTN was approximately the same. To
investigate the effect of TTN mutation on SKCM, GSEA analysis
was performed on SKCM with (n = 367) and without (n = 98) TTN
mutation. The results showed that TTN mutant SKCM were
significantly enriched in 295 biological processes
(Supplementary Table S1), which contained four immune-

FIGURE 1
Mutated gene spectrum and Gene set enrichment analysis (GSEA) of SKCM patients based on TTNmutation status. (A)Mutated gene spectrum of SKCM
from TCGA database (top 10). Blue represented TTN high expression group; red represented TTN low expression group. (B–E) GSEA between TTN mutation
patients and wild-type patients. Significantly enriched immune-related biological processes between TTN mutant and wild-type comparison.
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related biological processes: GO_CELL_ACTIVATION_
INVOLVED_IN_IMMUNE_RESPONSE (normalized enrichment
score, NES = 2.005, p.adj = 0.028, FDR = 0.019), GO_IMMUNE_
EFFECTOR_PROCESS (NES = 2.114, p.adj = 0.028, FDR = 0.019),
GO_REGULATION_OF_IMMUNE_RESPONSE (NES = 1.743,
p.adj = 0.037, FDR = 0.025), GO_POSITIVE_REGULATION_
OF_IMMUNE_SYSTEM_PROCESS (NES = 1.560, p.adj = 0.047,
FDR = 0.032) (Figures 1B–E). In contrast, TTN wild-type SKCM
was not enriched for any biological processes associated with
immunity.

Construction of a TM-IPM and evaluation of
its predictive capabilities in the TCGA SKCM
cohort

We obtained 115 key IRGs from the four immune-related
biological processes enriched by GSEA (Supplementary Table
S2). To identify immune genes associated with prognosis, we

first performed univariate Cox regression analysis on IRGs and
obtained a total of 48 genes with prognostic value (Supplementary
Figure S2A). Next, we applied LASSO regression analysis to
identify the genes with the greatest prognostic value. Finally,
the LASSO regression analysis incorporated four genes
(CXCL9, PSMB9, CD274, and FCGR2A) for constructing the
prediction model (Supplementary Figures S2B, C). Then, the
LASSO regression coefficients were multiplied by the
expression value of each immune gene to construct a risk
score model (risk score = -0.028*CXCL9-0.009*PSMB9-
0.045*CD274-0.048*FCGR2A). We divided the patients into
high- and low-risk groups based on risk scores (Figure 2D).
There was a shorter OS for high-risk patients compared with
low-risk patients in TCGA cohort (Figure 2A). Figure 2B
illustrated the distribution of risk scores and gene expression
data. Time-dependent ROC curves were used to illustrate the
predictive power of the TM-IPM (Figure 2C). In the prognostic
model for OS, the area under the ROC curve (AUC) was 0.70 at
1 year, 0.69 at 3 years, and 0.71 at 5 years.

FIGURE 2
Development and validation of the TTN mutation-associated immune prognostic model (TM-IPM). Kaplan-Meier survival, risk score and time-
dependent ROC curves of the TM-IPM for the TCGA SKCMcohort (A–C) andGSE65904 cohort (E–G). TM-IPMwas able to clearly classify SKCM patients from
TCGA (D) and GEO (H) into high and low-risk groups.
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Validation and evaluation of the TM-IPM in
the GEO SKCM cohort

To determine whether TM-IPM is stable, the performance of TM-
IPM was evaluated in a GEO SKCM cohort consisting of 214 SKCM
patients. Patients in the GEO SKCM cohort were calculated using the
same formula for risk score and categorized into high-risk and low-risk
groups (Figure 2E). Consistent with the results of the TCGA SKCM
cohort, patients in the low-risk group had significantly higher OS than
those in the high-risk group (Figure 2F). Furthermore, Figure 3B showed
the distribution of risk scores and gene expression data. The AUC was
0.66 at 1 year, 0.67 at 3 years, and 0.59 at 5 years (Figure 2G).

Stratification analyses of OS based on TTN
status for the TM-IPM in the TCGA SKCM
cohort

Consistent with TM-IPM, TTN status was also significantly
associated with the prognosis of SKCM patients. However,
interestingly, patients with TTN mutation had higher OS than

those with TTN wild type (Figure 3A). Next, to test whether the
prognostic value of TM-IPM was independent of TTN status,
stratification analyses were performed. Thus, patients in the TCGA
SKCM cohort were divided into TTN mutation subgroup and TTN
wild-type subgroup based on TTN status. Based on stratification
analyses, both the TTN wild-type and TTN mutation subgroups
showed significant relationships between TM-IPM and OS. Low-
risk patients in both subgroups had a better prognosis (Figures
3B,C). Moreover, correlation analysis showed that risk score was
significantly negatively associated with OS time in both subgroups
of the TCGA SKCM cohort (Figure 3D). In addition, univariate and
multivariate Cox regression analyses showed that TM-IPM could be
an independent predictor of OS in SKCM patients and independent of
TTN status (Figure 3E).

Low risk predicted an enhanced local immune
infiltration in SKCM

The above results suggested the association of TTN mutation
with immune processes and the validity of TM-IPM in predicting

FIGURE 3
Prognostic analysis of TTNmutation in SKCM patients. (A) Kaplan-Meier survival between TTNmutation and wild-type patients. (B) Kaplan-Meier survival
between high and low-risk groups in TTN wild-type patients. (C) Kaplan-Meier survival between high and low-risk groups in TTN mutation patients. (D)
Correlation between riskscore and overall survival (OS) in SKCM patients with TTNmutation andwild type. (E)Univariate andmultivariate regression analysis of
TTN status and riskscore of TM-IPM.
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the prognosis of SKCM patients, and we next explored the potential
functions of TM-IPM. Therefore, we first performed differential
expression analysis with the limma package for the high- and low-
risk groups (|fold change| ≥ 3 and adj. p-value <0.05), in which
3 genes were upregulated while 434 genes were downregulated
(Figure 4A, Supplementary Table S3). DEGs can clearly distinguish
between high-and low-risk SKCM patients (Supplementary Figure
S3). To investigate whether immune-related DEGs existed between
the two groups, the DEGs and immune-related genes were
overlapped (Figure 4B). Figure 4C showed that these immune-
related DEGs were highly expressed mainly in the low-risk
group. GO and KEGG enrichment analysis were performed

based on these immune-related DEGs. As shown in Figure 4D,
the top 10 most significantly enriched immunological processes in
the low-risk group of tumors were listed. The results of GO
(biological process, BP) analysis were significantly correlated
with the regulation of many immunological processes, mainly
including the regulation of immune system process and immune
response. As shown in Figure 4E, KEGG enrichment analysis
showed that low-risk SKCMs are regulated by multiple immune-
related pathways, mainly including Th1 and Th2 cell
differentiation, Th17 cell differentiation, T cell receptor
signaling pathway, PD-L1 expression and PD-1 checkpoint
pathway in cancer, and B Cell receptor signaling pathway.

FIGURE 4
Enrichment analysis of TM-IPM. (A)Differentially expressed genes between high-risk and low-risk groups. (B)Overlapping differentially expressed genes
and immune-related genes. (C) Heatmap of differentially expressed immune-related genes. (D) Gene ontology (GO) analysis of differentially expressed
immune-related genes. (E) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of differentially expressed immune-related genes.
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FIGURE 5
The landscape of immune infiltration in low- and high-risk SKCM patients. (A) The heatmap of immune cell infiltration in SKCM was analyzed by xCell
method and ranked by risk score. (B,C) The violin plot compared the scores of eight infiltrated immune cells between the low- and high-risk groups. (D)
Correlation between immune cell scores. (E) Expression levels of immune checkpoints between low- and high-risk groups. (F) Correlation between immune
checkpoints and risk scores.
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The immune landscape was evaluated
among low- and high-risk groups

The existence of multiple immune-related biological
functions and signaling pathways has been demonstrated in
the low-risk group of patients with TM-IPM. Next, we
evaluated the differences in immune cell types between low-
and high-risk SKCM patients by the xCell, CIBERSORTx
and quanTIseq methods. Figure 5A, Supplementary Figures
S4A, C demonstrate the trend of infiltration of immune cells in
SKCM patients from TCGA database. Significantly different
immune cell infiltration profiles exist between different risk
groups. To facilitate the observation of differences in
immune cells by subtype, we compared immune cell
infiltration scores with significant trends between the high-
and low-risk groups (Figures 5B,C, Supplementary Figures
S4B, D). From the results of the xCell method, the scores of
CD8+ T cells, CD8+ central memory T cells (Tcm), B Cells,
activated dendritic cell (aDC), conventional DC (cDC), and
macrophages (including M1 and M2 types) were
significantly higher in the low-risk group compared with the
high-risk group. Additionally, different subpopulations
of tumor-infiltrating immune cells showed different degrees
of correlation with each other. Moreover, the results
of CIBERSORTx showed that CD8+ T cell scores
were significantly higher in the low-risk group than in the
high-risk group; conversely, macrophages (M0 and M2) and
mast cells scored higher in the high-risk group than in the
low-risk group (Figure S4B). Further, the results of
quanTIseq showed that the infiltration levels of CD8+ T cells
and macrophages (M1 and M2) were significantly higher in the
low-risk group than in the high-risk group, while the levels of
DCs were higher in the high-risk group than in the low-risk
group (Figure S4D). Combining these results, we hypothesize that
CD8+ T cells may be the predominantly infiltrating immune cells
in the low-risk group of SKCM and play an essential role.
Finally, ESTIMATE was used to assess the correlation
between the risk score of TM-IPM and the immune
microenvironment. The risk score was significantly negatively
correlated with ESTIMATEScore, ImmuneScore and
StromalScore (Figure S5A). Based on the results of immune
cell infiltration, we further explored the differences in genes
associated with T cell function between high- and low-risk
groups. The results showed that interleukin (IL) 2, IL7,
IL15 and Interferon-γ (IFN-γ) were significantly higher in the
low-risk group than in the high-risk group (Supplementary
Figure S5B).

Differences in immune checkpoint genes
between low- and high-risk groups

The expression of six immune checkpoint genes (PDCD1,
TIGIT, CD160, TIM3, CTLA4, and LAG3) was significantly
higher in the low-risk patients than in the high-risk patients
(Figure 5E). There was a significant negative correlation
between risk scores and the expression levels of immune
checkpoint genes, while there was a moderate to high
correlation among immune checkpoint genes (Figure 5F).

The TM-IPM is independent of conventional
clinical characteristics

Univariate and multivariate Cox regression analyses were
performed to investigate whether the prognostic value of TM-IPM
was independent of other clinical factors in the TCGA SKCM cohort.
Age, T/N stage, pathological stage, and risk score of TM-IPM were
independent risk factors (Figure 6A). Taking into account clinical
characteristics, such as age, T/N stage, and pathological stage, TM-
IPM remained an independent prognostic factor, thus demonstrating
its robustness in independently predicting SKCM prognosis
(Figure 6B). The risk of death increased with increasing risk score
of TM-IPM (HR = 13.136, 95% CI = 5.883–29.328). A similar,
multivariate Cox regression analysis showed that TM-IPM was
significantly associated with survival information (p < 0.001) and
risk score (HR = 19.548, 95% CI = 7.221–52.914).

Construction and validation of a nomogram
based on the TM-IPM

Based on the results of multivariate Cox regression analysis, we
constructed a nomogram integrating independent clinical risk factors
(T\N stage) and TM-IPM, which may improve the quantitative
approach for clinicians to predict the prognosis of SKCM patients
(Figure 6C). This nomogram can predict OS of 1, 3, and 5 years in the
TCGA SKCM cohort. For OS prediction, the C-index of the
nomogram was 0.701 (0.680–0.722) (p < 0.01). Additionally, the
calibration curve suggested that its prediction was accurate
(Figure 6D). Furthermore, DCA results showed that our
nomogram has a high degree of clinical utility (Figure 6E).

Chemotherapy drug sensitivity analysis

As shown in Figure 7A, an analysis was performed on the
sensitivity of four types of chemotherapy drugs: ATRA, gefitinib,
axitinib and methotrexate. The IC50 values for ATRA, gefitinib,
axitinib, and methotrexate were significantly lower in the low-risk
group than in the high-risk group, suggesting that patients with lower
risk scores were more sensitive to these chemotherapeutic drugs. In
addition, the expression of four IRGs in NCI-60 cell lines was
investigated, while revealing the relationship between their
expression levels and drug sensitivity. The results showed that
these four IRGs correlated with some chemotherapeutic drug
sensitivities (p < 0.001, Figure 7B; Supplementary Table S4).

Discussion

Recent studies have shown that TTN is the most frequently
mutated gene in tumors (Oh et al., 2020). Consistent with this
view, TTN possesses a long exon length in the entire genome,
which results in a greater number of mutant loci (Jia et al., 2019).
Studies have shown that higher mutation rates are significantly
associated with TMB, which may contribute to the generation of
new antigens and stimulate T cell recognition, ultimately affecting the
efficacy of immunotherapy for patients (Oh et al., 2020; Jardim et al.,
2021). Jia et al. found a significant positive correlation between
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objective remission rates and TTN mutation frequency in melanoma
patients treated with anti-PD-1/PD-L1/CTLA-4 monotherapy (Jia
et al., 2019). Therefore, it is essential to further investigate the
immune-related effects of TTN status. However, it is still unknown
how TTN mutation affects the immunophenotypic and prognosis of
SKCM. Further, it is important to develop validated immune-related
prognostic models to determine the immune status of patients, which
may serve as powerful prognostic biomarkers and allow for the
classification of patients to improve the effectiveness of
immunotherapy. Numerous studies have developed immune-related
clinical prediction models (Hu et al., 2020; Ping et al., 2021; Tian et al.,
2021); however, they did not associate TTN mutation, the most
common mutated gene in SKCM, with immune phenotypic
regulation. In this study, we found that TTN mutation was
significantly associated with longer OS in SKCM patients compared
to wild type. To investigate whether TTN mutation is associated with
immunomodulation of SKCM, we performed GSEA to compare the
immune processes of SKCM with different TTN status. Furthermore,
we obtained immune-related genes affected by TTN mutation based

on GSEA results and established a four-gene TM-IPM that can
identify high-risk SKCM patients with poor prognosis.

IFN-γ has the function of activating cellular immunity and
subsequently stimulating anti-tumor immune responses, which
promotes apoptosis and inhibits the proliferation of tumor cells
(Jorgovanovic et al., 2020). CXCL9 is a chemokine induced by
IFN-γ. The CXCL9/10/11/CXCR3 axis is capable of regulating
immune cell migration, differentiation and activation. It has been
shown that CXCL9 can inhibit tumor growth by mediating
lymphocyte infiltration to the lesion site (Tokunaga et al., 2018).
Elevated CXCL9 can suppress melanoma growth by regulating effector
T cells, thereby promoting anti-tumor adaptive immunity (Xiao et al.,
2018). PSMB8 is a subunit of the immunoproteasome that degrades
cellular proteins to produce peptides for antigen presentation, which
induces an effective immune response in CD8+ T cells (Kalaora et al.,
2020; Tripathi et al., 2021). PSMB8 deficiency has been shown to
promote tumor growth in a mouse model of melanoma (Leister et al.,
2021). CD274, also known as PD-L1, can bind to PDCD1 to
downregulate T cell function in melanoma (Eggermont et al.,

FIGURE 6
The relationship between TM-IMP and other clinical characteristics. (A) Univariate regression analysis of TM-IMP with other clinical characteristics (age,
sex, T/N/M stage, and Pathologic stage). (B) Multivariate regression analysis of TM-IMP with other clinical characteristics (age, T/N/M stage, and Pathologic
stage). (C) Nomogram was constructed based on the results of multifactorial regression analysis, which predicted the probability of 1-, 3-, and 5-year overall
survival (OS) of SKCMpatients. (D)Calibration plot of the nomogram predicting the probability of OS at 1, 3 and 5 years. (E) Plots of decision curve analysis
for the nomogram.
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2014). It was found that IFN-γ-mediated CD274 upregulation and
increased OS in metastatic melanoma were both significantly
associated with CD8+ T cells (Vaxevanis et al., 2022). Furthermore,
patients with lower CD274 levels had reduced T cell infiltration and
responded poorly to treatment with immune checkpoint inhibitors
(Vaxevanis et al., 2022). The FCGR2A gene, a member of the gene
family encoding the immunoglobulin Fc receptor, regulates antibody-
dependent cytotoxicities, which are essential for the elimination of
cancer cells (Dai et al., 2021). FCGR2A was found to be positively
associated with survival in melanoma patients (Zhong et al., 2022). In
our study, CXCL9, PSMB9, CD274, and FCGR2A were combined for
the first time to predict the prognosis of SKCM patients, and they were
all associated with a good prognosis of patients.

Moreover, TM-IPM was shown to be an independent predictor of
prognosis in SKCM patients. Additionally, in order to more accurately

predict patient prognosis, we constructed a nomogram by combining
other clinical characteristics (T/N stage) and TM-IPM. The calibration
curves showed a good agreement between the observed values and the
predicted values of 1-year, 3-year and 5-year OS. This model provided
a personalized scoring system for individual tumors compared to
traditional methods of assessing patient prognosis (such as T/N/M and
pathologic stage), so our nomogram may be a useful tool to assist
future clinicians.

In the heterogeneous tumor microenvironment, T cells are critical
components of the immune infiltrate. Among them, CD8+ cytotoxic
T cells have the ability to directly clear tumor cells (Hashimoto et al.,
2018). However, for some reason, such as continuous antigen
stimulation, these cells enter a state of “dysfunction” or
“exhaustion” and express immune checkpoint proteins that help
tumor cells escape immune clearance (Li et al., 2019). Moreover,

FIGURE 7
Association between risk score, TM-IPM genes, and chemosensitivity in SKCM. (A) Box plots of estimated IC50 for ATRA, gefitinib, axitinib, and
methotrexate in high- and low-risk groups. (B) Scatter plot of the relationship between the expression of TM-IPM genes and drug sensitivity.
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checkpoint blockade therapies targeting tumor-specific T cells have
greatly improved the outcome of cancer treatment (Ribas and
Wolchok, 2018). Furthermore, infiltrating CD8+ cytotoxic T cells
were positively associated with longer disease-free survival (DFS)
and/or improved OS in melanoma patients (Bruni et al., 2020). In
our study, the infiltration level of CD8+ T cells in SKCM was
significantly higher in the low-risk group than in the high-risk
group. Elevated expression of immune checkpoints (PDCD1,
TIGIT, CD160, TIM3, CTLA4, and LAG3) may indicate that T cell
function is being reduced; however, IFN-γ expression was significantly
higher in the low-risk group than in the high-risk group, suggesting
that CD8+ T cells in SKCM in the low-risk group had not yet entered a
stage of severe exhaustion (McLane et al., 2019). In addition, we
compared the cytokines IL-7 and IL-15 expression levels between the
two groups, which may represent a relatively stable state of memory
T cells in the low-risk group (McLane et al., 2019). Interestingly, this
result is consistent with the KEGG analysis, with significant
enrichment of Th1, Th2, and Th17 cell differentiation in SKCM in
the low-risk group compared to the high-risk group, possibly
associated with high levels of IL2 expression. The loss of IL-2
production occurred early in T cell depletion, and IL2 expression
was higher in the low-risk group than in the high-risk group, which
also represented a residual cytotoxicity and tumor cell clearance
function of CD8+ T cells in the low-risk patients.

In addition, we performed a prediction of response to
chemotherapeutic drugs and analysis of four genes of TM-IPM for
correlation with drugs in low- and high-risk groups. The results
showed that patients in the low-risk group were more sensitive to
chemotherapeutic drugs compared to the high-risk group and that the
four genes of TM-IPM were significantly positively correlated in
responsiveness to drugs, which may explain the longer survival in
the low-risk group. Our study provides new perspectives on the SKCM
immune microenvironment and immune-related therapies.
Nevertheless, our study is limited because it is based on public
databases. Furthermore, functional and mechanistic studies of these
four genes should be performed individually or in combination to
demonstrate the availability and scientific validity of TM-IPM.

Conclusion

TTN has the highest mutation rate in SKCM and thus it plays a
crucial role in tumorigenesis and progression. The survival of SKCM
patients with TTNmutation was significantly longer than that of wild-
type patients. Additionally, TTN mutation was markedly associated
with four immune-related biological processes by GSEA. Based on
this, we identified and validated for the first time a TM-IPM based on
four immune-related genes (CXCL9, PSMB9, CD274 and FCGR2A)
with independent prognostic significance for SKCM patients and
reflecting the immune characteristics of the SKCM
microenvironment. Importantly, this research was the first to
construct a clinical prognostic model associated with TTN
mutation, which can be used as a reference for other cancers that
also have high TTN mutation rates. In this study, TM-IPM explains

the mechanism by which TTN mutation affects the outcome of
SKCM patients from an immunological perspective. Collectively,
TM-IPM was able to classify SKCM patients into high- and low-
risk groups. SKCM patients in the low-risk group had a better
prognosis compared to those in the high-risk group. Moreover, the
low-risk group of SKCM patients was more sensitive to
chemotherapeutic drugs. Therefore, TM-IPM was a useful tool
to assist clinicians in predicting the prognosis and response to
chemotherapy in patients with SKCM.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

Author contributions

QW and XH conceived the study. QW and SZ drafted the
manuscript and collected the data. QW and RZ analyzed and
visualized the data. DW revised the manuscript and was a
supporter of the study. All authors reviewed and approved the final
manuscript.

Funding

This work was supported by the grants from National Natural
Science Foundation of China (81971839).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2022.1084937/
full#supplementary-material

Frontiers in Genetics frontiersin.org12

Wang et al. 10.3389/fgene.2022.1084937

https://www.frontiersin.org/articles/10.3389/fgene.2022.1084937/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.1084937/full#supplementary-material
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1084937


References

Ali, Z., Yousaf, N., and Larkin, J. (2013). Melanoma epidemiology, biology and
prognosis. EJC Suppl. 11, 81–91. doi:10.1016/j.ejcsup.2013.07.012

Aran, D., Hu, Z., and Butte, A. J. (2017). xCell: digitally portraying the tissue
cellular heterogeneity landscape. Genome Biol. 18, 220. doi:10.1186/s13059-017-
1349-1

Bruni, D., Angell, H. K., and Galon, J. (2020). The immune contexture and
Immunoscore in cancer prognosis and therapeutic efficacy. Nat. Rev. Cancer 20,
662–680. doi:10.1038/s41568-020-0285-7

Dai, Y., Chen, W., Huang, J., and Cui, T. (2021). FCGR2A could function as a prognostic
marker and correlate with immune infiltration in head and neck squamous cell carcinoma.
BioMed Res. Int. 2021, 8874578. doi:10.1155/2021/8874578

Eggermont, A. M. M., Spatz, A., and Robert, C. (2014). Cutaneous melanoma. Lancet
383, 816–827. doi:10.1016/S0140-6736(13)60802-8

Emri, G., Paragh, G., Tósaki, Á., Janka, E., Kollár, S., Hegedűs, C., et al. (2018).
Ultraviolet radiation-mediated development of cutaneous melanoma: An update.
J. Photochem Photobiol. B 185, 169–175. doi:10.1016/j.jphotobiol.2018.06.005

Geeleher, P., Cox, N., and Huang, R. S. (2014). pRRophetic: an R package for prediction
of clinical chemotherapeutic response from tumor gene expression levels. PLoS One 9,
e107468. doi:10.1371/journal.pone.0107468

Gui, J., and Li, H. (2005). Penalized Cox regression analysis in the high-dimensional and
low-sample size settings, with applications to microarray gene expression data.
Bioinformatics 21, 3001–3008. doi:10.1093/bioinformatics/bti422

Hackman, P., Vihola, A., Haravuori, H., Marchand, S., Sarparanta, J., De Seze, J., et al.
(2002). Tibial muscular dystrophy is a titinopathy caused by mutations in TTN, the gene
encoding the giant skeletal-muscle protein titin. Am. J. Hum. Genet. 71, 492–500. doi:10.
1086/342380

Hashimoto, M., Kamphorst, A. O., Im, S. J., Kissick, H. T., Pillai, R. N., Ramalingam, S.
S., et al. (2018). CD8 T cell exhaustion in chronic infection and cancer: Opportunities for
interventions. Annu. Rev. Med. 69, 301–318. doi:10.1146/annurev-med-012017-043208

Hu, B., Wei, Q., Zhou, C., Ju, M., Wang, L., Chen, L., et al. (2020). Analysis of immune
subtypes based on immunogenomic profiling identifies prognostic signature for cutaneous
melanoma. Int. Immunopharmacol. 89, 107162. doi:10.1016/j.intimp.2020.107162

Jardim, D. L., Goodman, A., De Melo Gagliato, D., and Kurzrock, R. (2021). The
challenges of tumor mutational burden as an immunotherapy biomarker. Cancer Cell 39,
154–173. doi:10.1016/j.ccell.2020.10.001

Jia, Q., Wang, J., He, N., He, J., and Zhu, B. (2019). Titin mutation associated with
responsiveness to checkpoint blockades in solid tumors. JCI Insight 4, e127901. doi:10.
1172/jci.insight.127901

Jorgovanovic, D., Song, M., Wang, L., and Zhang, Y. (2020). Roles of IFN-γ in tumor
progression and regression: A review. Biomark. Res. 8, 49. doi:10.1186/s40364-020-
00228-x

Kalaora, S., Lee, J. S., Barnea, E., Levy, R., Greenberg, P., Alon, M., et al. (2020).
Immunoproteasome expression is associated with better prognosis and response to
checkpoint therapies in melanoma. Nat. Commun. 11, 896. doi:10.1038/s41467-020-
14639-9

Kang, K., Xie, F., Mao, J., Bai, Y., and Wang, X. (2020). Significance of tumor mutation
burden in immune infiltration and prognosis in cutaneous melanoma. Front. Oncol. 10,
573141. doi:10.3389/fonc.2020.573141

Leister, H., Luu, M., Staudenraus, D., Lopez Krol, A., Mollenkopf, H.-J., Sharma, A., et al.
(2021). Pro- and antitumorigenic capacity of immunoproteasomes in shaping the tumor
microenvironment. Cancer Immunol. Res. 9, 682–692. doi:10.1158/2326-6066.CIR-20-
0492

Leonardi, G. C., Falzone, L., Salemi, R., Zanghì, A., Spandidos, D. A., Mccubrey, J. A.,
et al. (2018). Cutaneous melanoma: From pathogenesis to therapy (Review). Int. J. Oncol.
52, 1071–1080. doi:10.3892/ijo.2018.4287

Li, B., Ruotti, V., Stewart, R. M., Thomson, J. A., and Dewey, C. N. (2010). RNA-Seq gene
expression estimation with read mapping uncertainty. Bioinformatics 26, 493–500. doi:10.
1093/bioinformatics/btp692

Li, H., Van Der Leun, A. M., Yofe, I., Lubling, Y., Gelbard-Solodkin, D., Van Akkooi, A.
C. J., et al. (2019). Dysfunctional CD8 T cells form a proliferative, dynamically regulated
compartment within human melanoma. Cell 176, 775–789. e718. doi:10.1016/j.cell.2018.
11.043

Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdóttir, H., Tamayo, P., and
Mesirov, J. P. (2011). Molecular signatures database (MSigDB) 3.0. Bioinformatics 27,
1739–1740. doi:10.1093/bioinformatics/btr260

Liu, G., Yang, Z., Chen, W., Xu, J., Mao, L., Yu, Q., et al. (2020). Novel missense variant
in TTN cosegregating with familial atrioventricular block. Eur. J. Med. Genet. 63, 103752.
doi:10.1016/j.ejmg.2019.103752

Mclane, L. M., Abdel-Hakeem, M. S., and Wherry, E. J. (2019). CD8 T cell exhaustion
during chronic viral infection and cancer. Annu. Rev. Immunol. 37, 457–495. doi:10.1146/
annurev-immunol-041015-055318

Miao, D., Margolis, C. A., Vokes, N. I., Liu, D., Taylor-Weiner, A., Wankowicz, S. M.,
et al. (2018). Genomic correlates of response to immune checkpoint blockade in
microsatellite-stable solid tumors. Nat. Genet. 50, 1271–1281. doi:10.1038/s41588-018-
0200-2

Oh, J.-H., Jang, S. J., Kim, J., Sohn, I., Lee, J.-Y., Cho, E. J., et al. (2020). Spontaneous
mutations in the single TTN gene represent high tumor mutation burden. npj Genomic
Med. 5, 33. doi:10.1038/s41525-019-0107-6

Ping, S., Wang, S., He, J., and Chen, J. (2021). Identification and validation of immune-
related lncRNA signature as a prognostic model for skin Cutaneous Melanoma.
Pharmacogenomics personalized Med. 14, 667–681. doi:10.2147/PGPM.S310299

Plattner, C., Finotello, F., and Rieder, D. (2020). Deconvoluting tumor-infiltrating
immune cells from RNA-seq data using quanTIseq. Methods Enzymol. 636, 261–285.
doi:10.1016/bs.mie.2019.05.056

Ribas, A., and Wolchok, J. D. (2018). Cancer immunotherapy using checkpoint
blockade. Science 359, 1350–1355. doi:10.1126/science.aar4060

Rusk, N. (2019). Expanded CIBERSORTx. Nat. Methods 16, 577. doi:10.1038/s41592-
019-0486-8

Savarese, M., Maggi, L., Vihola, A., Jonson, P. H., Tasca, G., Ruggiero, L., et al. (2018).
Interpreting genetic variants in titin in patients with muscle disorders. JAMA Neurol. 75,
557–565. doi:10.1001/jamaneurol.2017.4899

Schadendorf, D., Van Akkooi, A. C. J., Berking, C., Griewank, K. G., Gutzmer, R., Hauschild,
A., et al. (2018). Melanoma. Lancet 392, 971–984. doi:10.1016/S0140-6736(18)31559-9

Shankavaram, U. T., Varma, S., Kane, D., Sunshine, M., Chary, K. K., Reinhold, W. C.,
et al. (2009). CellMiner: A relational database and query tool for the NCI-60 cancer cell
lines. BMC Genomics 10, 277. doi:10.1186/1471-2164-10-277

Shen, W., Song, Z., Zhong, X., Huang, M., Shen, D., Gao, P., et al. (2022). Sangerbox: A
comprehensive, interaction-friendly clinical bioinformatics analysis platform. iMeta 1,
e36. doi:10.1002/imt2.36

Tian, Q., Gao, H., Zhao, W., Zhou, Y., and Yang, J. (2021). Development and validation
of an immune gene set-based prognostic signature in cutaneous melanoma. Future Oncol.
17, 4115–4129. doi:10.2217/fon-2021-0104

Tokunaga, R., Zhang, W., Naseem, M., Puccini, A., Berger, M. D., Soni, S., et al. (2018).
CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation – a target for novel cancer
therapy. Cancer Treat. Rev. 63, 40–47. doi:10.1016/j.ctrv.2017.11.007

Tripathi, S. C., Vedpathak, D., and Ostrin, E. J. (2021). The functional and
mechanistic roles of immunoproteasome subunits in cancer. Cells 10, 3587.
doi:10.3390/cells10123587

Vaxevanis, C. K., Friedrich, M., Tretbar, S. U., Handke, D., Wang, Y., Blümke, J., et al.
(2022). Identification and characterization of novel CD274 (PD-L1) regulating
microRNAs and their functional relevance in melanoma. Clin. Transl. Med. 12, e934.
doi:10.1002/ctm2.934

Weiss, S. A., Wolchok, J. D., and Sznol, M. (2019). Immunotherapy of melanoma: Facts
and hopes. Clin. Cancer Res. 25, 5191–5201. doi:10.1158/1078-0432.CCR-18-1550

Xiao, P., Guo, Y., Zhang, H., Zhang, X., Cheng, H., Cao, Q., et al. (2018). Myeloid-
restricted ablation of Shp2 restrains melanoma growth by amplifying the reciprocal
promotion of CXCL9 and IFN-γ production in tumor microenvironment. Oncogene
37, 5088–5100. doi:10.1038/s41388-018-0337-6

Xiao, Y., Liu, W., Hao, J., Jiang, Q., Wang, X., Yu, D., et al. (2022). CRISPR detection and
research on screening mutant gene TTN of moyamoya disease family based on whole
exome sequencing. Front. Mol. Biosci. 9, 846579. doi:10.3389/fmolb.2022.846579

Yoshihara, K., Shahmoradgoli, M., Martínez, E., Vegesna, R., Kim, H., Torres-Garcia,
W., et al. (2013). Inferring tumour purity and stromal and immune cell admixture from
expression data. Nat. Commun. 4, 2612. doi:10.1038/ncomms3612

Zhong, F., Liu, J., Gao, C., Chen, T., and Li, B. (2022). Downstream regulatory network of
MYBL2 mediating its oncogenic role in melanoma. Front. Oncol. 12, 816070. doi:10.3389/
fonc.2022.816070

Zou, S., Ye, J., Hu, S., Wei, Y., and Xu, J. (2022). Mutations in the TTN gene are a
prognostic factor for patients with lung squamous cell carcinomas. Int. J. Gen. Med. 15,
19–31. doi:10.2147/IJGM.S343259

Frontiers in Genetics frontiersin.org13

Wang et al. 10.3389/fgene.2022.1084937

https://doi.org/10.1016/j.ejcsup.2013.07.012
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1038/s41568-020-0285-7
https://doi.org/10.1155/2021/8874578
https://doi.org/10.1016/S0140-6736(13)60802-8
https://doi.org/10.1016/j.jphotobiol.2018.06.005
https://doi.org/10.1371/journal.pone.0107468
https://doi.org/10.1093/bioinformatics/bti422
https://doi.org/10.1086/342380
https://doi.org/10.1086/342380
https://doi.org/10.1146/annurev-med-012017-043208
https://doi.org/10.1016/j.intimp.2020.107162
https://doi.org/10.1016/j.ccell.2020.10.001
https://doi.org/10.1172/jci.insight.127901
https://doi.org/10.1172/jci.insight.127901
https://doi.org/10.1186/s40364-020-00228-x
https://doi.org/10.1186/s40364-020-00228-x
https://doi.org/10.1038/s41467-020-14639-9
https://doi.org/10.1038/s41467-020-14639-9
https://doi.org/10.3389/fonc.2020.573141
https://doi.org/10.1158/2326-6066.CIR-20-0492
https://doi.org/10.1158/2326-6066.CIR-20-0492
https://doi.org/10.3892/ijo.2018.4287
https://doi.org/10.1093/bioinformatics/btp692
https://doi.org/10.1093/bioinformatics/btp692
https://doi.org/10.1016/j.cell.2018.11.043
https://doi.org/10.1016/j.cell.2018.11.043
https://doi.org/10.1093/bioinformatics/btr260
https://doi.org/10.1016/j.ejmg.2019.103752
https://doi.org/10.1146/annurev-immunol-041015-055318
https://doi.org/10.1146/annurev-immunol-041015-055318
https://doi.org/10.1038/s41588-018-0200-2
https://doi.org/10.1038/s41588-018-0200-2
https://doi.org/10.1038/s41525-019-0107-6
https://doi.org/10.2147/PGPM.S310299
https://doi.org/10.1016/bs.mie.2019.05.056
https://doi.org/10.1126/science.aar4060
https://doi.org/10.1038/s41592-019-0486-8
https://doi.org/10.1038/s41592-019-0486-8
https://doi.org/10.1001/jamaneurol.2017.4899
https://doi.org/10.1016/S0140-6736(18)31559-9
https://doi.org/10.1186/1471-2164-10-277
https://doi.org/10.1002/imt2.36
https://doi.org/10.2217/fon-2021-0104
https://doi.org/10.1016/j.ctrv.2017.11.007
https://doi.org/10.3390/cells10123587
https://doi.org/10.1002/ctm2.934
https://doi.org/10.1158/1078-0432.CCR-18-1550
https://doi.org/10.1038/s41388-018-0337-6
https://doi.org/10.3389/fmolb.2022.846579
https://doi.org/10.1038/ncomms3612
https://doi.org/10.3389/fonc.2022.816070
https://doi.org/10.3389/fonc.2022.816070
https://doi.org/10.2147/IJGM.S343259
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1084937

	Identification and validation of a TTN-associated immune prognostic model for skin cutaneous melanoma
	Introduction
	Materials and methods
	Data source and mutation analysis
	Gene set enrichment analysis (GSEA)
	Construction and validation of an immune-related prognostic model
	Identification of differentially expressed genes and immune-related genes
	Functional enrichment analysis
	Univariate and multivariate Cox regression analysis
	Construction and evaluation of nomogram and decision curve analysis (DCA)
	Immune infiltration analysis
	Chemotherapy response prediction
	Statistical analyses

	Results
	Association of immunophenotypes with TTN mutation in SKCM
	Construction of a TM-IPM and evaluation of its predictive capabilities in the TCGA SKCM cohort
	Validation and evaluation of the TM-IPM in the GEO SKCM cohort
	Stratification analyses of OS based on TTN status for the TM-IPM in the TCGA SKCM cohort
	Low risk predicted an enhanced local immune infiltration in SKCM

	The immune landscape was evaluated among low- and high-risk groups
	Differences in immune checkpoint genes between low- and high-risk groups
	The TM-IPM is independent of conventional clinical characteristics
	Construction and validation of a nomogram based on the TM-IPM
	Chemotherapy drug sensitivity analysis

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


