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Buffalo is an economically important livestock that renders useful services to
manhood in terms of meat, milk, leather, and draught. The Xilin buffalo is among
the native buffalo breeds of China. In the present study, the genetic architecture and
selection signature signals of Xilin buffalo have been explored. Correlation analysis of
the population structure of Xilin buffalowas conducted by constructing NJ tree, PCA,
ADMIXTURE and other methods. A total of twenty-five (n = 25) Xilin buffalo whole
genome data and data of forty-six (n = 46) buffaloes published data were used. The
population structure analysis showed that the Xilin buffalo belong to the Middle-
Lower Yangtze. The genome diversity of Xilin buffalo was relatively high. The CLR, π
ratio, FST, and XP-EHH were used to detect the candidate genes characteristics of
positive selection in Xilin buffalo. Among the identified genes, most of the enriched
signal pathways were related to the nervous system and metabolism. The mainly
reported genes were related to the nervous system (GRM5, GRIK2, GRIA4),
reproductive genes (CSNK1G2, KCNIP4), and lactation (TP63). The results of this
study are of great significance for understanding the molecular basis of phenotypic
variation of related traits of Xilin buffalo. We provide a comprehensive overview of
sequence variations in Xilin buffalo genomes. Selection signatures were detected in
genomic regions that are possibly related to economically important traits in Xilin
buffalo and help in future breeding and conservation programs of this important
livestock genetic resource.
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1 Introduction

Domestic buffaloes are predominantly distributed in Asian countries. According to
behavior and chromosome karyotype, domestic buffaloes are divided into two types:
riverine buffalo (Bubalus bubalis, 2 n = 50) and swamp buffalo (Bubalus bubalis
carabanensis, 2n = 48) (Fischer and Ulbrich, 1967). As an important economic livestock
species in the world, the important traits e.g., milk production, growth, reproduction, hair color,
etc. Have been focused previously as important indicators for selection (Liu et al., 2018). From
the year 1999–2019, the number of buffalo increased by about 25.9% which in turn increased
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milk production by 106% and buffalo beef production by 45% (Di
Stasio and Brugiapaglia, 2021). In addition, buffalo is a good drought
animal that compensate for about 20%–30% of the agricultural labor
force (Michelizzi et al., 2010). Although with the popularization of
mechanization, the role of buffalo as a servant has been gradually
replaced, it is still the most important source of labor in some remote
mountainous areas in southern China. The buffaloes are used for
plowing the agricultural land, particularly paddy rice fields. In
addition, buffaloes are used in a cart for transporting heavier goods
as compared with cattle (Michelizzi et al., 2010).

The Xilin buffalo is mainly produced in the plateau and
mountainous areas of Xilin Longlin and Tianlin County of
Guangxi. It is one of the local buffalo varieties in Guangxi. Due to
the influence of natural ecological and environmental conditions and
local socioeconomic activities, it is gradually formed after long -term
natural selection and artificial selection. The Xilin buffalo is
characterized by a large body size, gentle temperament, strong
farming ability, good growth and development, efficient
consumption of roughages, good mountain climbing, strong
adaptability, and disease resistance (He et al., 2011). At the present,
there is a single germplasm conservation farm in the main producing
area which is primarily used for the production of hybrid females by
crossing the local buffaloes with foreign excellent varieties (such as
Murrah buffalo and Italian buffalo, mainly Murrah buffalo) for
improvement of milk and meat production.

With the development of whole genome resequencing (WGS)
technology, the reduction of sequencing cost, the genetic structure,
evolutionary history, origin, and domestication of domestic animals
such as pigs, cattle and sheep, etc. Have been widely and systematically
studied become possible as an effective cost tool (Stothard et al., 2011).

Many WGS-based buffalo studies initially concentrated on the
economically relevant characteristics of commercial breeds (Li et al.,
2020). The genetic characteristics and selection pressure signals of
Xilin buffalo have not been deeply studied by using WGS data earlier.
The study on the genetic structure and population history of Xilin
buffalo is helpful to analyze the genetic basis of adaptability and other
traits and provides a theoretical basis for the improvement and
conservation of Xilin buffalo varieties.

2 Materials and methods

2.1 Sample collection and sequencing

Blood and ear tissue samples were collected from the native home
tract (Xilin County of Guangxi Province, China) of pure Xilin
buffaloes (n = 25). The genomic DNA was extracted by the

standard phenol-chloroform method (Green and Sambrook, 2012)
and subjected to Illumina NovaSeq sequencing at Novogene
Bioinformatics Institute, Beijing, China. By using pair-end
sequencing technology an average insertion size of 500 bp was
constructed for each sample and the average reading length was
150 bp. In addition, 46 published whole-genome sequences data of
swamp buffalo including Guizhou white (n = 10), Binhu (n = 3),
Fuzhong (n = 11), and Mediterranean (n = 22) were downloaded from
NCBI(PRJNA547460) which fully described the characteristics of
population structure, genetic diversity, single nucleotide
polymorphisms (SNPs), and natural or artificial selection. The
details of the five varieties are listed in Table 1.

2.2 Construction of buffalo pseudo
chromosome

In the present study, the published buffalo data were obtained
from the reference genome assembly of buffalo (GCF_000471725.1)
from NCBI. However, due to the complexity of the data, it is only
assembled to the scaffold level. If it is directly used for comparison and
subsequent analysis, it will lead to a double increase in computing and
storage resources. Therefore, this study used the method of artificial
connection of pseudo chromosomes. The reference genome is
connected to 24 + X + unplaced chromosomes which can reflect
the authenticity of chromosomes to the greatest extent (Amaral et al.,
2008).

2.3 Genome wide alignment and variation
detection

The sequenced reads after quality control were compared to the
constructed buffalo pseudo chromosome by BWA-MEM (Li and
Durbin, 2009), and repeated reads introduced by PCR were
removed by Picard. The genome-wide high-quality genetic
variation was detected by GATK (version 3.6-0-g89b7209)
(Nekrutenko and Taylor, 2012) where the filtering conditions of
SNP were as follows: (1) QD (Quality by Depth) < 2; (2) variants
with FS (Phred-scaled p-value using Fisher’s exact test to detect strand
bias) > 60 were filtered; MQRankSum (Z-score From Wilcoxon rank
sum test of Alt vs. Ref read mapping qualities) < 12.5; (4)
ReadPosRankSum (evaluate the reliability of variation by the
position of variation in read) < −8; (5) MQ (RMS Mapping
Quality) < 40.0; (6) Mean sequencing depth > 3x or < 1/3x (7)
SOR (StrandOddsRatio) > 3.0; (8) maximum missing rate < .1; (9)
SNP is strictly limited to double alleles. The Annovar software was
used to annotate the variant information.

2.4 Analysis of buffalo population structure

First, VCF files of SNPs of 71 buffalo were converted into
corresponding Plink files (bed. bim. fam by using vcftools) and
PLINK (version 1.9) (Purcell et al., 2007) software were used to
filter out the linkage disequilibrium sites with R2 greater than .2.
The parameter is set as: -- indep pairwise 50 50.2. The filtered data
were used to construct NJ tree, PCA, ADMIXTURE and other
population structure-related analyses. In order to clarify, the

TABLE 1 Sample information of 71 buffaloes from 5 buffalo breeds.

Varieties Abbreviation Sample size Type

Xilin Buffalo XL 25 Swamp

Guizhou White Buffalo GZB 10 Swamp

Binhu buffalo BH 3 Swamp

Fuzhong Buffalo FZ 11 Swamp

Mediterranean Buffalo MD 22 River
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phylogenetic relationship of 71 Buffalo, adjacency tree (NJ
phylogenetic tree) (Yu et al., 2021) is constructed in this study.
The genetic distance matrix is calculated by using the parameter
“-- distance matrix” of PLINK 1.9 and then the matrix is
transformed into. meg format, which will get imported .meg
format into the MEGA6.0 software. Build the NJ phylogenetic tree
and set the bootstrap value to 1000. Finally, using online iTOL (https://
itol.embl.de/), the tool displays the obtained phylogenetic tree and
beautifies it. The software package EIGENSOFT V5.0 and SmartPCA
(Patterson et al., 2013) were used for PCA analysis of filtered buffalo
autosomal SNP data sets. The significance of each eigenvector is
calculated by the Tracy-Widom test. Admixture v. 1.3.0 (Alexander
et al., 2009) was used to analyse the ancestral components of 71 buffalo
autosomal SNP data sets. This study simulates that from k = 2 to k = 5.
The bootstrap value of each k value was set to 20 and the optimal value
was finally obtained according to the Cross-Validation (CV) value.

2.5 Genetic diversity, linkage disequilibrium
and ROH detection

We used VCFtools to estimate the nucleotide diversity of each
breed in window sizes of 50 kb with 50 kb increments. The Linkage
disequilibrium (LD) decay with the physical distance between
SNPs was calculated and visualized by using PopLDdecay
software with default parameters (Rahimmadar et al., 2021).
The run of homozygosity (ROH) was identified using the--
homozyg option implemented in PLINK which slides a window
of 50 SNPs (-homozyg-window-snp 50) across the genome
estimating homozygosity (Makanjuola et al., 2021). The
following settings were performed for ROH identification: (1)
required minimum density (−homozyg-density 50); (2) number
of heterozygotes allowed in a window (−homozyg-window-het 3);
(3) the number of missing calls allowed in window (−homozyg-
window-missing 5). The number and length of ROH for each
breed were estimated and length of ROH was divided into three
categories: .5–1 Mb, 1–2 Mb, 2–4 Mb. (Forutan et al., 2018). FROH

is calculated by calculating the ratio of the total length of ROH
fragments in the genome to the total length (LROH) of the genome
(Lauto). The formula is as follows: FROH = ∑ LROH/Lauto

2.6 Selective scanning recognition

We adopted the following strategies for genome scanning of Xilin
buffalo. First, we utilized nucleotide diversity (θπ) (Hudson, 1992) and
the composite likelihood ratio test (CLR) (Nielsen et al., 2005) to
detect the selection characteristics of Xilin buffalo. By using VCFtools,
the nucleotide diversity was estimated using a sliding window of 50 kb
and a step size of 20 kb.We used SweepFinder to calculate the CLR test
of the sites in the non-overlapping 50 kb window in order to calculate
the empirical p-value of π and CLR window and take the overlapping
part of the first 1% window of each method as the candidate mark for
selection.

Second, we performed comparisons between Xilin buffalo and
Mediterranean buffalo using fixation index (FST) (Hudson, 1992) and
cross-group extended haplotype homozygosity (XP-EHH) (Sabeti
et al., 2007). FST analysis was calculated in 50 kb windows with a
20 kb step using VCFtools (Danecek et al., 2011). XP-EHH statistics

based on the extended haplotype was calculated for each population
pair using selscan v1.1 (Szpiech and Hernandez, 2014). For XP-EHH
selective scanning, our test statistic is the average normalized XP-EHH
score of each 50 kb region. An XP-EHH score is directional: a positive
score suggests that selection is likely to have happened in Xilin buffalo,
whereas a negative score suggests the same about reference population.
Significant genomic regions were identified by p-value < .01. Genomic
regions identified by at least two methods were considered to be
candidate regions of positive selection.

To better understand, the gene function and signaling pathways of
the identified candidate genes, KOBAS 3.0 was used for GO and
KEGG pathway enrichment analysis (Shen et al., 2019). Only when the
corrected p-value < .05, were the GO and KEGG pathways considered
significantly enriched.

3 Results

3.1 Identification of single nucleotide
polymorphisms

In this study, individual genomes of 25 Xilin buffaloes were
generated to ~ 12.1 × coverage each and were jointly genotyped
with publicly available genomes of three buffalo populations from
different regions of China and Mediterranean Buffalo (Italy), and
the average mapping rate was 99.37% (Supplementary Table S1). In
total, ~ 5.0 billion reads of sequences were generated. Using BWA-
MEM, reads were aligned to the buffalo reference genome sequence
(GCA_000471725.1) with an average of 10.6 × coverage. We
annotated 28,347,965 biallelic SNPs found in 71 buffaloes.
genomic annotation for showing the location of those SNPs that
most of the SNPs existed in the intron region (65.532%) or
intergenic region (19.514%). The exon contains merely 2.15% of
the total SNPs with 529,920 synonymous SNPs (Supplementary
Table S3).

3.2 Population genetic structure and genetic
relationship

At present, there are ~202 million buffaloes in the world,
mainly distributed in Asia (196 million, accounting for 97.0%),
Africa (3.4 million) and South America (~2 million). (Zhang et al.,
2007). According to the previous research of Sun et al. (2020),
Asian buffaloes are divided into five regions according to their
geographical distribution: the upper reaches of the Yangtze River,
the middle and lower reaches of the Yangtze River, Southwest
China, Southeast Asia and South Asia, and added Italy
(Mediterranean buffalo). NJ phylogenetic tree was constructed
from the whole genome data of 71 buffalo. As shown in
(Figure 1A), the different colors represent buffaloes in different
regions. These 71 buffalo are mainly divided into two branches:
swamp and river buffalo. As for swamp buffalo is concerned, the
buffalo in the same geographical area gather together. Some
individuals are in the middle of the two types of buffalo in the
phylogenetic tree which represents the hybrid individuals
produced by the hybridization of the two types of buffalo.
Principal component analysis (PCA) was used to further explore
the genetic relationship between different buffalo populations. The
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results of PCA show that PC1(13.74%) and PC2(2.70%) distinguish
riverine from swamp buffalo and the results of PC3(2.48%) show
that Xilin buffalo is more similar to Middle lower Yangtze buffalo
which is consistent with the literature (Figures 1B, C).

The whole genome data of 71 buffalo were analyzed by
ADMIXTURE in order to perform ancestral component
analysis (Figure 1A). When there is k = 2 it indicates the
buffaloes of riverine and swamp origin. When there is k = 3, it

FIGURE 1
Population structure and relationships of Xinlin Buffalo. (A) Model-based clustering of buffalo using the ADMIXTURE program with K = 2 to 4(X). (B)
Neighbour-joining tree of buffaloes constructed usingwhole-genome autosomal SNP data. (C) Principal component analysis (PCA) showing PC1 against PC2.
The X axis represents PC1, and the Y axis represents PC2.

FIGURE 2
Summary statistics for genomic variation: (A) The distribution of the total number of ROH across chromosomes. (B)Genome-wide distribution of
nucleotide diversity of each breed in 50 kb windows with 20 kb steps. (C) Inbreeding coefficient from each breed. (D) Genome-wide average LD decay
estimated from each breed. The X axis is the physical distance (kb), and the Y axis is the LD coefficient (r2).
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shows that swamp buffaloes can be divided into two groups:
Middle-Lower Yangtze buffalo (green) and Upper Yangtze
buffalo (blue). When k = 4, it represented that the Xilin
buffalo is classified as Yangtze River buffalo.

3.3 Genomic variation pattern

The runs of homozygosity (ROH) are a continuous
homozygous region in the DNA sequence of diploid organisms.

FIGURE 3
Genome-wide selection scan in Xilin buffalo using sliding window analysis (50 kb window size, 20 kb step size, 99th percentile cut-off). (A). Selection
signatures in Xilin buffalo for CLR (Mediterranean and Xilin). (B). Selection signatures in Xilin buffalo for π-ratio (Mediterranean and Xilin). (C) Selection
signatures in Xilin buffalo for XPEHH (Mediterranean and Xilin). (D) Selection signatures in Xilin buffalo for XPCLR (Mediterranean and Xilin). The thresholds (top
1%) of FST, π-ratio, XPEHH and XPCLR are marked with a horizontal black line.
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We used ROH to evaluate the homozygosity of each individual. To
evaluate the ROH patterns of Xilin buffalo and other buffalo
breeds, we divided the length of ROH into three categories:
.5–1 Mb, 1–2 Mb, and 2–4 Mb. A long ROH is the result of
blood mating, while a shorter ROH reflects the influence of
distant ancestors. The identified ROH length was mostly
between .5 and 1 Mb (ROH diagram) (Figure 2A). The π map
showed that the nucleotide diversity of the Xilin buffalo was the
highest, followed by that of the Binhu buffalo, Fuzhong buffalo,
Mediterranean buffalo, and Guizhou white buffalo (Figure 2B). The
inbreeding degree of the inbreeding population is usually measured
by the average inbreeding coefficient of the population. The
inbreeding coefficient refers to the degree of gene purification
expressed as a percentage according to the number of
generations of inbreeding. According to the results in the figure,
the average locus of Mediterranean buffalo is the highest,
indicating that the population was first and most stable through
artificial breeding, and the inbreeding coefficient of other breeds is
close (Figure 2C). The whole genome average linkage
disequilibrium (LD) of the Xilin buffalo is the lowest, and the
LD value of the Binhu buffalo is the highest. Due to the different
genetic backgrounds of different populations with the same
population type and species, the decay rate of LD is also very

different. Domestication selection will reduce the genetic diversity
of the population and strengthen the correlation (linkage degree)
between loci. Therefore, in general, the higher the degree of
domestication, the greater the selection intensity, and the
slowest rate of LD attenuation (El et al., 2021) (Figure 2D).

3.4 Functional enrichment analysis of specific
SNP in Xilin buffalo

In this experiment, four methods (FST, π ratio, XP-CLR, XP-EHH)
were used to detect the selection signal of Xilin buffalo by comparing
the Xilin buffalo population with the Mediterranean buffalo
population (Figure 3). Among the four methods, if a gene was
significantly detected by at least two methods (p < .005), the gene
was regarded as a real candidate gene.

A total of 113 genes were screened and many KEGG pathways
and Gene Ontology (GO) related to nerves and exercise endurance
were significantly enriched (corrected p-value<.05). The KEGG
pathway is significantly related to the nervous system with the
glutamatergic synapse. The GO enrichment analysis detected
many nerves and muscle-related GO entries, including ’Nervous
system development, GO:007399′, ‘Neuronal projection, GO:

FIGURE 4
Analysis of the signatures of positive selection in the genome of Xilin Buffalo (A) Venn diagram showing the gene overlap among θπ, XPCLR, FST and XP-
EHH. (B)Haplotype pattern heatmaps of the TP63 gene region. (C)Haplotype pattern heatmaps of theCSNK1G2 gene region. (D)Haplotype pattern heatmaps
of the KCNIP4 gene region. The major allele at each SNP position in Xilin buffalo is colored in yellow, the minor one in green.
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0043005’, ‘actin binding, GO:003779’, which reflect the nervous
system and endurance played an extremely important role in the
domestication and breeding of the Xilin buffalo.

3.5 Genome wide selective scanning test

Nucleotide diversity analysis (θ π) and complex likelihood ratio
(CLR) were used to detect the selection-related genomic regions in the
Xilin buffalo population. A total of 1121 (θ π) and 677 (CLR)
(Figure 4A) genes were identified in Xilin buffalo with
357 overlapped. One of the most significant pathways (p-value <
.05) was the Regulation of actin cytoskeleton which contained five
genes (CYFIP1, ITGA2B, ARHGEF4, CHRM3, CHRM2) related to beef
tenderness, feed efficiency and compensatory gain (Xia et al., 2021).
Based on the gene ontology analysis of Xilin Buffalo, it is found that
Xilin Buffalo has increased the GO category, including ‘microtubule
anchoring’ (MAST1, DAG1, PEX14), ‘Proteasome mediated ubiquitin-
dependent protein catabolism’ (SMURF1, WWP1, PSME2, PSME1,
DCAF11, HERC2, PSMC5).

FST and XP-EHH tests were used to detect the positive selection
characteristics of Xilin and riverine (Mediterranean) buffaloes
Through the analysis, 1557 and 2123 hypothetical favorable
positive selection genes were obtained from FST and XP-EHH
methods, respectively, and 358 genes were obtained from both
methods.

38 overlapping genes were detected in the above four selection
methods which indicates that these genes have strong selection ability
in the Xilin buffalo (Figure 4A). It is worth noting that (CSNK1G2,
TP63), CSNK1G2 is related to spermatogenesis, MFG-E8 is a sign of
high milk production in dairy animals, TP63 participates in breast
secretion by activatingMFG-E8, and RB1 is related to the formation of
bovine intramuscular fat (marbling) (Lim et al., 2013).

4 Discussion

Understandings the characteristics of population structure and
genetic diversity is very important for genetic evaluation,
environmental adaptation, utilization, and protection of genetic
resources of cattle breeds. In the present study, the whole genome
sequences of 25 Xilin buffaloes were analysed. According to the
geographical distribution, the buffalo are divided into six
geographical regions: Upper Yangtze, middle lower Yangtze,
Southwest China, Southeast Asia, South Asia, and Italy. Through
ADMIXTURE analysis, we proved that the Xilin buffalo belongs to the
Yangtze River.

The nucleotide diversity level of Xilin buffalo was slightly higher
than the other breeds (average θπ = .0017). The relatively high
genomic diversity of Xilin buffalo might be related to its weak and
short selection history. The Xilin buffalo showed a similar structural
heritability to Fuzhong Buffalo which is related to its similar
geographical location and genetic background. In addition, the LD
attenuation pattern of each variety was basically consistent with the
results of nucleotide diversity. The ROH distribution pattern of Xilin
buffalo was analyzed by comparing it with other cattle breeds. The
ROH is common in bovine autosomes but the observed varietal
differences in ROH length and burden patterns indicate differences
in varietal origin and recent management. Compared with the cattle

breeds analyzed in this study, Xilin buffalo showed more short/
medium ROH (.5–2 Mb) and the average number of ROH was the
highest.

By comparing with Mediterranean buffalo, we found that Xilin
buffalo has unique signaling pathways in the nervous system,
reproductive system, and lactation. In this study, the KEGG
pathway and GO related to the nervous system were significantly
enriched and the most significantly enriched pathway was the
Glutamatergic synapse. In addition, GO analysis is also
significantly enriched by many GO items related to the
development of the nervous system such as neurons, dendritic
spines, and synapses, and positive regulation of dendrite
morphogenesis. Previous studies have proved that dendritic spines
and their structural and functional plasticity are the cellular basis of
learning and memory (Kasai et al., 2003). Therefore, it is speculated
that these neural-related KEGG pathways and GO entries also play an
extremely important role in the domestication of swamp buffalo. It has
been reported that the glutamatergic synaptic pathway is related to the
adaptability of mice to stress and fear behavior (Kamprath et al., 2010).
It contains three genes GRM5, GRIK2, and GRIA4, and GluR6 is
encoded by GRIK2 which is highly expressed in the brain and is
associated with autosomal recessive intellectual disability (Motazacker
et al., 2007). The GRIK2 knockout mice showed decreased fear and
memory, anxiety, and despair (Shaltiel et al., 2008). In rabbits, GRIK2
was identified as a candidate domestication gene (Carneiro et al.,
2014). The GRIK2 is highly expressed in the brain tissues of buffalo,
goats, sheep, and cattle. Studies have reported that GRM5 is related to
social interaction and sports behavior (Xu et al., 2021). The swamp
buffalo has a gentle temperament and is mainly used for servitude. It
can be easily trained for rice farming, cart pulling, and other labor
(Chantalakhana and Bunyavejchewin, 1994). These traits indicate that
the identified pathways and candidate genes related to the nervous
system were strongly artificially selected during the domestication of
swamp buffalo.

Reproductive performance is an important index to measure the
economic benefit of a variety. The Xilin Buffalo has good reproductive
performance and its oestrus cycle is between 20 and 25 days, with an
average of 21.04 days. We found that both CSNK1G2 and KCNIP4
genes showed universal strong positive selection signals in Xilin
buffalo/Mediterranean buffalo and both were related to
reproduction. The CSNK1G2 gene is related to sperm surface
modification, sperm maturation, and sperm-egg communication of
bull sperm (Byrne et al., 2012). The CSNK1G2 gene is associated to the
ability of frozen-thawed sperm to respond appropriately to stress (Pini
et al., 2018). It has also been observed that CSNK1G2 knockout mice
show premature aging of the testes (Li et al., 2020) whereas the
KCNIP4 gene is closely related to chicken reproductive traits (Fan
et al., 2017).

The Xilin buffalo was mainly used for both meat and milk. After
crossbreeding, the introduced milk variety Mora buffalo over the
years, the average lactation yield of the three generations has increased
significantly (2389 ± 700.2 kg) and now its value is progressing
because of better milk and meat production. In this study, we also
found a selection signal related to lactation (TP63) and MFG-E8 as a
marker of high milk production in dairy animals. The TP63
participates in breast secretion by activating MFG-E8. Previous
studies have confirmed that TP63 plays a role in regulating the
growth and differentiation of mammary epithelial cells (Verma
et al., 2021). By considering the influence of natural ecological
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environmental conditions and local social and economic activities,
these genes may play an important role in the reproduction and
lactation performance of the Xilin buffalo after long-term natural and
artificial selection.

5 Conclusion

UtilizingWGS data, the present study described the Xilin buffalo’s
whole genome level. The direction for the genetic assessment and
coherent breeding plan of the Xilin buffalo was identified by
examining the characteristics of population structure and genomic
diversity. In addition, we also identified a series of candidate genes
involved in milk production, neural control, and fertility. Moreover,
the results of this study enable breeders to better understand the
genomic characteristics of Xilin buffalo for artificial selection or
adaptation to the local environment.
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