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Bladder cancer (BC) ranks the tenth in the incidence of global tumor

epidemiology. LncRNAs and cuproptosis were discovered to regulate the

cell death. Herein, we downloaded transcriptome profiling, mutational data,

and clinical data on patients from The Cancer Genome Atlas (TCGA). High- and

low-risk BC patients were categorized. Three CRLs (AL590428.1,

AL138756.1 and GUSBP11) were taken into prognostic signature through

least absolute shrinkage and selection operator (LASSO) Cox regression.

Worse OS and PFS were shown in high-risk group (p < 0.05). ROC,

independent prognostic analyses, nomogram and C-index were predicted

via CRLs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) analysis indicated IncRNAs play a biological role in BC

progression. Immune-related functions showed the high-risk group received

more benefit from immunotherapy and had stronger immune responses, and

the overall survival was better (p < 0.05). Finally, a more effective outcome (p <
0.05) was found from clinical immunotherapy via the TIDE algorithm and many

potential anti-tumor drugswere identified. In our study, the cuproptosis-related

signature provided a novel tool to predict the prognosis in BC patients

accurately and provided a novel strategy for clinical immunotherapy and

clinical applications.
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Introduction

One of the most common malignancies of the urogenital

tract is bladder cancer (BC). According to the latest epidemic

study of tumor incidence, BC ranks tenth (Sung et al., 2021). The

clinical pathology of BC contains urothelial carcinoma

(90–95%), adenocarcinoma and squamous cell carcinoma

(Lenis et al., 2020). Based on pathological classification,

tumor invades the muscle or beyond, and invades the

urothelium or lamina propria, which were called muscle-

invasive bladder cancer (MIBC), and non–muscle-invasive

bladder cancer (NMIBC), respectively (Hurst et al., 2018).

The rate of 5-year recurrence is 50–70%, with a risk of

progression of 10–30%, after receiving the initial transurethral

resection of bladder tumor (TURBT) (Martinez Rodriguez et al.,

2017). Therefore, owing to the high incidence, mortality and

recurrence of BC, it is necessary to construct more prognostic

models. Long non-coding RNSs (lncRNAs) can regulate the

expression of oncogene or cancer related genes, which are

200 nucleotides of non-coding transcripts in length. Previous

studies have indicated lncRNAs were enriched in many

biological processions, such as immune responses, metabolism

regulation, and cell metastasis (Zhu et al., 2021). LncRNAs have

been found to have specific relevance to the pathogenesis of BC

and influence the progression of BC (Li et al., 2020).

Copper plays a crucial role in maintaining biological

processes in various life entities. Recent researches found the

copper concentration of cancer patient is significantly higher

than the health in serum and cancer tissue (Ishida et al., 2013;

Blockhuys et al., 2017; Ge et al., 2022). Given the copper disorder

may lead to metabolic imbalance and cytotoxicity, copper

variation of intracellular levels may influence tumor

progression and development (Babak and Ahn, 2021).

Moreover, copper chemical materials (copper chelators,

ionophores, etc) have been utilized to anticancer treatment

(Brady et al., 2017; O’Day et al., 2013). A recent research

uncovered a new cell death pathway, cuproptosis, in copper

compounds coupled with lipoylated tricarboxylic acid (TCA)

cycle components, resulting in cell death and toxic protein stress,

directly (Tsvetkov et al., 2022). BC showed enhanced glucose

utilization for glycolysis, and pathways significantly unbalanced

in tumor relative to normal urothelium included tricarboxylic

acid (TCA) cycle, glucose and so on (Sahu et al., 2017). A vital

role for glutamine (Gln) from TCA in promoting proliferation of

Gln-dependent BC T24 cell line has been documented, which

supplemented adenosine triphosphate (ATP) generation and

neutralizing reactive oxygen species (ROS) for activating the

STAT3 pathway (Sun et al., 2019a). Several genes were identified

connected with copper-induced cell death, which can offer a

chance new to construct a new prognosis model.

In our study, an emerging prognostic model for BC was

explored based on CRLs that can offer prognosis prediction and

selection of patients for immunotherapies. The workflow was

presented in Figure 1A. The prognosis model was validated via

bioinformatics. Moreover, functional enrichment analysis was

performed to discuss potential pathways for signaling in groups

at risk. In the end, immune functions and immunotherapy were

analyzed in the risk group.

FIGURE 1
(A).Workflow of our study. (B).The results of CRGs and CRLs co-expression in Sankey diagram.
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Materials and methods

Data collection and preprocessing

The expression of genes and clinical data were downloaded

from TCGA database up to 29 March 2022 (https://portal.gdc.

cancer.gov/repository). Then, Active Perl was used to pre-process

the raw data of gene expression and human configuration data

and synthetic matrices were obtained. LncRNAs data and

mRNAs data were distinguished via Active Perl. Moreover,

clinical data was prepared to estimate missing overall survival

(OS) values. In the end, a total of 431 patients’ gene expression

profiles were obtained. And using the “caret” R package, train

risk is divided by test risk in a 1:1 ratio. The focal-level copy

number variation (CNV) values were downloaded via GISTIC2,

using a “masked copy number fragment” file. (Mermel et al.,

2011).

Identification of cuproptosis-related
genes and lncRNAs in TCGA cohort

A previous study obtained cuproptosis-related genes (CRGs)

(Supplementary Table S1) (Tsvetkov et al., 2022). Using “R”

(version 4.1.0) software, CRLs were distinguished via “limma” R

package (|Pearson R|>0.4, p < 0.001) (Supplementary Table S2).

CRGs were isolated from the whole gene expression data

(Supplementary Table S3).

Construction of CRLs prognostic
signature

956 prognostic CRLs were identified via univariate Cox

regression analysis (p < 0.05) with “Survival” R package

(Eaton et al., 2020). The gene signature was identified, which

contains most like biomarkers of prognosis via “glmnet” R

package (Friedman et al., 2010). LASSO with a tenfold cross-

validation offered a tool to establish the prognostic model. Based

on the following formula:

Risk score � ∑ CoefpEXP( ),

The risk score was calculated. Coefmeans the coefficient and

EXP means the expression level of each prognostic CRLs in the

formula. Based on risk scores, High- and low-risk BC patients

were categorized. To elucidate the predictive value of the CRLs-

based model of prognostic signature, we performed the receiver

operating characteristic (ROC) of 1-year survival in the training

and testing group by “ROC” R package (Blanche et al., 2013). In

accordance with the optimal risk cutoff value analyzed by

“Survival” R package, the patients were categorized as high-

risk or low-risk (Eaton et al., 2020). The prognostic value of

two-CRL signature on BC was analyzed by Kaplan-Meier. Then,

the risk model was tested using analyses of Cox regressions,

univariate and multivariate, to estimate if the risk model showed

better predictive ability of prognosis independently associated

with other clinicopathological features, such as gender, grade and

pathologic staging. Moreover, a TCGA-based prognostic

nomogram was developed. Clinical parameters and

independent prognostic factors are included in the nomogram.

TABLE 1 Clinical features of BC patients in TCGA dataset.

Age

>65 162

&65 250

Gender

Male 304

Female 108

Grade

High grade 388

Low grade 24

Stage

Stage Ⅰ-Ⅱ 133

Stage Ⅲ-Ⅳ 277

unknow 2

T stage

T0 1

T1 3

T2 120

T3 196

T4 59

unknow 33

N stage

N0 239

N1 47

N2 76

N3 8

unknow 42

M stage

M1 11

M0 196

unknow 205
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FIGURE 2
Identification of the CRLs. (A).LASSO regression of prognotic CRLs. (B).The penalty parameter (ƛ) in the LASSO regression model was selected
through two cross-validation. (C).The relationship between CRLs and CRGs for the signature in the corrlation heatmap.

FIGURE 3
Kaplan-Meier survival analysis of BC patients. Overall survival of BC patients in all groups (A), train groups (B), testing groups (C), respectively.
(D).PFS of BC patients in all groups.
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Construction of risk score model

Basing on median values, we divided samples of all patients into

high- and low-subgroups to estimate the prognosis and the

signature. Progression-free survival (PFS) and OS were calculated

by “Survival” R package. We estimated independent prognostic

abilities of risk prediction models using both univariate and

multivariate analyses. CRLs expression and patient survival status

were shown based on the risk scores via “Pheatmap” R package and

pheatmap. C-Index was showed with “Survival” R package for

validating the performance of themodel to predict patients’ survival.

Nomogram construction and clinical
feature validations

To exhibit the difference between the actual and predicted

results, the nomogram was constructed for gender, grade, stage

and the calibration curves were plotted. 1-, 3- and 5-year OS were

predicted via a stepwise Cox regression in the TCGA dataset.

Analysis of principle component analysis
(PCA) and enrichment function

The “limma” R package and “Scatterplot3d” R package

were utilized to construct PCA, which can show clear

distribution in different risk groups. The KEGG and GO

enrichment of CRLs was performed with the

“ClusterProlfiler” R package.

TMB and immune-related functional
analysis

The correlation between TMB and risk score was completed

by “maftools” R package. The difference between patient survival

status and TMB was explored via the “Survival” R package.

Immune-related functions were analyzed and its differences were

identified via “limma” and “GSVA” R package, which were

visualized by “Pheatmap” R package.

Analyses of immunotherapy and potential
pharmaceuticals

The Tumor Immune Dysfunction and Exclusion (TIDE)

database (http://tide.dfci.harvard.edu/) contained tumor pre-

treatment expression profiles. BC’s TIDE dataset was

downloaded and the correlation between TMB and risk score

was explored by “ggpubr” and “limma” R packages. The

“pRRophetic”, “ggpubr” and “ggplot2” R package were

conducted to screen for potential therapeutic drugs and

explore the sensitivity of drugs.

FIGURE 4
The predictive performance of characteristics. Distribution of risk score, status and the expression of prognostic CRLs in the all group (A),
training group (B), testing group (C).
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Statistical analysis

R software and packages were used for statistical analysis.

Here, based on False Discovery Rates (FDRs) < 0.05 and the

p-value (<0.05), statistics were collected. Kaplan-Meier (KM)

was utilized to compare OS between subgroups. Pearson

correlation tests were used to identify CRLs. The Chi-

square test was conducted to analyze categorical variables

of groups. The differential risk scores of subgroups were

compared via the Student’s t-test. Moreover, the prognostic

ability of risk scores and other clinical data was explored using

multivariate and univariate Cox regression analyses. Herein,

statistical significance was determined at *p < 0.05; **p < 0.01;

***p < 0.001.

Results

Identification of bladder cancer-specific
CRLs and establishment of the prognostic
signature

TCGA-BLCA dataset was downloaded, which contains

412 cancer samples and 19 normal samples. Clinical features

were exhibited in the Table 1. 956 CRLs were identified from

16876 lncRNAs and 19 CRGs that met the criteria (|R|>0.4 and

p < 0.001). Sankey diagram was plotted to analyze the co-

expression relationship between CRGs and CRLs (Figure 1B).

LASSO Cox regression was utilized to identify CRLs in the

training group (Figures 2A, B). A total of 69 CRLs were

identified through univariate Cox regression (Supplementary

Figure S1). Low- and high-risk lncRNAs were shown with red

and green in the forest plot, respectively. Then, 3 CRLs as

independent prognostic factors were identified via multivariate

Cox regression (p < 0.05). According to the formula and the

expression levels of the 3 lncRNAs, the risk score of all samples

was obtained. Risk score = (-0.278725960360529* AL138756.1) +

(+1.03981953291805* AL590428.1)+(-0.454158106791872*

GUSBP11). Finally, the correlation heatmap was used to show

the relationship of between CRGs and lncRNAs (Figure 2C).

The correlation of survival status and
genetic signature

In the light of the median risk scores as the cut-off value, low-

and high-risk patients were classified. OS and PFS in high-risk

group were found to be significantly shorter than that in low-risk

group in three groups (all groups, training group and testing

group) (p < 0.05) (Figures 3A–D). The risk curves were visualized

to exhibit the correlation between risk score and survival status in

subgroups (all groups, training group and testing group), which

were displayed in Figures 4A–C. Moreover, mortality was higher

in high-risk groups than in low-risk groups (p < 0.05). The

heatmap was utilized to show the differences of two risk

subgroups for 3 lncRNAs with good consistency.

AL138756.1 and GUSBP11 were overexpressed in the low-

subgroup and underexpressed in the high- subgroup, while

AL590428.1 showed the opposite trend. Therefore, it was

found that AL138756.1 and GUSBP11 expression are

negatively correlated with risk scores. AL590428.1 showed the

positive correlation with risk scores.

Univariate andmultivariatae analysis of the
prognostic model

To figure out whether the signature we constructed could be

utilized to be independent prognostic factors, univariate and

multivariate Cox regression were conducted. The results

indicated that age (HR = 1.035, 1.019–1.051, p < .001), stage

(HR = 1.724, 1.420–2.092, p < .001) and risk score (HR = 1.119,

1.087–1.152, p < .001) were significantly associated with OS in

univariate Cox regression (Figure 5A). And multivariate Cox

regression suggested age (HR = 1.031, 1.014–1.047, p < .001),

stage (HR = 1.629, 1.336–1.988, p < .001) and risk score (HR =

1.115, 1.080–1.150, p < .001) were independently related with OS

(Figure 5B), which suggested the prognostic model can be regarded

as an independent prognostic indicator for BC patients. Then, to

estimate the predictive power of the risk score, ROCs were

performed. The area under curve (AUC) of the risk score was

0.628 (Figure 5C). Similarly, AUCs for 1, 3, and 5 years were 0.628,

0.630, and 0.641 (Figure 5D). AUCs were greater than or equal to

0.600, which suggested the prognostic model has a better diagnostic

value.

Construction and validation of the OS
nomogram and principal component
analysis

A nomogram, including grade, gender, age, T stage, N stage,

M stage, stage and risk, was plotted and the nomogram

predicted the survival of 1-, 3- and 5-year (Figures 6A, B).

Then, C-index curves were plotted to determine if there were

any discrepancies in patients’ survival over time

(Supplementary Table S2). The results indicated that the risk

signature has a high predictive accuracy of survival status in BC

patients and was not influenced by different clinical grades.

Moreover, OS of clinical stage in subgroups was analyzed. As

shown in Figures 6C, D, OS in stages I-IV differed significantly

in the low- and high-risk individuals (p < .05). At last, the

distribution of all genes, CRGs, CRLs and risk lncRNAs was

analyzed via PCA (Figure 7), which showed a clear status of risk

lncRNAs. Therefore, the results demonstrated all lncRNAs were

reliably utilized to establish the signature.
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Functional enrichment and immune-
related functional analyses

To understand the relationship between the CRLs and tumor

development, GO and KEGG were performed (Figures 8A, B).

The results of GO results showed CRLs were enriched in

signaling receptor activator activity, external side of plasma

membrane, and positive regulation of cell activation, which

were molecular function, cellular component, and biological

procession (p < .05), respectively. KEGG results indicated

these lncRNAs may be associated with cytokine-cytokine

receptor interaction, viral protein interaction with cytokine

and cytokine receptor, PI3K-Akt signaling pathway and so on

(p < .05). Circle plot showed the distribution of CRLs in GO and

KEGG enrichment. Furthermore, immune-related functions

were analyzed to figure out the immune status of subgroups

(Figure 8C). The results showed there was a significant increase

in Type_I_IFN_Response, Parainflammation, APC co-

stimulation, T cell co-stimulation, T cell co-inhibition,

inflammation-promoting, cytolytic-activity and so on in the

high-risk group when compared with the low-risk

group (p < .05).

The burden of tumor mutations and drug
sensitivity of tumor

Mutation of most genes was observed in the low- and high-

risk groups viamaftools algorithm. The mutation of TP53 (high

risk, 56%; low risk 40%) and TTN (high risk, 46%; low risk, 39%)

in the high-risk group was more common than that in the low-

risk one in the top-5 genes with highest mutation (p < .05). The

mutation of KMT2D (high risk, 25%; low risk 29%), MUC16

(high risk, 25%; low risk, 26%) and ARID1A (high risk, 21%; low

risk, 28%) in the low-risk group was higher than that in the high-

risk group in the top-5 genes with highest mutation (p < .05)

FIGURE 5
The prognostic value of the CRLs in BC patients. Univariate (A) andmultivariate (B) independent prognostic analysis to explore the risk score was
independently related with OS. (C).ROC curve analysis was utilized to compare the predictive accuracy between the risk model and various clinical
features. (D).ROC curves for 1-, 3-, and 5-year survival prediction.

Frontiers in Genetics frontiersin.org07

Cai et al. 10.3389/fgene.2022.1082691

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1082691


(Figures 9A, B). Moreover, it was no significant to distinguish

low-risk from high-risk groups (p = 0.33) (Figure 9C). Then, to

determine whether there was any association between the TMB

and the BC survival status, survival curves were plotted in pure

TMB and combined TMB-risk groups (Figures 9D, E). There

was a significant difference among subgroups (p < 0.05). High

TMB had a longer survival time than low TMB (p < 0.05).

Meanwhile, comparisons of all subgroups were significantly

different (p < 0.05). Furthermore, the TIDE algorithm was

utilized to investigate the difference of sensitivity to

immunotherapy in two subgroups (Figure 10A). The results

indicated the TIDE score in the high-risk group was higher than

that in the low-risk group (p < 0.05). Finally, potential anti-

tumor drugs were screened via the algorithm from the

“pRRophetic” R package. The top 5 most significantly

associated drugs were listed and an analysis of the correlation

between sensitivity and risk scores was conducted (p < 0.05),

including Bexarotene, WH-4-023, Midostaurin, Cyclopamine

and CGP-60474 (Figures 10B–F).

Discussion

BC is notorious cancer with high incidence and mortality.

Previous studies have found the Nuclear Matrix Protein 22

(NMP22) and cytokeratin markers (CYFRA 21-1 or UBC),

which can play a role in biological markers of BC as a

substitute to urinary cytology (Sánchez-Carbayo et al., 2000).

However, no available molecular biomarker can replace cytology

in sensitivity and specificity. Therefore, a reliable BC risk model

was constructed, which is an aggressive need to figure out the

clinical outcomes of BC patients. For the extension of multi-

omics data and database, optimized data mining algorithms have

an important influence on tumor research (Angus et al., 2019;

Nacev et al., 2019; Liu et al., 2020; Tabassum et al., 2020).

Multiple risk signatures and transcriptome profiling provided

a novel insight into the prognosis of individual patients via

combining the gene expression and clinical features (Xie et al.,

2021; Yan et al., 2021). Due to the lack of systematic evaluation,

most studies cannot be utilized to clinical practice. Hence, it is

FIGURE 6
The construction of nomogram and the predictive outcomes of clinical subgroups. (A).The combined nomogram for the risk model and other
clinicopathological factors. (B).Calibration curves of 1-, 3-, and 5-year. The high and low risk groups were extimated to analyze the survival influence
at stage Ⅰ-Ⅱ (C) and stage Ⅲ-Ⅳ (D).
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urgent that prognostic factors of BC patients are identified to

distinguish the high-risk population.

A series of researches have reported the relationship between

copper and BC (Konukoğlu et al., 1996; Lin et al., 2009; Mazdak

et al., 2010; Gecit et al., 2011; Guo et al., 2012). Moreover, copper

complex [Cu II
2Cu

I(L)2(Br)3] have been found to succeed

inducing apoptosis in pancreatic cancer, such as tolfenamic

acid–Cu II) complex and Cu II) complex of ketoprofen-

salicylhydrazone (FPA-306) (Hurtado et al., 2018; Gou et al.,

2021). Cuproptosis has only recently been identified, which was

deem to be a new unique form of cell death (Polishchuk et al.,

2019; Aubert et al., 2020; Dong et al., 2021; Ren et al., 2021;

Tsvetkov et al., 2022). The method of cell death leads to the

gathering of acylated protein and downregulating the iron-sulfur

protein via the binding of copper to lipid acylated components of

the TCA. The procession results in proteotoxicity and cell death

in the end (Koh et al., 2017). Interestingly, there were several

clinical trials that have been performed with the copper

ionophore micromolecular anti-tumor drugs Elesclomol

(Soma et al., 2018). The results failed to get a satisfactory

outcome. LncRNAs have been widely recognized to have a

deep connection with tumor progression, including BC (Cao

et al., 2019; Luo et al., 2019). However, rarely studies have found

the regulatory role in BC.

FIGURE 7
PCA analysis. The distribution of BC patients in all genes (A), CRGs (B), CRLs (C), and risk lncRNAs (D) via PCA analysis.
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In our present study, 69 CRLs were identified from co-

expression of lncRNAs and CRGs. With the analysis of

univariate and multivariate Cox regression, 3 CRLs with

prognostic value, including AL590428.1, AL138756.1 and

GUSBP11, were achieved and a prognostic model was

developed. The results from ROC, OS, PFS, nomogram

and heatmap indicated the signature of 3 CRLs

distinguished prognostic features with good accuracy in

two subgroups in BC patients. Meanwhile, clinical

outcomes in BC patients were predicted as independent

prognostic factors. Meaningfully, AL590428.1 was

investigated in cancer firstly. It is reported that

AL138756.1 participated in predicting the prognosis of

colon adenocarcinoma as a prognostic indicator (Zhou

et al., 2020). GUSBP11 has been found to regulate the

progression of tumor, including triple negative breast

cancer and nasopharyngeal carcinoma (Wu et al., 2022;

Zhang et al., 2022). Recent research has found that

GUSBP11 was contained in a machine learning-based

computational network for an indicator of immune

infiltration of tumor microenvironment (Zhou et al.,

2021). Herein, we further elucidated the correlation

between GUSBP11 and BC. Then, signaling receptor

activator activity, external side of plasma membrane, and

positive regulation of cell activation were found in the GO

enrichment. The KEGG pathway analysis revealed cytokine-

cytokine receptor interaction, viral protein interaction with

cytokine and cytokine receptor and PI3K-Akt signaling

pathway. Therefore, the results suggested that disorder

interactions between bioactive molecules and cellular

signaling pathway severely promote the progression and

generate poor clinical prognostic outcomes.

Furthermore, the correlation between TMB, immune

function and risk scores was analyzed in BC. TMB was

commonly regarded as an indicator for immune

checkpoint blockade (ICB) in BC, lung cancer and

melanoma (Fusco et al., 2021; Jardim et al., 2021; McGrail

et al., 2021). Although the lack of significant differences

between two subgroups (p > 0.05), the frequency of

mutation genes in subgroups has changed a lot and

survival time was significantly prolonged in low TMB (p <
0.05). We found the mutation of TP53 and TTN was

increased but KMT2D, MUC16 and ARID1A was

decreased in high-risk group. An increasing research has

demonstrated TP53 and TTN have an important effect on

the promotion of tumor (Mogi and Kuwano, 2011; Fu et al.,

FIGURE 8
Functional enrichment analysis and immune-related functional analysis. (A).GO enrichment of CRLs and numeric details. (B).KEGG enrichment
of CRLs and numeric details. (C).Immune-related functions of CRLs.
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2019; Shen et al., 2020; Siracusano et al., 2020). According to

our results, the same conclusion keeps in line with previous

researches. Moreover, KMT2D and ARID1A were found to be

decreased in expression (Garczyk et al., 2018; Sun et al.,

2019b), and MUC16 can be regarded as potential surrogate

biomarker of poor prognosis and unique molecular signature

(Cotton et al., 2017). Here, low-risk group showed higher

mutation levels of KMT2D and ARID1A than high-risk

group. In line with previous studies, our results are also

valid. We evaluated the prognosis of BC patients in

immune-related functions and contribute to figure out the

relationship between lncRNAs and immune functions. The

analysis of immune-related functions implied all members of

the risk signature were closely related to the antigen-

presenting of tumor. Meanwhile, the results of the TIDE

algorithm indicated a high-risk group received more

benefit from immunotherapy, which keeps in line with

previous conclusions. Due to the advent of Bacille

Calmette Guerin (BCG), BC is one of the earliest cancers

where the concept of immunotherapy was proposed (Vasekar

et al., 2016). While it is true, recent advances have revealed

multiple molecular mechanism as a prevalent tumor therapy,

such as CD24/Siglec-10, EMT, PD-L1/PD-1, C/EBPβ
transcription factors and hypoxia/HIF-1α (Marigo et al.,

2010; Vaupel and Multhoff, 2018; Jiang et al., 2019; Jiang

and Zhan, 2020; Yin and Gao, 2020). Although LncRNAs

itself do not code proteins, immunotherapy and immune

responses have been identified to participate (Jiang et al.,

2021). The interactions between lncRNAs and cancer

immunotherapy involved various immune cells in tumor

microenvironment (Luo et al., 2020), which is consistent

with our analyses of immune-related function. Besides, the

pRRophetic algorithm was conducted to screen for potential

anti-tumor drugs via the analysis of sensitivity and

correlation of those drugs. Part of those have been applied

to other cancers. Despite the drugs mechanisms of impact on

BC need to be figure out, it provides a new insight on drawing

up a therapeutic schedule.

FIGURE 9
The relationship between the risk signature and TMB. Top 15 mutation genes of BC for the low-risk (A), high-risk (B) groups in waterfall plot.
(C).Different TMB levels in subgroups in BC. (D).Survival status of high TMB levels and low TMB levels in BC. (E).Survival curves for combined TMB-risk
subgroups in BC.
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In brief, a CRLs signature of BC was constructed. In the light

of different calculated risk scores, two subgroups were divided

and the relationship was analyzed between TMB and subgroups,

immunotherapy and drug sensitivity. Therefore, a novel strategy

for predicting survival status and optimizing clinical therapy for

BC has been developed in our study.
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