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It is well known that histone modifications play an important part in various

chromatin-dependent processes such as DNA replication, repair, and

transcription. Using computational models to predict gene expression based

on histone modifications has been intensively studied. However, the accuracy

of the proposed models still has room for improvement, especially in cross-cell

lines gene expression prediction. In the work, we proposed a new model

TransferChrome to predict gene expression from histone modifications

based on deep learning. The model uses a densely connected convolutional

network to capture the features of histone modifications data and uses self-

attention layers to aggregate global features of the data. For cross-cell lines

gene expression prediction, TransferChrome adopts transfer learning to

improve prediction accuracy. We trained and tested our model on

56 different cell lines from the REMC database. The experimental results

show that our model achieved an average Area Under the Curve (AUC)

score of 84.79%. Compared to three state-of-the-art models,

TransferChrome improves the prediction performance on most cell lines.

The experiments of cross-cell lines gene expression prediction show that

TransferChrome performs best and is an efficient model for predicting

cross-cell lines gene expression.
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Introduction

Understanding the patterns of gene regulation has been one of the major focuses of

biological research. A variety of biological factors are thought to be involved in the

regulation of gene expression. The regulatory factors usually include transcription factors,

cis-regulatory elements, and epigenetic modifications. As a type of epigenetic

modifications, histone modification plays an important role in gene expression

regulation (Gibney and Nolan, 2010). Nucleosome is the building block of a

chromosome, which consists of an octamer of histones and 147 base pair (bp) DNA

wrapping around the octamer. Since histone is a core component of the nucleosome,
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histone modifications directly affect the structure of chromatin

and control the expression intensity of nearby genes. Recently, a

great number of researches have shown that histone

modifications have a great impact on gene expression,

chromosome inactivation, replication, and cell differentiation

(Krajewski, 2022; Lin et al., 2022). There are a variety of

histone modification marks at different chromosomal

locations, and there may be a set of “codes” of histone

modifications to control gene expression (Peterson and Laniel,

2004). Due to the high-throughput sequencing technologies, a

huge amount of histone modifications data and gene expression

data are available, and using computational algorithms to predict

gene expression based on histone modifications is feasible.

To date, a variety of computational methods have been used

to predict gene expression based on gene regulatory factors. For

example, Beer and Tavazoie, (2004) used Bayesian networks to

predict gene expression from DNA sequences. Ouyang et al.

(2009) used a linear regression model to predict gene expression

based on 12 transcription factors. Zeng et al. (2020) combined the

information of proximal promoter and distal enhancer to predict

gene expression. In 2010, Karlić et al.(2010) found histone

modification levels and gene expression are well correlated,

and derived quantitative models to predict gene expression

from histone modifications. Li et al. (2015) used a machine

learning method to predict gene expression in lung cancer

from multiple epigenetic data such as CpG methylation,

histone H3 methylation modification and nucleotide

composition. In 2016, Singh et al. (Singh et al., 2016) used a

convolutional neural network (CNN) DeepChrome to predict

gene expression based on five critical histonemodificationmarks.

To improve prediction accuracy, they (Singh et al., 2017)

integrated attention mechanism into a neural network and

proposed a prediction model AttentiveChrome. Temporal

Convolutional Network (Zhu et al., 2018; Kamal et al., 2020)

is also utilized to predict the gene expression from histone

modifications. In 2022, Hamdy et al. (2022) proposed three

variations of CNN models called ConvChrome.

Though the above methods have achieved good

performances, there are still room for improvement, and some

recently emerging technologies have provided some ways. When

models are trained and tested on different cell lines which is

knowns as cross-cell lines prediction, the model performance is

always compromised. For example, compared to training and

testing on the same cell line dataset, the average prediction

accuracy of DeepChrome trained on other cell lines is 2.3%

lower. Because of the large variety of cell lines, it is difficult to

obtain histone modification data and gene expression data for all

types of cell lines. Therefore predicting gene expression using

models trained on other cell lines is useful and in urgent need.

Transfer learning is a machine learning technique in which a

model trained on a specific task is reused as part of the training

process for another similar task (Tan et al., 2018). Transfer

learning allows training and prediction using the dataset from

different sources with similar characteristics and significantly

reduces dataset bias. Transfer learning has achieved great success

in prediction tasks that require learning transfer features (Sun

et al., 2022; Zhu et al., 2022). In the field of bioinformatics,

transfer learning enables existing trained models to efficiently

work on similar datasets that are lack of labels, which reduces the

cost of biological experiments.

In the paper, we propose a neural network model

TransferChrome with self-attention mechanism and transfer

learning to predict gene expression based on histone

modifications data. TransferChrome uses neural network

layers with self-attention mechanism to capture global

contextual information of data. In order to correct the data

bias of cross-cell lines gene expression prediction, we used

transfer learning. The experimental results show that

TransferChrome achieved an average Area Under the Curve

(AUC) score of 84.79%, which is better than other 3 state-of-the-

art similar models. The cross-cell lines prediction experiments

also show that TransferChrome outperforms other models.

Materials and method

Data collection and processing

The experimental data comes from the Roadmap Epigenome

Project (REMC) (Kundaje et al., 2015), which consists of 56 cell

lines’ histone modifications data and the corresponding

normalized RPKM expression data of 17170 samples. Same as

DeepChrome (Singh et al., 2016), five histone modification

marks that play important roles in gene expression were

selected for our experiments. These 5 marks include

H3K4me3, H3K4me1, H3K36me3, H3K27me3, and

H3K9me3. Their functional categories are summarized in

Table 1. Each sample in the dataset represents a gene. The

data of one sample include the five histone modification

marks signal within 10000bp upstream and downstream of

the transcription start sites (TSSs) of the corresponding gene.

According to DeepChrome (Singh et al., 2016), the 10000 bp

is equally divided into 100 bins and the histone modifications

data of one sample is encoded into an n × mmatrix x, where n is

TABLE 1 Five core histone modification marks and their functional
categories.

Histone mark Associated regions Functional category

H3K27me3 Polycomb repression Repressor mark

H3K36me3 Transcribed regions Structural mark

H3K4me1 Enhancer regions Distal mark

H3K4me3 Promoter regions Promoter mark

H3K9me3 Heterochromatin regions Repressor mark
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the number of histone modification marks and m is the number

of bins (see Figure 1). The histone sequencing data provided by

REMC were quantified by BEDTools into histone modification

signals. Therefore, xi,j represents the signal of the j-th histone

modification mark in the i-th bin.

Since the normalization of training data can speed up

the convergence of model training and allows the model to fit

the data better (Singh and Singh, 2020), the z-score

method is used to normalize the data for each histone

modification mark as Eq. 1. In Eq. 1, x̂i,h represents the

normalized signal of h-th histone modification mark in the i-

th bin. �xh and σh denote the mean and standard deviation of

the signals of the h-th histone modification mark of all genes

in a cell line.

x̂i,h � xi,h − �xh

σh
(1)

According to previous studies (Singh et al., 2016), each gene

is assigned a label based on its expression value. The median of

expression values of all genes in a given cell line is denoted as t. If

the expression value of a gene is higher than or equal to t, it is

labeled with 1; otherwise it is labeled with 0.

FIGURE 1
The data structure representing histone modifications.

FIGURE 2
The model structure of TransferChrome.
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To avoid interfering from adjacent genes, those genes whose

TSSs are within 5000 bp downstream of previous kept genes’

TSSs are deleted. At last there are 17170 genes remained.

Design of neural network model

As shown in Figure 2, TransferChrome is composed of

multiple modules: a feature extraction module, a label

classification module and a domain classification module. The

feature extraction module is used to calculate the latent features

of data. It includes a dense-conv block, a 1D convolutional layer,

a 1D max pooling layer, two self-attention layers, and a linear

layer (also called fully connected layer or dense layer). The label

classification module predicts a gene expression label. It includes

three linear layers. The domain classification module predicts a

domain label, which includes a gradient reversal layer (GRL) and

two linear layers. It learns transfer features, which allows the

model to achieve better performance in cross-cell lines gene

expression prediction.

Dense-connected convolutional layer for
extracting local features of data

To make the model better capture the features of the data, we

optimized the convolutional neural network in the feature

extraction module. The convolutional neural network uses

feature detectors, also known as convolution kernals or filters to

capture data’s features. According to its size, a convolution kernal

will aggregate all the information in the receptive field to extract a

corresponding feature. By increasing the number of convolutional

layers, a model can learn more complex features. However, the

deepened network structure easily ignores the features captured by

earlier convolutional layers, which usually represent the simple but

also basic features of the data. Densely Connected Convolutional

Networks (DenseNet) (Huang et al., 2017) uses a method called

dense connectivity pattern enhances the reusability of features.

Compared with the classic Convolutional Network, DenseNet

connects convolutional layers densely so that the feature

extracted by each layer could be used repeatedly. DenseNet

performs a deep supervision and strengthen the weights of

features captured by earlier convolutional layers. Inspired by

DenseNet, a dense-conv block that contains several densely

connected convolutional layers is used to extract features in our

model. A dense-connected convolutional layer is a convolutional

layer which connected to all other convolutional layers directly. It

means that the input of a dense connected convolutional layer not

only comes from its adjacent convolutional layer, but also from

other preceding layers. The dense-conv block allows the model to

learn the complex features of the data while also ensuring that the

low-level convolutional layer retains a greater influence in the

model’s decision-making.

Let xl be the output of the lth densely connected

convolutional layer. The input of the lth dense connected

convolutional layer contains the outputs of all the previous

l−1 layers as Eq. 2 shows.

xl � H x0, x1, . . . . . .xl−1[ ]( ) (2)
[x0, x1, . . .. . .xl−1] refers to the concatenation of the feature-maps

output from preceding layers. The composite function H

concludes a rectified linear unit (RELU) and 1D convolutional

layer.

In TransferChrome, the dense-conv block consists of three

dense-connected convolutional layers (kernal number = 32, 16,

8 and kernal length = 5, 5, 5). The dense-conv block is followed by

a convolutional layer (kernal number = 50 and kernal length = 5)

and a max-pooling layer (kernal length = 2). A dropout layer is

added after each convolutional layer and the dropout rate is 0.4.

The output of the max-pooling layer is input into a following self-

attention layer.

Self-attention layer for aggregating global
information

Regulatory factors at different locations may interact and act

on gene expression together. Therefore effective integration of

upstream and downstream information in the genome usually

leads to better computational results (Ji et al., 2021). The

Transformer (Vaswani et al., 2017) is an efficient neural

network model which has achieved good results in many

fields such as natural language processing (Devlin et al., 2019)

and image recognition (Dosovitskiy et al., 2021). The self-

attention mechanism used in Transformer can effectively

integrate data’s global features. The self-attention mechanism

also has been widely adopted in the field of Bioinformatics (Avsec

et al., 2021; Ji et al., 2021). For example, the researchers used this

mechanism to significantly improve the regulatory elements

prediction from genomic DNA sequences (Avsec et al., 2021).

Previous experiments (Singh et al., 2017, 2016) have illustrated

that histone modifications closer to gene’s TSS have greater

influence in the gene expression. We add self-attention

mechanism to the model, and use a position encoding

function to concatenate input data with relative distance

information. The relative distance information contains the

relative distance between each point and the TSS point, and

the output of the position encoding function is denoted by x.

TransferChrome contains two self-attention layers to capture

the long-distance dependence. The function of each self-

attention layer is as Eqs 3–6.

Q � convq x( ) (3)
K � convk x( ) (4)
V � convv x( ) (5)

Attention Q,K,V( ) � softmax QKT( )V (6)
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Each self-attention layer uses three one-dimensional

convolutional layers (kernal length = 1) convq, convk, and

convv to calculate a query matrix Q, a key matrix K and a

latent variable matrix V, respectively. The number of output

channels of convq and convk is half of the number of input

channels, and the number of output channels of convv is equal to

the number of input channels. Then the self-attention layer

calculate data’s attention score matrix QKT by multiplying

(matmul) Q and K. Finally, the attention score matrix will be

normalized by a softmax function, and multiplied with V. At the

end of the feature extraction module, there is a linear layer

following the last self-attention layer. The feature extraction

module outputs a low-dimensional feature vector. Then the

feature vector is inputted into the label classification module

and the domain classification module at the same time.

Label classification module and domain
classification module

The label classification module predicts the gene expression

label of the sample, which is the main task of our model. It is a

binary classification task with 0 and 1 represent low expression

and high expression, respectively. According to Long et al. (2015)

and Ganin and Lempitsky (2015), domain adaption can improve

prediction accuracy in transfer learning. Therefore,

TransferChrome uses a domain classification module for

cross-cell lines prediction. It contains a GRL and two linear

layers. GRL acts as an identity transform in the forward

propagation of the model. In the backward propagation, GRL

takes the gradient from the subsequent layer andmultiplies it by a

parameter −λ with λ > 0 and passes it to the preceding layer.

The domain classification module predicts whether the

sample belongs to the target domain or the source domain.

Source domains are the cell lines whose genes have gene

expression labels, and the cell lines whose gene have no

known gene expression information are called target domains.

It is also a binary classification task with 0 and 1, where

0 indicates that the sample is from the target domain and

1 indicates that the sample is from the source domain. In

cross-cell lines prediction, we try to extract those features that

can not be used to discern the data domain.

Model training

For model training, we chose cross entropy as the loss

function:

L � − y logŷ + 1 − y( )log 1 − ŷ( )[ ]. (7)

LetGf and θf be the function and the parameters of the feature

extraction module, respectively. Let Gd (Gy) and θd (θy) be the

function and the parameters of the domain (label)

classification module, respectively. For the single cell line

gene expression prediction task, the optimization goal of

model training is to minimize the loss Ly of the label

classification module without considering the domain

classification module.

For the cross-cell lines gene expression prediction task, we

train TransferChrome using the complete dataset from a source

domain and a part of the dataset from a target domain to capture

transfer features in different cell lines, and aim to minimize the

objective function in Eq. 8.

E θf, θy, θd( )

� ∑
N

i�1
Ly Gy Gf xi; θf( ); θy( ), yi( )

−λ∑
N

i�1
Ld Gd Gf xi; θf( ); θd( ), di( )

� ∑
N

i�1
Li
y θf, θy( ) − λ∑

N

i�1
Li
d θf, θd( ),

(8)

where Ld is the loss function of the domain classification module.

In the training process, stochastic gradient descent (SGD) is

used to update θy and θd to minimize the label classification loss

Ly and Ld. In the backward propagation, the first layer GRL of the

domain classification module reverses the gradient by

multiplying a negative number −λ and backward propagates it

to the feature extraction module. After the model training, Gf is

expected to extract transfer features in different cell lines. In the

training process, the learning rate is set to 0.001, momentum is

0.85, and weight decay is 0.001.We set themax training epochs to

200 and adopted early stop strategy.

In the following single-cell line prediction experiments, each

cell line data was partitioned into a training set, a validation set

and a test set as DeepChrome (Singh et al., 2016). For cross-cell

lines prediction, we used the source domain data and half of the

target domain data to train our model, and used the other half of

the target domain data as the test set.

Experiments

Comparison with other existing state-of-
the-art methods

To evaluate the effectiveness of TransferChrome, we

compared it with three state-of-the-art models (DeepChrome,

AttentiveChrome, and ConvChrome_CNN1D). DeepChrome

(Singh et al., 2016) is a convolutional neural network. It

consists of a convolutional layer (convolution kernal size is

10, the number of convolution kernals is 50), a max pooling

layer (convolution kernal size is 10), and two fully connected

layers (the number of units is 900, 125). AttentiveChrome (Singh

et al., 2017) is a recurrent neural network that uses two attention

mechanisms. ConvChrome (Hamdy et al., 2022) includes three
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variations of CNNmodels, among which ConvChrome_CNN1D

achieved the best performance. In the experiments, all models

used the same five types of core histone modifications from the

REMC project to predict gene expression. In the experiments of

single-cell gene expression prediction, we did not use the domain

classification module of TransferChrome and only used the label

classification module. DeepChrome was implemented and

trained according to Singh’s paper (Singh et al., 2016). For

AttentiveChrome, we used the trained model downloaded

from http://kipoi.org/models/AttentiveChrome/. Because

FIGURE 3
Single cell line gene expression prediction performance comparison on 56 cell lines of the models.

TABLE 2 The minimum, mean, maximum, and median of the AUC
scores of single cell line gene expression prediction of the models
on 56 cell lines.

Min Mean Max Median

TransferChrome 0.7972 0.8479 0.9289 0.8449

ConvChrome 0.7820 0.8399 0.9061 0.8386

DeepChrome 0.6871 0.8003 0.9236 0.8019

AttentiveChrome 0.7221 0.8093 0.9197 0.8216

FIGURE 4
The performance comparison of different versions of TransferChrome: TransferChrome_cross, TransferChrome_uncross and
TransferChrome_origin.
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ConvChrome’s code and data are not available, We implement

ConvChrome_CNN1Dwith PyTorch.We used the AUC score as

our evaluation metric. Experimental results on 56 cell lines are

shown in Figure 3 and Table 2, compared with the other models,

TransferChrome improved the prediction accuracy on most cell

lines. TransferChrome has a significant improvement in average

AUC compared to DeepChrome and AttentiveChrome.

Compared with ConvChrome, TransferChrome also has better

performance.

Cross-cell lines gene expression
prediction performance comparison

For the performance comparison in cross-cell lines gene

expression prediction, we arbitrarily selected a cell line (E085)

as the source domain and each one of other cell lines as the

target domain. Figure 4 and Table 3 show the experimental

results. In Figure 4 and Table 3, TransferChrome_cross means

that TransferChrome was trained and tested on different cell

lines. TransferChrome_uncross and TransferChrome_origin

did not use the domain classification module, and

TransferChrome_origin was trained and tested on the same

cell lines, while TransferChrome_uncross was trained and

tested on different cell lines. Table 3 shows the

performance comparison of TransferChrome, DeepChrome

and ConvChrome in cross-cell lines gene expression

prediction. In Table 3, DeepChrome and ConvChrome

indicate that the models were trained and tested on the

same cell line, while DeepChrome_uncross and

ConvChrome_uncross indicate that those models were

trained with E085 cell line’s data but were tested on other

cell lines.

The results have shown that the average AUC of

TransferChrome_uncross trained in a E085 cell line and

tested on another dropped by 2.9% compared to those of

TransferChrome_origin trained and tested on a same cell line.

Similarly, the average AUCs of DeepChrome_uncross and

ConvChrome_uncross dropped by 2.6% and 2.9% compared

to those of DeepChrome and ConvChrome, respectively.

Though TransferChrome_cross did not achieve the same

effect as TransferChrome_origin, the average AUC drop is

reduced to 1.5%, which showed that using domain

classification module indeed improves the performance in

cross-cell lines prediction.

Contributions of dense connectivity
pattern and different position encoding
functions

We carried experiments to see whether dense connectivity

pattern and different position encoding functions have obvious

impact on the performance of TransferChrome. A total of 9 cell

lines out of 56 with worst (E079, E084, E112), median (E114,

E120, E128), and best (E116, E117, E123) AUC scores were

selected for ablation experiments.

TABLE 3 Comparison of the minimum, mean, maximum, and median
of the AUC scores of TransferChrome, DeepChrome and
ConvChrome in single cell line and cross-cell lines gene expression
predictions.

Min Mean Max Median

TransferChrome_origin 0.7972 0.8479 0.9289 0.8449

TransferChrome_uncross 0.7672 0.8185 0.8950 0.8182

TransferChrome_cross 0.7866 0.8330 0.9156 0.8300

DeepChrome 0.6871 0.8003 0.9236 0.8019

DeepChrome_uncross 0.6652 0.7737 0.8951 0.7710

ConvChrome 0.7820 0.8399 0.9061 0.8386

ConvChrome_uncross 0.7571 0.8111 0.8791 0.8076

FIGURE 5
The performance comparison of different versions of TransferChrome: TransferChrome, TransferChrome_α and TransferChrome_β on 9 cell
lines (E079, E084, E112, E114, E120, E128, E116, E117, E123).
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We compared three TransferChrome model variations to

discuss the contribution of different position encoding functions.

The position encoding function adopted by TransferChrome

calculates the relative distance between TSS and bins.

TransferChrome_α use sinusoidal position encoding (Vaswani

et al., 2017) as the position function. Sinusoidal position

encoding function calculates position information with a mix

of sine and cosine functions. TransferChrome_β is the

TransferChrome without adding position information. The

experimental results are shown in Figure 5.

Histone modifications at different positions have different

importance for gene expression prediction. Since

TransferChrome_β ignores sequence position information,

TransferChrome_β performance worser than TransferChrome

and TransferChrome_α. Meanwhile, histone modifications

which are close to TSS might have more significant effect on

gene expression (Cheng et al., 2011). Accordingly, bins near to

TSS should be assigned with higher weights for gene expression

prediction (Singh et al., 2016). TransferChrome makes good use

of relative distances between bins and TSS and performs better

than TransferChrome_α.

We also conducted comparative experiments to discuss the

contribution of the dense connectivity pattern and convolutional

layer kernal numbers. As shown in Figure 6, four

TransferChrome model variations are compared.

TransferChrome has a dense-conv block, which has three

dense-connected convolutional layers with different kernal

numbers (32, 16, 8). TransferChrome_1 changes the structure

of the dense-conv block. Dense-conv block of

TransferChrome_1 uses three dense connected convolutional

layers with 50 kernals. TransferChrome_2 and

TransferChrome_3 do not use dense-conv block.

TransferChrome_2 only has a convolutional layer with

50 kernals. TransferChrome_3 uses three convolutional layers

with 50 kernals. Figure 6 shows the experimental results of above

models. On 3 cell lines E079, E084 and E112, Transferchrome

and TransferChrome_1 perform significantly better than others.

TransferChrome uses fewer kernals than TransferChrome_1 but

achieves a similar performance.

Conclusion and discussion

We proposed a new model called TransferChrome to

predict gene expression levels based on histone

modifications. TransferChrome uses self-attention

mechanism to capture the long-distance dependence, and

to learn hidden information features from the histone

modifications data. Furthermore, TransferChrome adopts

dense connectivity pattern to improve the feature exaction

ability of convolutional neural network. Experimental results

on the benchmark dataset of 56 cell lines showed that

TransferChrome performed better than other 3 similar

state-of-the-art models. To improve cross-cell lines gene

expression prediction performance, TransferChrome uses

transfer learning. Transfer learning makes the model

capable of learning common features among different cell

lines and reduces the data biases of different cell lines. Our

experiments demonstrated that TransferChrome achieved

the best accuracy in cross-cell lines gene expression

prediction. We believe that it is useful to use transfer

learning to improve cross-cell lines prediction accuracy.

So far, gene expression prediction methods from histone

modification data are mostly based on the five core histone

modification marks. In future work, we will use more

information from the histone modification data to predict

gene expression. We also intend to increase the

interpretability of the model in order to analyze the

contribution of different histone modification marks on

gene expression prediction.

FIGURE 6
The performance comparison of different versions of TransferChrome: TransferChrome, TransferChrome_1, TransferChrome_2 and
TransferChrome_3 on 9 cell lines (E079, E084, E112, E114, E120, E128, E116, E117, E123).

Frontiers in Genetics frontiersin.org08

Chen et al. 10.3389/fgene.2022.1081842

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1081842


Data availability statement

This study processed and analyzed publicly available data

sets. These data can be found here: https://egg2.wustl.edu/

roadmap/webportal/index.html.

Author contributions

YC and MX conceived the study and the conceptual

design of the work. YC implemented the TransferChrome

model and drafted the manuscript. JW collected the data and

tested the model’s performs. MX and YC polished the

manuscript. All authors have read and approved the

manuscript.

Funding

This work is supported by the National Natural Science

Foundation of China under Grant 62172028 and Grant

61772197.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fgene.

2022.1081842/full#supplementary-material

References

Avsec, Ž., Agarwal, V., Visentin, D., Ledsam, J. R., Grabska-Barwinska, A., Taylor,
K. R., et al. (2021). Effective gene expression prediction from sequence by
integrating long-range interactions. Nat. Methods 18, 1196–1203. doi:10.1038/
s41592-021-01252-x

Beer, M. A., and Tavazoie, S. (2004). Predicting gene expression from sequence.
Cell. 117, 185–198. doi:10.1016/S0092-8674(04)00304-6

Cheng, C., Yan, K.-K., Yip, K. Y., Rozowsky, J., Alexander, R., Shou, C., et al.
(2011). A statistical framework for modeling gene expression using chromatin
features and application to modencode datasets. Genome Biol. 12, R15–R18. doi:10.
1186/gb-2011-12-2-r15

Devlin, J., Chang, M.W., Lee, K., and Toutanova, K. (2019). “Bert: Pre-training of
deep bidirectional transformers for language understanding,” in Proceedings of the
2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers) (Stroudsburg, Pennsylvania, USA: Association for
Computational Linguistics), 4171–4186.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X.,
Unterthiner, T., et al. (2021). “An image is worth 16x16 words:
Transformers for image recognition at scale,” in International Conference
on Learning Representations.

Ganin, Y., and Lempitsky, V. (2015). “Unsupervised domain adaptation by
backpropagation,” in Proceedings of the 32nd International Conference on
Machine Learning. Editors F. Bach and D. Blei (Cambridge, MA: PMLR),
1180–1189.

Gibney, E., and Nolan, C. (2010). Epigenetics and gene expression. Heredity 105,
4–13. doi:10.1038/hdy.2010.54

Hamdy, R., Maghraby, F. A., and Omar, Y. M. (2022). Convchrome: Predicting
gene expression based on histone modifications using deep learning techniques.
Curr. Bioinform. 17, 273–283. doi:10.2174/1574893616666211214110625

Huang, G., Liu, Z., Maaten, L. V. D., and Weinberger, K. Q. (2017). “Densely
connected convolutional networks,” in 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (Honolulu, HI, USA: IEEE Computer Society),
2261–2269. doi:10.1109/CVPR.2017.243

Ji, Y., Zhou, Z., Liu, H., and Davuluri, R. V. (2021). Dnabert: Pre-trained
bidirectional encoder representations from transformers model for dna-
language in genome. Bioinformatics 37, 2112–2120. doi:10.1093/
bioinformatics/btab083

Kamal, I. M.,Wahid, N. A., and Bae, H. (2020). “Gene expression prediction using
stacked temporal convolutional network,” in 2020 IEEE International Conference
on Big Data and Smart Computing (BigComp), 402–405.

Karlić, R., Chung, H.-R., Lasserre, J., Vlahoviček, K., and Vingron, M. (2010).
Histone modification levels are predictive for gene expression. Proc. Natl. Acad. Sci.
U. S. A. 107, 2926–2931. doi:10.1073/pnas.0909344107

Krajewski, W. A. (2022). Histone modifications, internucleosome dynamics, and
dna stresses: How they cooperate to “functionalize” nucleosomes. Front. Genet. 13,
873398. doi:10.3389/fgene.2022.873398

Kundaje, A., Meuleman, W., Ernst, J., Bilenky, M., Yen, A., Heravi-Moussavi, A.,
et al. (2015). Integrative analysis of 111 reference human epigenomes. Nature 518,
317–330. doi:10.1038/nature14248

Li, J., Ching, T., Huang, S., and Garmire, L. X. (2015). Using epigenomics data to
predict gene expression in lung cancer. BMC Bioinforma. 16, S10–S12. doi:10.1186/
1471-2105-16-S5-S10

Lin, W., Song, C., Meng, H., Li, N., and Geng, Q. (2022). Integrated analysis
reveals the potential significance of hdac family genes in lung adenocarcinoma.
Front. Genet. 13, 862977. doi:10.3389/fgene.2022.862977

Long, M., Cao, Y., Wang, J., and Jordan, M. (2015). “Learning transferable
features with deep adaptation networks,” in Proceedings of the 32nd International
Conference on Machine Learning. Editors F. Bach and D. Blei (Cambridge, MA:
PMLR), 97–105.

Ouyang, Z., Zhou, Q., and Wong, W. H. (2009). Chip-seq of transcription factors
predicts absolute and differential gene expression in embryonic stem cells. Proc.
Natl. Acad. Sci. U. S. A. 106, 21521–21526. doi:10.1073/pnas.0904863106

Peterson, C. L., and Laniel, M.-A. (2004). Histones and histone modifications.
Curr. Biol. 14, R546–R551. doi:10.1016/j.cub.2004.07.007

Singh, D., and Singh, B. (2020). Investigating the impact of data normalization on
classification performance. Appl. Soft Comput. 97, 105524. doi:10.1016/j.asoc.2019.
105524

Singh, R., Lanchantin, J., Robins, G., and Qi, Y. (2016). Deepchrome: Deep-
learning for predicting gene expression from histone modifications. Bioinformatics
32, i639–i648. doi:10.1093/bioinformatics/btw427

Singh, R., Lanchantin, J., Sekhon, A., and Qi, Y. (2017). “Attend and predict:
Understanding gene regulation by selective attention on chromatin,” in Advances in
neural information processing systems. Editors I. Guyon, U. V. Luxburg, S. Bengio,

Frontiers in Genetics frontiersin.org09

Chen et al. 10.3389/fgene.2022.1081842

https://egg2.wustl.edu/roadmap/webportal/index.html
https://egg2.wustl.edu/roadmap/webportal/index.html
https://www.frontiersin.org/articles/10.3389/fgene.2022.1081842/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.1081842/full#supplementary-material
https://doi.org/10.1038/s41592-021-01252-x
https://doi.org/10.1038/s41592-021-01252-x
https://doi.org/10.1016/S0092-8674(04)00304-6
https://doi.org/10.1186/gb-2011-12-2-r15
https://doi.org/10.1186/gb-2011-12-2-r15
https://doi.org/10.1038/hdy.2010.54
https://doi.org/10.2174/1574893616666211214110625
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1093/bioinformatics/btab083
https://doi.org/10.1093/bioinformatics/btab083
https://doi.org/10.1073/pnas.0909344107
https://doi.org/10.3389/fgene.2022.873398
https://doi.org/10.1038/nature14248
https://doi.org/10.1186/1471-2105-16-S5-S10
https://doi.org/10.1186/1471-2105-16-S5-S10
https://doi.org/10.3389/fgene.2022.862977
https://doi.org/10.1073/pnas.0904863106
https://doi.org/10.1016/j.cub.2004.07.007
https://doi.org/10.1016/j.asoc.2019.105524
https://doi.org/10.1016/j.asoc.2019.105524
https://doi.org/10.1093/bioinformatics/btw427
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1081842


H. Wallach, R. Fergus, S. Vishwanathan, et al. (Red Hook, NY, USA: Curran
Associates, Inc.), 30.

Sun, J., Dodlapati, S., and Jiang, Z. C. (2022). Completing single-cell dna
methylome profiles via transfer learning together with kl-divergence. Front.
Genet. 13, 910439. doi:10.3389/fgene.2022.910439

Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., and Liu, C. (2018). “A survey
on deep transfer learning,” in International conference on artificial neural
networks. Editors V. Kůrková, Y. Manolopoulos, B. Hammer, L. Iliadis, and
I. Maglogiannis (Berlin, Germany: Springer International Publishing),
270–279.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). “Attention is all you need,” in Advances in neural information processing

systems. Editors I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, et al. (Red Hook, NY, USA: Curran Associates, Inc.).

Zeng, W., Wang, Y., and Jiang, R. (2020). Integrating distal and proximal
information to predict gene expression via a densely connected convolutional
neural network. Bioinformatics 36, 496–503. doi:10.1093/bioinformatics/btz562

Zhu, L., Kesseli, J., Nykter, M., and Huttunen, H. (2018). “Predicting gene
expression levels from histone modification signals with convolutional recurrent
neural networks,” in EMBEC & NBC 2017. Editors H. Eskola, O. Väisänen, J. Viik,
and J. Hyttinen (Singapore: Springer Singapore), 555–558.

Zhu, X., Gu, Y., and Xiao, Z. (2022). Herbkg: Constructing a herbal-molecular
medicine knowledge graph using a two-stage framework based on deep transfer
learning. Front. Genet. 13, 799349. doi:10.3389/fgene.2022.799349

Frontiers in Genetics frontiersin.org10

Chen et al. 10.3389/fgene.2022.1081842

https://doi.org/10.3389/fgene.2022.910439
https://doi.org/10.1093/bioinformatics/btz562
https://doi.org/10.3389/fgene.2022.799349
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1081842

	Predicting gene expression from histone modifications with self-attention based neural networks and transfer learning
	Introduction
	Materials and method
	Data collection and processing
	Design of neural network model
	Dense-connected convolutional layer for extracting local features of data
	Self-attention layer for aggregating global information
	Label classification module and domain classification module
	Model training

	Experiments
	Comparison with other existing state-of-the-art methods
	Cross-cell lines gene expression prediction performance comparison
	Contributions of dense connectivity pattern and different position encoding functions

	Conclusion and discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


