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Common full-sib families (c2) make up a substantial proportion of total

phenotypic variation in traits of commercial importance in aquaculture

species and omission or inclusion of the c2 resulted in possible changes in

genetic parameter estimates and re-ranking of estimated breeding values.

However, the impacts of common full-sib families on accuracy of genomic

prediction for commercial traits of economic importance are not well known in

many species, including aquatic animals. This research explored the impacts of

common full-sib families on accuracy of genomic prediction for tagging weight

in a population of striped catfish comprising 11,918 fish traced back to the base

population (four generations), in which 560 individuals had genotype records of

14,154 SNPs. Our single step genomic best linear unbiased prediction (ssGLBUP)

showed that the accuracy of genomic prediction for tagging weight was

reduced by 96.5%–130.3% when the common full-sib families were included

in statistical models. The reduction in the prediction accuracy was to a smaller

extent in multivariate analysis than in univariate models. Imputation of missing

genotypes somewhat reduced the upward biases in the prediction accuracy for

tagging weight. It is therefore suggested that genomic evaluation models for

traits recorded during the early phase of growth development should account

for the common full-sib families to minimise possible biases in the accuracy of

genomic prediction and hence, selection response.

KEYWORDS

genetic improvement, genomic selection, growth traits, non-additive genetic
estimates and accuracy of selection response, genetic lines

OPEN ACCESS

EDITED BY

Mehar S. Khatkar,
The University of Sydney, Australia

REVIEWED BY

Shengjie Ren,
Queensland University of Technology,
Australia
Tao Zhou,
Xiamen University, China

*CORRESPONDENCE

Nguyen Hong Nguyen,
nnguyen@usc.edu.au

Nguyen Van Sang,
sangnv.ria2@mard.gov.vn

†These authors have contributed equally
to this work

SPECIALTY SECTION

This article was submitted
to Livestock Genomics,
a section of the journal
Frontiers in Genetics

RECEIVED 27 October 2022
ACCEPTED 06 December 2022
PUBLISHED 04 January 2023

CITATION

Vu NT, Phuc TH, Nguyen NH and
Van Sang N (2023), Effects of common
full-sib families on accuracy of genomic
prediction for tagging weight in striped
catfish Pangasianodon hypophthalmus.
Front. Genet. 13:1081246.
doi: 10.3389/fgene.2022.1081246

COPYRIGHT

©2023 Vu, Phuc, Nguyen and Van Sang.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 04 January 2023
DOI 10.3389/fgene.2022.1081246

https://www.frontiersin.org/articles/10.3389/fgene.2022.1081246/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1081246/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1081246/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1081246/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1081246/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.1081246&domain=pdf&date_stamp=2023-01-04
mailto:nnguyen@usc.edu.au
mailto:nnguyen@usc.edu.au
mailto:sangnv.ria2@mard.gov.vn
mailto:sangnv.ria2@mard.gov.vn
https://doi.org/10.3389/fgene.2022.1081246
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.1081246


1 Introduction

In aquaculture species, common full-sib families (c2) are a

result of separate family rearing of about one to 3 months until

larvae reach a suitable size for physical tagging (e.g., 10–20 g in

fish or 2–5 g in shrimps). The c2, also known as non-additive

genetic components, include both common environmental and

maternal effects or possibly dominance, accounting for a

significant proportion of total phenotypic variations, ranging

from 5% to 55% for growth-related traits in fish (Hamzah et al.,

2017; Vu et al., 2019b; Bosworth et al., 2020), crustacean (Nguyen

et al., 2020a; Sang N. V. et al., 2020), and mollusc (Sang V. V.

et al., 2020). A meta-analysis of 45 studies available in the

literature across aquaculture species showed that the mean c2

value is about 10% for harvest body weight (Nguyen, 2021).

Omission of the c2 resulted in overestimation of heritability by

9%–45% in red tilapia Oreochromis spp. (Nguyen et al., 2017;

Sukhavachana et al., 2019) or giant freshwater prawn

Macrobrachium rosenbergii (Luan et al., 2012; Phuc et al.,

2021). The estimates of common full-sib families were

substantially larger for traits recorded during the early stage of

growth development than those measured at harvest. For

example, the c2 values were estimated at .37 for tagging weight

vs. .21 for harvest body weight in striped catfish Pangasianodon

hypophthalmus (Vu et al., 2019b). However, to date, the impacts

of common full-sib families on genomic prediction accuracy have

not been reported in any aquaculture species, including striped

catfish P. hypophthalmus.

Current genomic evaluation models used to analyse traits of

commercial importance in aquaculture species include only

genomic and phenotypic data or combined with pedigree

information (e.g., single-step GBLUP). Under these models,

the prediction accuracies for body traits (e.g., weight, length)

at harvest were moderate to high, ranging from .38 to .89

(Houston et al., 2020). The prediction accuracies for early

growth were .33 in common carp Cyprinus carpio

(Palaiokostas et al., 2018) and .67 for Pacific oysters

Magellana gigas (Gutierrez et al., 2018). The prediction

accuracies for meat quality traits fall within a range of

.59–.62 for raw and cooked colour of banana shrimp

Fenneropenaeus merguiensis (Nguyen et al., 2020b) and

.19–.20 for fillet yield and firmness in rainbow trout

Oncorhynchus mykiss (Al-Tobasei et al., 2021). To date, there

is no or limited published information regarding the utilisation of

genomic data to assess predictive performance of any statistical

methods for tagging weight (i.e., early growth trait) in important

aquaculture species.

Almost all studies in aquaculture have employed genomic

best linear unbiased prediction (GBLUP), single step- GBLUP

(ssGBLUP) or Bayesian methods (Allal and Nguyen, 2022). The

Bayesian methods provide flexibility to model different variance

distributions of SNPs and can outperform BLUP method (e.g.,

GBLUP or ssGBLUP) especially for traits under control by genes

with large and moderate effects (van den Berg et al., 2015).

However, computation of Bayesian methods is highly

demanding, and hence, BLUP-family methods have been

widely used in practical breeding programs, especially for

traits whose variation is of polygenic nature due to many

genes, each with very small effects. Recent studies have

employed machine and deep learning and obtained higher

accuracies for a range of traits than linear (GBLUP) and non-

linear Bayesian methods (Yin et al., 2020; Montesinos-López

et al., 2021). Regardless of statistical methods used, imputation of

missing genotypes or imputation from a low to high density SNP

arrays or from commercial SNP arrays to whole genome

sequence improved the prediction accuracy for complex traits

(Kjetså et al., 2020). Multivariate analysis also slightly increased

the prediction accuracy for grain yield in wheat Triticum

aestivum L. (Sandhu et al., 2021) or cassava Manihot esculenta

Crantz (Okeke et al., 2017), although its benefits depend on

statistical models used (Montesinos-López et al., 2020) or

characteristics of datasets and specifically genetic architecture

of traits (Gianola and Fernando, 2020). Recent studies have also

reported advantages of including functional variants identified

from genome-wide associations analysis (GWAS) in prediction

models to improve the accuracy of genomic estimated breeding

values for growth traits under chronic thermal stress in rainbow

trout O. mykiss (Yoshida and Yáñez, 2021). In this regard,

published information is not available for tagging weight,

especially in striped catfish—an important aquaculture species

that contributes significantly to the national economies of many

countries in Asia, such as Bangladesh, Malaysia, Thailand,

Vietnam.

Therefore, this study was set out to test three major

hypotheses: 1) omission of the common full-sib families (c2)

from statistical models can result in upward biases in genomic

prediction accuracy for tagging weight, 2) imputation of missing

genotypes can improve the predictive performance of ssGBLUP,

and 3) multi-trait genomic evaluation can lessen the

overestimation of the prediction accuracy when the common

full-sib families were omitted. Ultimately, the study attempted to

explore possibilities for the application of genomic selection for

early growth traits in striped catfish.

2 Materials and methods

2.1 Source of genetic materials

This study included 11,918 fish, which are offspring of

434 females and 278 males in a full pedigree traced back to the

base population. The experimental fish were produced between

2015 and 2020, following a semi-nestedmating design with a ratio of

one male to one or two females (Van Sang et al., 2012). Induced

breeding was practised using HCG (Human Chorionic

Gonadotropin) hormone with 4 doses (300, 600, 1,200, and
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3500 UI). Also note that there are different induction practices

regarding doses and types of hormones used, e.g., HCG (Bui et al.,

2010) or Suprefact (Samorn, 2007). After striping and ferilizing, eggs

were incubated in net jars mounted in a 5 m3 composite tank. After

hatching, fry of each family was reared in a separate fibreglass tank

(1.5 m3) for about 3 weeks. Then a random sample of about 500 fry

per family were transferred to a net hapa installed in earthen ponds

to raise to fingerling size of about 20 g for physical tagging, using

Passive Integrated Transponder (PIT). One family was kept in a

single hapa net. Three feeding strategies were applied for different

rearing periods: no feeding before hatching (0–24 h), Artemia (day

1 to day 3) and Moina (day 4 to day 7) together with fish flake (day

8 to day 15, the foods were made of small size before feeding) were

used for tank rearing period before 15 days (Vu et al., 2019b) at a

maximum fish uptake and only pellet feed was used during

2 months rearing in earthen pond at a rate of 5% fish biomass.

The water was exchanged 50% daily when fish were kept in tank and

once per week in pond. In each generation, approximately 200 fish

were randomly sampled from each family for PIT tagging. And a

half of each family was used for growth testing in the mainstream

selection program for increased harvest body weight (Vu et al.,

2019b) and another half was sent to concrete tanks for pathogen

challenge test to select for increased resistance to Edwardsiella

ictaluri, a bacterial disease that has caused severe mortality loss

during larval and fingerling rearing stages in striped catfish (Vu et al.,

2019a). Due to the high mortalities observed after tagging and

conditioning, there was a smaller number of fish per family retained

for the main challenge test, around 27 fish/family (Table 1).

2.2 Trait(s) studied

At tagging, weight of individual fish was recorded using a digital

scale with a precision to .1 g. In 2015, 4,937 fish had tagging weight

and in the latest generation in 2020, the number of fish with tag

weight involved in the pathogen challenge experiment and growth

performance testing were 5,224 and 1,757, respectively. In total,

there were 11,918 individual data records used in our statistical

analysis to assess genomic prediction accuracies. However, due to

our limited funding, only a random sample of 560 fish from

40 families in the latest generation (2020) was sequenced to

obtain genotype data for our analysis in this study.

2.3 Genotype

DNA samples of 560 fish (offspring of 40 females and 31 males)

were sent to a commercial service provider inCanberra, Australia for

genotyping by sequencing, using Diversity Arrays Technology

(DArTseq™). DArTseq™ represents a combination of genome

complexity reduction methods and high throughput sequencing

platforms (Kilian et al., 2012). A detailed description regarding

selections of restricted enzymes, PCR reactions, library preparations

and sequencing is given in our earlier studies (Nguyen et al., 2018a;

Nguyen et al., 2018b; Nguyen et al., 2020b; Vu et al., 2020). Briefly,

sequences generated from each lane were processed using

proprietary DArTseq pipelines. Approximately

2,000,000 sequences per barcode/sample were identified and used

for variant (SNP) calling. SNP calling was conducted in the

DArTsoft14, using DART PL’s C++ algorithm. Calling quality

was assured by high average read depth (averaging 60 reads per

locus). Furthermore, when multiple polymorphisms were detected

on DNA fragments (mostly 75 bp), a single SNP was randomly

chosen to avoid linkage disequilibrium between loci. After quality

control (QC), we obtained 14,154 SNPs across 560 samples.

2.4 Statistical analysis

The missing genotypes (about 10.0%) were imputed using

AlphaFamImpute (involving 560 individuals fish and

14,154 SNPs) which takes into account of the pedigree

TABLE 1 Descriptive statistics for tagging weight of striped catfish data over 2 generations.

Index G0-resistance G1-resistance G1-growth All generations

Observation 4937 5224 1757 11918

Number of fish per family 27.6 (10–86) 31.3 (13–87) 18.9 (11–72) 27.1 (10–87)

Weight (g) 23.9 ± 11.7 20.8 ± 11.7 25.0 ± 15.2 22.7 ± 12.4

CV of weight (%) 48.8 55.9 60.7 54.4

Age in day (min—max) 195.0 (149–208) 148.6 (132–180) 178.6 (132–222) 172.2 (132–222)

No. batches 9 4 7 19

No. of sire 107 99 72 272

No. of dam 177 167 90 428

No. of families 179 167 93 439
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relationships (Whalen et al., 2020). Single-step genomic best

linear unbiased prediction (ssGBLUP) method was used to assess

genomic prediction accuracy for tag weight. The linear mixed

model is written in a matrix notation as follows:

y � Xb + Zu +Wc + e (1)

where

y is the observations related to individual records of each fish.
X is the design matrix related to fixed estimates (b) that

included generation (1–3) and spawning batch. Age from birth to

tagging was also fitted as a linear covariate.

Z and W are the design matrices related to the additive

genetic effects u ~ (0, Hσ2g) and common full-sib groups c ~
(0, Iσ2c). The random terms fitted in the model were the

additive genetics of individual fish and the common full-sib

families. LogLikelihood Ratio Test (LRT) showed that the

common full-sib effects were statistically significant for tag

weight (Chi-square value with one degree of freedom ranged

from 2.3 to 6.2, p < .05 to .001). e ~ (0, Iσ2e) is the error term in

the model. Where I is the indentity matrix, H is described as

below. σ2g, σ2c, σ2e are corresponding genetic, common

environmental and residual variances.

Our ssGBLUP analysis was conducted in AIREMLf90 of the

BLUPF90 package (Misztal et al., 2018). The ssGBLUP is an

advanced version of GBLUP that blended numerator relationship

(A) and kinship (G) matrices into a realised H matrix (Eq. 2),

where A was calculated from the pedigree and G was computed

from 14,154 SNPs. ssGBLUP uses the blended matrix combining

both pedigree information and genotype data and hence, is

deemed more powerful than GBLUP.

H−1 � A−1 + 0 0
0 G−1 − A−1

22
[ ] (2)

The model for single step GWAS expressed as below [also see

Aguilar et al. (2019)]:

y � Xb + Ziai + u + e (3)

where Zi is a vector of SNP values (i.e., 0, 1 or 2), ai is the effect of

the ith SNP, u is the vector of breeding values obtained from

single step analysis from Eq. 1. Here,

var u( ) � ZZ′
∑ pi 1 − pi( )( )2 � Gσ2

u (4)

with pi is the frequency of ith SNP, σ2u and σ
2
e are assumed known

and y, X, b, Z, G, and e are described as above. Analysis of

ssGWAS was accomplished by three sub-programs, including

blupf90 (computation of genomic breeding values), pregsf90

(derivation of the H matrix) and postgsf90 (estimation of the

SNP effect, p-values and plotting). The pre-selected SNP panels

after GWAS analysis were based on a significant probability of

less than .00001 for each of the 25 running sets. Finally, analysis

of ssGBLUP genomic prediction were performed using only the

highly significant SNPs. The model that omitted the common

full-sib effects (c2) was the same as Model 1, except that the “Wc”

term or “full-sibs” effect was not included.

The predictive performance (or prediction accuracy) of

ssGBLUP was evaluated using 5-fold cross validation over five

replications. This involved the random division of the

phenotypic data into 5 subsets (each with

2383–2384 observations). Then the breeding value of one

set was predicted based on the data from the other four

subsets. In the five fold cross-validation, the process was

repeated 5 times and thus, there were 25 runs in total. The

genomic prediction accuracy was defined as the correlations

between the predicted breeding values and actual phenotypes

(ry,ŷ) divided by the square root of the trait heritability. The

trait heritability was estimated using the AIREML algorithm

in the AIREMLF90 of the BLUPF90 family package. The

method assumed normal distribution of the variance

components for the traits studied; they were the observed

heritability for the trait studied. The correlations (ry,ŷ) were

determined as the average value after five-fold cross-

validation with 5 repetitions. All single trait analyses were

performed in AIREMLf90. Regarding the bivariate analysis,

tag weight was co-analysed with survival time (i.e., days that

the animals were still alive after the challenge test

experiment). The bivariate model was also performed in

AIREMLf90. In addition, we analysed the two-trait model

[tag weight and survival time (Vu et al., 2021)], using Gibb

Sampling method in THRGIBBF1f90 (Tsuruta and Misztal,

2006). In both packages, the bivariate model was the same as

Eq. 3 above. In the Gibb sampling, we used 200,000/

20,000 and 1,000,000/200,000 as total-cycle/burn-in steps

for the univariate and bivariate analyses, respectively. After

each Gibbs sampling analysis, results obtained from all the

samples were visualised using time series plots of

postgibbsf90 program (https://masuday.github.io/blupf90_

tutorial/vc_gs.html) to define the stability of variances, and

only samples displaying stabilised variances were used to

calculate heritability and/or genetic parameters. The

prediction accuracies obtained from AIREMLf90 were

almost identical to those obtained from THRGIBBF1f90.

Thus, only the estimates from the latter analysis were

presented in this study. Finally, we performed pedigree-

based PBLUP analysis and single-step genome-wide

association study (GWAS) in combination of ssGBLUP to

better understand the predictive capacity of our statistical

models used to analyse tag weight. These analyses used

AIREMLf90 and THRGIBBF1f90 packages (Misztal et al.,

2018).

Finally, we calculated correlation of EBV for tagging weight

between the two statistical models (with and without the

common full-sib families) to examine re-ranking effects,

i.e., re-ranking of breeding candidates based on their EBVs for

tagging weight in the selection program for striped catfish.
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3 Results

3.1 Trait characteristics

The average tag weight of the population was 22.7 ± 12.4 g

(Table 1). The tag weight in the first generation (G1, produced

in 2019) was slightly lower than that of the base population

(G0, produced in 2015) as the animals were tagged at an earlier

age (149 vs. 195 d). Despite our efforts to produce all families

within a short period in G1 (4–7 spawning batches), the

coefficient of variation in the tag weight was somewhat

greater in this generation than in the base population

(55.9%–60.7% vs. 48.8%). Note that only the animals of

generation 1 (560 individuals) had genome sequence and

genotype (SNPs) data. The average tag weight of these

animals was 23.2 ± 13.0 g.

The heritability (h2) for tag weight was high (.72–.74) when

the common full-sib estimate (c2) was omitted from our models:

PBLUP, ssGBLUP and ssGWAS (Supplementary Table S1). The

h2 estimate obtained from the full models that also included the c2

estimate was reduced to .15, .08, and .14 for PBLUP, ssGBLUP,

and ssGWAS, respectively. The corresponding c2 estimates were

.71, .74, and .72 (Supplementary Table S1).

3.2 Accuracy of genomic prediction with
and without common full-sib effect (c2)

The genomic prediction accuracy for tag weight was high

(.636) when the c2 estimates were omitted from our statistical

model. However, the accuracy was significantly reduced to

.276 in the ssGBLUP model that also included the c2 estimates

(Figure 1). In other words, omission of the c2 resulted in loss of

the prediction accuracy by .278–.334 (or 80.7–105.3%).

3.3 Original vs. imputed data using the full
model

Imputation of missing genotypes alleviated the upward

bias in the prediction accuracy for tag weight when the c2

estimates were fitted in statistical models of our analysis

(Figure 2). The accuracy obtained from the full ssGBLUP

model that included the c2 estimates was .311 when the

imputed genotype was analysed as compared with .276 of

the original data. This means that imputation improved the

prediction accuracy for tag weight by .035 (or 12.8%) (also see

Supplementary Table S2).

FIGURE 1
Accuracy of genomic prediction for tagging weight without/with common full-sib effect (c2) using original genotype under AI-REML algorithm.
Middle line of the box is mean accuracy; top and bottom lines of the box is accuracy ± one standard deviation. End points of vertical line represent
minimum and maximum values.
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3.4 Multi-trait analysis using the full model

Bivariate analysis involving tag weight and a disease

resistance trait (i.e., survival time) improved the prediction

accuracy by .031 (or 11.2%) relative to the univariate

ssGBLUP model (.307 vs. .276). The two-trait analysis also

reduced biases in the prediction accuracy for tag weight when

the c2 were included in our models (r = .3098 for the two-trait

model with the c2 estimates vs. .630 without the c2). Regardless of

the inclusion or exclusion of the c2, the prediction accuracies were

similar between AI-REML and Gibb sampling methods either

when original genotypes (Table 2) or imputed genotypes

(Table 3) were analysed.

3.5 ssGWAS in combination with ssGBLUP

The inclusion of highly significant markers (471 SNPs)

slightly increased the prediction accuracy for tag weight

relative to ssGBLUP (Table 2). However, it had little impacts

on the upward biases in the prediction accuracy when the

common full-sib families were omitted from our univariate

FIGURE 2
Accuracy of genomic prediction for tagging weight without/with common full-sib effect (c2) using imputed genotype under AI-REML
algorithm. Middle line of the box is mean accuracy; top and bottom lines of the box is accuracy ± one standard deviation. End points of vertical line
represent minimum and maximum values.

TABLE 2 Genomic prediction accuracy from multivariate models in AIREMLf90 and THRGIBBS1f90, using original (un-imputed) genotypes.

Method AIREMLf90 THRGIBBS1f90

Without c2 With c2 Difference (%) Without c2 With c2 Difference (%)

PBLUP .6272 ± .025 .3471 ± .025 80.7 .6227 ± .025 .3446 ± .025 80.7

ssGBLUP .6371 ± .023 .3067 ± .023 107.7 .6360 ± .023 .3098 ± .022 105.3

ssGWAS .6391 ± .023 .3264 ± .026 95.8 .6392 ± .023 .3451 ± .026 85.2
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(Figures 1, 2) and multi-variate analyses (Table 3), using either

linear mixed model or threshold Gibb sampling methods.

3.6 Re-ranking effects

To examine the impact of the common full-sib families on re-

ranking effects, we calculated correlation of EBV for tagging

weight between the twomodels (with the presence and absence of

the common full-sibs effect). The Pearson correlation coefficient

ranged from .30 to .62 (Supplementary Table S3), suggesting

potential re-ranking effects of selection candidates when the c2

effects were not included in genomic evaluation models for

tagging weight of striped catfish.

4 Discussion

In the present study we attempted to address five major

questions which are worth considering before initiating genomic

selection program for early growth in striped catfish as well as

other aquaculture species of economic importance.

4.1 Should genomic selection be practised
for tagging weight?

The prediction accuracy for tagging weight was high due to

the high heritability (.72–.74) for this trait, which is opening new

opportunities for improving early growth through genomic

selection. Selection for early growth could shorten generation

time of striped catfish P. hypophthalmus which often takes

3–4 years to maintain a breeding cycle in genetic

improvement programs. However, selection for tag weight

may not capture all genetic variation in body traits at harvest

as the genetic correlation (rg) between these two traits is reported

to be .5 in this population (Vu et al., 2019b). In Asian seabass

Lates calcarifer, Khang et al. (2018) also observed a significantly

different from one genetic correlation (rg = .31–.47) for body

weights between successive rearing periods from 180 to 556 days

post-hatch. Based on the genetic correlation estimates between

tag and harvest weights, it is necessary to examine genomic

prediction accuracy for harvest weight in this population of

striped catfish. Furthermore, there are also no clear

advantages regarding the prediction accuracy of ssGBLUP and

ssGWAS as compared with PBLUP in our study. Future work

should consider enlarging the sample size (in terms of the

number of individuals and families genotyped) and number of

SNPs to take the advantages of ssGBLUP and ssGWAS models

that can capture some measures of Mendelian sampling to

improve the estimation of genetic (kinship) matrices for all

individuals in the pedigree and hence, improving accuracy of

estimated breeding values for tagging weight in this population of

striped catfish.

4.2 Does omission of the common full-sib
effects affect the genomic prediction
accuracy?

When the common full-sib families (c2) were excluded from

our statistical methods, this resulted in upward biases in the

prediction accuracy by 96.5%–130.3% for tagging weight. The

overestimation of the prediction accuracy was to a greater extent

when PBLUP was used as compared with other methods

(i.e., GBLUP and ssGBLUP). To date, no published

information is available in aquaculture species to compare

with our studies. However, studies in farmed animals

suggested that effects of non-additive genetics should be

included in mating structures to improve accuracy of genomic

prediction and hence, maximizing productivity for dairy farms

(Aliloo et al., 2017; Varona et al., 2018). Conventional genetic

evaluation systems using pedigree and phenotype data in

aquaculture species have also shown that the animal breeding

values (EBVs) estimated for growth traits were overestimated, for

instance, 10%–56% in giant freshwater prawn M. rosenbergii

(Phuc et al., 2021) or red tilapia O. spp. (Nguyen et al., 2017).

Hence, our results are as expected because the c2 estimates were

often large for growth traits in aquaculture species where separate

rearing of each family was often conducted over a period of

2–3 months until the fish reach a suitable size (e.g., 10–20 g) for

physical tagging. The c2 estimates were generally not significant if

early communal rearing of all families is practised and DNA

markers are used for parentage assignment, as demonstrated in

TABLE 3 Genomic prediction accuracy from multivariate models in AIREMLf90 and THRGIBBS1f90, using imputed genotypes.

Method AIREMLf90 THRGIBBS1f90

Without c2 With c2 Difference (%) Without c2 With c2 Difference (%)

PBLUP .6272 ± .025 .3471 ± .025 80.7 .6227 ± .025 .3446 ± .025 80.7

ssGBLUP .6644 ± .023 .3323 ± .026 99.9 .6658 ± .023 .3317 ± .024 100.7

ssGWAS .6571 ± .022 .3352 ± .023 96.0 .6578 ± .021 .3331 ± .021 97.5
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common carp C. carpio (Ninh et al., 2013) or yellowtail kingfish

S. lalandi (Premachandra et al., 2017). Collectively, due to the

high c2 effects on tagging weight and its low to moderate genetic

correlation with market (harvest) weight, genomic evaluation

models for these traits should account for the common full-sib

families and they should be considered as separate traits in

genetic improvement programs for striped catfish as well as

other aquaculture species.

4.3 Can multivariate analysis lessen the
upward biases in the prediction accuracy?

Our multivariate analysis of tagging weight in

combination with disease resistance trait (survival time)

aimed to utilise genetic covariation between the traits and

hence improved the predictive power of statistical models

used. In addition, when the c2 were omitted, the extent of the

overestimation in the prediction accuracy was smaller in the

multivariate analysis than univariate models. Studies in

animals and plants have reported that multi-trait analysis

can improve the prediction accuracy for productivity traits

(e.g., milk yield in cattle or grain yield in wheat T. aestivum L.)

by 0%–28.5% (Sandhu et al., 2021). However, other studies

also showed that there are little or no benefits of multivariate

vs. single trait analysis (Kemper et al., 2018). To date, studies

in aquaculture species performed multi-trait genomic

prediction are limited. Results from these studies showed

that the accuracies of genomic predictions were not

improved for fillet weight and fillet yield in Nile tilapia O.

niloticus (Joshi et al., 2020) or for survival status and survival

time in striped catfish P. hypophthalmus (Vu et al., 2021),

likely because the high heritability of these two traits and their

high genetic correlations; hence, adding one trait did not

improve the prediction accuracy of the other. In yellowtail

kingfish, Nguyen et al. (2022) also showed that the benefits of

multi- vs. univariate analysis depend on statistical methods

used and genomic architecture of traits. Hence, molecular

dissection of the genomic architecture of traits (e.g.,

identifying pleotropic loci) can help further understand the

impacts of multi-trait analysis on the prediction accuracy for

tagging weight and disease resistance examined in this

population.

4.4 What can imputation help in genomic
prediction?

In this study, we found that imputation of missing

genotypes has two major benefits. First, it improved the

prediction accuracy for tagging weight by 2.1%–12.8%, as

compared with when the original (un-imputed) data were

used. Second, the imputation reduced the upward biases in the

prediction accuracy for tagging weight when the c2 estimates

were omitted from our statistical models, mainly because the

complete genotypes improved accuracy of estimated breeding

values for tagging weight. The benefit of imputation on

genomic prediction in aquaculture breeding has been

reported in recent studies, such as for disease resistance to

photobacteriosis in gilthead sea bream S. aurata (Bargelloni

et al., 2021), resistance to sea lice in Atlantic salmon S. salar

(Tsai et al., 2017; Kjetså et al., 2020), growth-related traits

Yellowtail kingfish Seriola lalandi (Nguyen et al., 2018a) or

with simulated data in rainbow trout O. mykiss (Dufflocq

et al., 2019). In selective breeding programs, imputation can

help to reduce costs associated with sequencing. One option is

to perform low-density genome sequence (Kriaridou et al.,

2020) for a large number of selection candidates and high-

density sequence for only parents (Tsai et al., 2017). Then

imputation is made to impute from low to high or whole

genome sequence. This would help increase selection intensity

and thus genetic gain made in selected populations.

Furthermore, when more data are accumulated in this

population, imputation can increase power of detecting

variants for tag weight in genome-wide association studies

or fine mapping analysis, integrate multi-studies for meta-

analysis of datasets, which are genotyped on different

platforms or level of genome coverage. However, also note

that the performance of genotype or sequence imputation is

affected by many factors, such as reference selection, SNP

density, sample size, sequence coverage, minor allele

frequency of populations (Chen et al., 2014; Druet et al.,

2014; Dufflocq et al., 2019). These factors are fully or

partially accounted for in recent software packages that can

facilitate the imputation in our breeding program for high

growth in striped catfish P. hypophthalmus.

4.5 Can ssGWAS alleviate the impacts of
the c2 omission on the prediction
accuracy?

Inclusion of highly significant SNPs in genomic prediction

models that included the c2 did not have noticeable impacts on

the prediction accuracy for tagging weight. This is likely due to

the limited size of the significant SNPs obtained from genotyping

by sequencing (GBS) platform but our observation here is

consistent with previous findings for disease resistance traits

in the same population of striped catfish P. hypophthalmus (Vu

et al., 2021). In studies where the c2 estimates were not included,

Luo et al. (2021) also found there were no advantages of pre-

selected SNPs in genomic prediction models using ssGBLUP,

WssGBLUP and BayesB for resistance to Edwardsiella tarda that

causes acute symptoms with ascites in Japanese flounder

(Paralichthys olivaceus). However, other studies, which used

prioritised variants from GWAS, reported there was an
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improvement in the prediction accuracy by 1.2%–13.3% for

growth-related traits under chronic thermal stress in rainbow

trout O. mykiss (Yoshida and Yáñez, 2021) or disease resistance

traits in whiteleg shrimp L. vannamei, Atlantic salmon S. salar

and gilthead sea bream S. aurata (Luo et al., 2021). In addition,

the variant (or marker) effects can be weighed to improve the

prediction accuracy as demonstrated in our recent study for

disease traits (Vu et al., 2021) or for production traits in dairy

cattle (Xiang et al., 2021).

5 Concluding remarks

The prediction accuracy for tagging weight using BLUP-family

methods was moderate to high. The omission of the common full-

sib families resulted in upward biases in the predictive

performance across statistical models used. Imputation of

missing values alleviated the impacts of the common full-sib

families on the prediction accuracy. As compared with single

trait analysis, multivariate model slightly improved the

prediction accuracy when the c2 effects were excluded from our

analyses. A combined ssGWASwith ssGBLUP did not sacrifice the

prediction accuracy, regardless of the c2. Our results suggest that

genomic selection for early growth traits should include the c2 in

statistical models to investigate any possible changes in selection

accuracy and selection response. Future study should increase the

number of genotyped individuals and/or consider alternative

genotyping platforms (e.g., whole genome sequencing) as well

as use different mating structures (e.g., using full or partial factorial

design) to enable the separation of the dominance from common

full-sib effects in order to improve accuracy of genomic prediction

for tagging weight and commercial traits of economic importance

in this striped catfish population.
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