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Background: Systemic sclerosis-associated pulmonary hypertension (SSc-PH)

is one of the most common causes of death in patients with systemic sclerosis

(SSc). The complexity of SSc-PH and the heterogeneity of clinical features in

SSc-PH patients contribute to the difficulty of diagnosis. Therefore, there is a

pressing need to develop and optimize models for the diagnosis of SSc-PH.

Signal recognition particle (SRP) deficiency has been found to promote the

progression of multiple cancers, but the relationship between SRP and SSc-PH

has not been explored.

Methods: First, we obtained the GSE19617 and GSE33463 datasets from the

Gene Expression Omnibus (GEO) database as the training set, GSE22356 as the

test set, and the SRP-related gene set from the MSigDB database. Next, we

identified differentially expressed SRP-related genes (DE-SRPGs) and

performed unsupervised clustering and gene enrichment analyses. Then, we

used least absolute shrinkage and selection operator (LASSO) regression and

support vector machine-recursive feature elimination (SVM-RFE) to identify

SRP-related diagnostic genes (SRP-DGs). We constructed an SRP scoring

system and a nomogram model based on the SRP-DGs and established an

artificial neural network (ANN) for diagnosis. We used receiver operating

characteristic (ROC) curves to identify the SRP-related signature in the

training and test sets. Finally, we analyzed immune features, signaling

pathways, and drugs associated with SRP and investigated SRP-DGs’

functions using single gene batch correlation analysis-based GSEA.

Results: We obtained 30 DE-SRPGs and found that they were enriched in

functions and pathways such as “protein targeting to ER,” “cytosolic ribosome,”

and “coronavirus disease—COVID-19”. Subsequently, we identified seven SRP-

DGs whose expression levels and diagnostic efficacy were validated in the test

set. As one signature, the area under the ROC curve (AUC) values for seven SRP-

DGs were 0.769 and 1.000 in the training and test sets, respectively. Predictions
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made using the nomogrammodel are likely beneficial for SSc-PH patients. The

AUC values of the ANN were 0.999 and 0.860 in the training and test sets,

respectively. Finally, we discovered that some immune cells and pathways, such

as activated dendritic cells, complement activation, and heme metabolism,

were significantly associated with SRP-DGs and identified ten drugs targeting

SRP-DGs.

Conclusion: We constructed a reliable SRP-related ANN model for the

diagnosis of SSc-PH and investigated the possible role of SRP in the

etiopathogenesis of SSc-PH by bioinformatics methods to provide a basis

for precision and personalized medicine.

KEYWORDS

systemic sclerosis-associated pulmonary hypertension, signal recognition particle,
machine learning, artificial neural network, diagnostic model

Introduction

Systemic sclerosis (SSc) is a type of connective tissue disease

(CTD). There are three main characteristics of SSc:

inflammation, fibrosis, and vasculopathy (Denton and

Khanna, 2017). In the early stage, the pathological process of

SSc is predominantly inflammatory and may manifest as swollen

fingers, inflammatory skin disease, and musculoskeletal

inflammation (Sticherling, 2019). In the advanced stage, the

pathological process of SSc is dominated by fibrosis and

vasculopathy, which can manifest as lung fibrosis, cardiac

fibrosis, pulmonary hypertension (PH), and even scleroderma

renal crisis (Asano, 2020). Among the major complications of

SSc, PH significantly impacts the mortality of SSc patients (Xiong

et al., 2022). Some studies have shown that the 3-year survival

rate for patients with systemic sclerosis-associated pulmonary

hypertension (SSc-PH) is between 31% and 52%, while the 5-year

survival rate is <50% (Foocharoen et al., 2011; Humbert et al.,

2011; Lefèvre et al., 2013). Therefore, it is indispensable to

develop methods to predict the risk of complications from PH

in SSc patients.

However, SSc-PH is a rare disease that develops insidiously,

and the early symptoms of SSc-PH, such as fatigue and dyspnea,

are nonspecific, thus making diagnoses difficult (Yorke et al.,

2014). Researchers have now made progress in developing

methods to screen for SSc-PH. The guidelines of the

European Society of Cardiology and European Respiratory

Society have identified several methods to screen for PH, such

as electrocardiography, cardiopulmonary exercise testing,

Doppler transthoracic echocardiography, and pulmonary

function tests, which are applicable to SSc patients (Galiè

et al., 2016). Meanwhile, several algorithms have been

developed to screen for SSc-PH. The DETECT algorithm is a

noninvasive, two-step predictive algorithm that can be used to

evaluate the risk of PH complications in adult SSc patients

(Coghlan et al., 2014). It was demonstrated that the

sensitivity, specificity, positive predictive value, and negative

predictive value of SSc-PH detection when using the DETECT

algorithm were 100%, 42.9%, 68.6%, and 100%, respectively

(Guillén-Del Castillo et al., 2017). Meanwhile, the Australian

Scleroderma Interest Group developed the ASIG algorithm for

screening SSc-PH based on NT-proBNP levels and lung function

test results, which yielded sensitivity, specificity, positive

predictive value, and negative predictive value of 94.1%,

54.5%, 61.5%, and 92.3%, respectively (Thakkar et al., 2013).

Although both algorithms effectively screen SSc-PH, their

specificities are suboptimal, and further cost-effective

evaluations are needed (Kiely et al., 2019).

Several circulating proteins, such as NT-proBNP,

endothelin, and vascular endothelial growth factor, have

been determined to be biomarkers of SSc-PH (Hickey et al.,

2018). Moreover, several microRNAs, such as miR-424, miR-

4632, and miR-193b, showed potential as biomarkers of

pulmonary vascular remodeling in SSc patients (Odler

et al., 2018). In addition, Bauer et al. (2021) identified a

proteomic biomarker signature by using machine learning

that could improve the specificity of the DETECT algorithm.

Zheng et al. (2020) and Tu et al. (2022) identified hub genes of

SSc-PH by multiple bioinformatic methods based on

microarray data mining. Lui et al. (2022) constructed and

compared the performance features of three SSc-PH

prediction models using pulmonary function tests,

electrocardiography, and imaging data. However, there is a

lack of research on constructing diagnostic models for SSc-PH

by machine learning based on microarray data. According to

our literature review, no studies predicting SSc-PH risk based

on artificial neural network (ANN) models have been

reported.

The signal recognition particle (SRP) is a ribonucleoprotein

formed by 7SL RNA and six protein subunits (SRP9, SRP14,

SRP19, SRP54, SRP68, and SRP72 proteins) (Pool, 2022). The

main function of SRP is to cotranslationally target many

secretory and membrane proteins to the endoplasmic

reticulum (ER) (Kellogg et al., 2022). Studies have shown that
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SRP depletion leads to protein mislocalization to mitochondria,

further leading to mitochondrial dysfunction and decreased cell

survival (Karamyshev et al., 2020; Hsieh and Shan, 2021). In

addition, SRP depletion also leads to pathological activation of

the Regulation of Aberrant Protein Production (RAPP), a process

implicated in various diseases, including hepatocellular cancer,

colorectal cancer, and Alzheimer’s disease (Kellogg et al., 2022).

TABLE 1 The information about the datasets utilized in this study.

GEO accession Platform SSc SSc-PH Set

GSE19617 GPL6480 25 17 Training

GSE33463 GPL6947 19 42 Training

GSE22356 GPL570 10 10 Test

FIGURE 1
Dimensionality reduction using tSNE and UMAP. (A) The tSNE plot before removal of the batch effect. Red dots represent samples in the
GSE19617 dataset, and blue squares represent samples in the GSE33463 dataset. (B) The tSNE plot after removal of the batch effect. Red dots
represent samples in the GSE19617 dataset, and blue squares represent samples in the GSE33463 dataset. (C) The UMAP plot before removal of the
batch effect. Red dots represent samples in the GSE19617 dataset, and blue squares represent samples in the GSE33463 dataset. (D) The UMAP
plot after removal of the batch effect. Red dots represent samples in the GSE19617 dataset, and blue squares represent samples in the
GSE33463 dataset. (E) The tSNE plot of the control and treatment group samples. Red dots represent control group samples, and blue squares
represent treatment group samples. (F) The UMAP plot of the control and treatment group samples. Red dots represent control group samples, and
blue squares represent treatment group samples.
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However, whether SRP depletion functions in the progression of

SSc evolving into SSc-PH has not been explored.

In this study, we attempted to construct a novel SRP-

related ANN model for the early diagnosis and assessment of

SSc-PH and to investigate the role of SRP-related genes in the

pathogenesis of SSc-PH. We first revealed two SRP expression

patterns in SSc-PH and evaluated the signal transduction and

immune characteristics in different SRP expression patterns.

Next, we identified SRP-related diagnostic genes (SRP-DGs)

for SSc-PH using machine learning algorithms and validated

the diagnostic efficacy of these SRP-DGs in the test set.

Subsequently, we constructed an SRP scoring system called

SRPscore, evaluated the relationship between SRPscore and

SRP expression patterns and immune characteristics, and

constructed a nomogram model. Finally, we constructed a

novel ANN model for SSc-PH diagnosis and validated the

FIGURE 2
Differential analysis of DE-SRPGs. (A) Box plot of 30DE-SRPGs in the training set. (B) Box plot of the 24DE-SRPGs (excluding the sixmissing DE-
SRPGs) in the test set. Red denotes the treatment group, and blue denotes the control group. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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accuracy of the ANN model in the test set. Moreover, we also

revealed the associations between SRP-DGs with immune

signature and SSc-PH-related pathways, explored SRP-DGs’

functions using single gene batch correlation analysis-based

GSEA, and screened for drugs that may target and regulate

SRP-DGs.

FIGURE 3
Unsupervised clustering and GSEA. (A)Consensusmatrix. (B) A CDF graph illustrating the clustering according to DE-SRPGs. (C) Variation of the
area under the CDF curve for k = 2–9. (D) The top five enriched KEGG pathways in SRPcluster A.(E) The five most significantly enriched KEGG
pathways in SRPcluster B. Adjusted p-value < 0.05 was taken as the criteria. Different colors represent different KEGG pathways, and the names of
KEGG pathways are listed in the figure.
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Materials and methods

Data downloading

We downloaded the datasets from the GEO database, and

those that met the following criteria were included in our study:

1) Studies including both peripheral blood mononuclear cell

(PBMC) samples from SSc-PH patients and PBMC samples from

SSc patients without pulmonary hypertension. 2) Studies whose

data and platform information were complete. Three datasets

(GSE19617, GSE3346, and GSE22356) were included in our

study. Specifically, GSE19617 contains 17 PBMC samples

FIGURE 4
GOannotation andKEGGenrichment analysis of 30DE-SRPGs. (A)Top five enriched biological processes, cellular components, andmolecular functions.
(B) The significantly enriched KEGG pathways. Using a p-value <0.05 as criteria. BP, biological process; CC, cellular component; MF, molecular function.
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from SSc-PH patients and 25 PBMC samples from SSc patients

without pulmonary hypertension, GSE33463 contains 42 PBMC

samples from SSc-PH patients and 19 PBMC samples from SSc

patients without pulmonary hypertension, and

GSE22356 contains 10 PBMC samples from SSc-PH patients

and 10 PBMC samples from SSc patients without pulmonary

hypertension. Table 1 presents information about the datasets

utilized in this study.

Data processing

First, the array probes in the three datasets were transformed

into matched gene symbols based on the platform annotation

information. Then, to decrease the sample selection bias caused

by the different distributions in the training and test sets, it was

necessary to make the ratio of the sample size of the treatment

group to the sample size of the control group in the training set

FIGURE 5
ssGSEA for 29 immunegene sets. (A)Comparisonof normalized ssGSEA scoresof 29 immunegene sets betweenSRPcluster A and SRPcluster B. (B)
Comparison of normalized ssGSEA scores of 29 immune gene sets between treatment and control groups. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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close to the ratio of the sample size of the treatment group to the

sample size of the control group in the test set, so we merged the

mRNA expression data in GSE19617 and GSE33463 as the

training set and selected GSE22356 as the test set (Bickel

et al., 2007). GSE19617 was based on the GPL6480 platform,

in which the mRNA expression data had been normalized by the

researchers; GSE33463 and GSE22356 were based on the

GPL6947 and GPL570 platforms, respectively, in which the

mRNA expression data were not normalized (Pendergrass

et al., 2010). We used the R package, “limma,” to normalize

the mRNA expression data in the GSE33463 and

GSE22356 datasets. Subsequently, to remove the batch effect

caused by different platforms and different normalization

methods, after studying the literature, we found that

FIGURE 6
ssGSEA for14 SSc-PH-related pathways. (A) Comparison of normalized ssGSEA scores of 14 SSc-PH-related pathways between SRPcluster A
and SRPcluster B. (B) Comparison of normalized ssGSEA scores of 14 SSc-PH-related pathways between treatment and control groups. *, p < 0.05;
**, p < 0.01; ***, p < 0.001.
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“ComBat” in the R package, “sva,” can efficiently remove the

batch effect among data generated by different laboratories on

account of different platforms (Johnson et al., 2007;

Thillaiyampalam et al., 2017; Tang et al., 2021). Therefore, we

merged the normalized mRNA expression data from

GSE19617 and GSE33463 and used “ComBat” in the R

FIGURE 7
Identification and validation of SRP-DGs. (A) Screening of SRP-associated diagnostic markers using the LASSO regression algorithm. (B)
Screening of SRP-associated diagnostic markers using the SVM-RFE algorithm. (C) Venn diagram showing the intersection of SRP-associated
diagnostic markers screened by both algorithms. (D) ROC curves for the seven SRP-DGs in the training set. (E) The ROC curve for the combined
diagnosis of seven SRP-DGs in the training set. (F) ROC curves for the seven SRP-DGs in the test set. (G) The ROC curve for the combined
diagnosis of seven SRP-DGs in the test set.
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package, “sva,” to remove the batch effect (Leek et al., 2012).

Through our literature review, we found that among the

dimensionality reduction algorithms, both t-distributed

stochastic neighbor embedding (tSNE) and uniform manifold

approximation and projection (UMAP) can effectively analyze

sample-to-sample heterogeneity and detect batch effects (Yang Y.

et al., 2021; Xiang et al., 2021). Therefore, we evaluated the

efficacy of removing the batch effect by tSNE and UMAP. In

FIGURE 8
Construction and analysis of the SRPscore. (A) An alluvial plot showing SRPcluster, SRPscore, and disease changes. (B) SRPscore difference
between the treatment and control groups in the training set. (C) SRPscore difference between the treatment and control groups in the test set. (D)
Differences in normalized ssGSEA scores for the 29 immune gene sets between different SRPscore groups. (E) The ROC curve of the SRPscore in the
training set. (F) The ROC curve of the SRPscore in the test set. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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addition, we also used these two methods to analyze the difficulty

in distinguishing SSc-PH patients from SSc patients without

pulmonary hypertension. SangerBox was used to visualize the

results (Shen et al., 2022).

Differentially expressed SRP-related
genes

We obtained 113 SRP-related genes from the

“REACTOME_SRP_DEPENDENT_COTRANSLATIONAL

_PROTEIN_TARGETING_TO_MEMBRANE.v7.5.1” gene set

in the MSigDB database. We used SSc-PH patients and SSc

patients without pulmonary hypertension as the treatment group

and control group, respectively, and used the R package,

“limma,” with a p-value < 0.05 as the criterion to filter out

the differentially expressed SRP-related genes (DE-SRPGs)

between the treatment and control groups in the training set

(Ritchie et al., 2015). The p values were calculated using the

Wilcoxon rank sum test. In addition, we verified the expression

patterns of the DE-SRPGs in the test set.

Unsupervised clustering

We performed an unsupervised clustering analysis of the

SSc-PH patients in the training set based on the DE-SRPGs using

the R package, “ConsensusClusterPlus,” (Wilkerson and Hayes,

2010). According to the clustering effect, the clustering stability

was higher when k = 2. Therefore, we categorized the SSc-PH

patients from the training set into two SRP clusters (SRPcluster A

and SRPcluster B) based on the unsupervised clustering results.

FIGURE 9
Construction of an SSc-PH diagnostic model based on seven SRP-DGs. (A)Nomogram for predicting SSc-PH risk based on seven SRP-DGs. (B)
The calibration curve showing the accuracy of predicting SSc-PH. (C) The decision curve for analyzing the benefits of the diagnostic model. (D) The
clinical impact curve showing the predicted probability of the diagnostic model.

Frontiers in Genetics frontiersin.org11

Xu et al. 10.3389/fgene.2022.1078200

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1078200


To further evaluate the relationships among SRPcluster A,

SRPcluster B, and the control group, we performed

dimensionality reduction of the training set using tSNE and

UMAP based on the expression of DE-SRPGs.

Pathway analysis

To explore the differences in signal transduction between

SRPcluster A and SRPcluster B, we downloaded the file,

“c2.cp.kegg.v2022.1.Hs.symbols.gmt,” from the MSigDB

database for gene set enrichment analysis (GSEA). We

performed GSEA using the R package, “clusterProfiler,” and the

statistical significance was set to an adjusted p-value of <0.05 (Yu
et al., 2012; Wu et al., 2021). Then, GO annotation and KEGG

pathway enrichment analysis of the DE-SRPGs were performed

using the R package “clusterProfiler.” Significantly enriched

signaling pathways were identified using a p-value <0.05 as the

criterion. The results were visualized using the R packages,

“ggplot2″ and “ComplexHeatmap” (Gu et al., 2016). A single-

sample gene set enrichment analysis (ssGSEA) of 29 immune gene

sets was performed using the R package, “GSVA” (Hänzelmann

et al., 2013). The enrichment scores of 29 immune gene sets in each

sample were calculated. Similarly, we obtained 14 SSc-PH-related

pathway gene sets from the MSigDB database and performed

ssGSEA on 14 SSc-PH-related pathway gene sets. Then, we

compared the normalized ssGSEA scores of the treatment and

control groups and the normalized ssGSEA scores of SRPcluster A

and SRPcluster B. The metagenes of 14 SSc-PH-related pathways

are shown in Supplementary Table S1.

FIGURE 10
Construction and validation of ANN. (A) The process of constructing ANN. (B) ROC curve of ANN in the training set with an AUC value of 0.999.
(C) ROC curve of ANN in the test set with an AUC value of 0.860. 95% CI: 95% confidence interval.
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Identification of SRP-related diagnostic
genes using LASSO regression and
SVM-RFE

For DE-SRPGs, we performed LASSO (least absolute

shrinkage and selection operator) regression and SVM-RFE

(support vector machine-recursive feature elimination) to

identify the optimal signal recognition particle-related

diagnostic genes (SRP-DGs) for SSc-PH. For both LASSO

regression and SVM-RFE, the seed setting was 123. LASSO

regression analysis was performed using the R package,

“glmnet,” and SVM-RFE using the R package, “e1071”

(Friedman et al., 2010). The SRP-related markers that were

identified by the two algorithms were intersected, the

intersecting genes were identified as the SRP-DGs, and the

accuracy of the SRP-DGs for diagnosis in the training and test

sets was evaluated using the receiver operating characteristic

curve (ROC). We also compared the expression levels of SRP-

DGs in SRPcluster A, SRPcluster B, and the control group.

Construction of the SRP scoring system

To further analyze the diagnostic efficacy of the SRP-DGs, we

constructed an SRP scoring system based on the SRP-DGs. We

referred to the method of previous studies and performed a

principal component analysis based on the expression levels of

SRP-DGs and used principal component 1 and principal

component 2 as feature scores (Sotiriou et al., 2006; Zhang

et al., 2020; Zhang et al., 2022). The formula for calculating

the SRPscore is:

SRPscore � ∑ PC1i + PC2i( )

In the formula, “i” represents the expressions of SRP-DGs.

Then, we compared the SRPscore values of the control and

treatment groups. Subsequently, we categorized the samples

with SRPscore >0 as the high SRPscore group and those with

SRPscore ≤0 as the low SRPscore group and analyzed the

correlation between SRPscore and SRPcluster. Finally, we

compared the normalized ssGSEA scores of 29 immune gene

sets in the high SRPscore group with the low SRPscore group. We

used ROC to evaluate the accuracy of the SRPscore values for

diagnosis in the training and test sets.We then compared SRPscore

values in SRPcluster A, SRPcluster B, and the control group.

Construction of a nomogram model

To predict the risk of SSc-PH, we constructed a nomogram

based on the expression levels of the SRP-DGs using the R

package, “rms.” We then plotted a calibration curve to

determine the extent to which the predicted values

corresponded to reality. We carried out a decision curve

analysis (DCA) and plotted a clinical impact curve to

determine whether clinical decisions based on the nomogram

model were beneficial to patients.

Construction and verification of the ANN
model

We constructed an ANN model using the SRP-DGs. After

the gene expression data were normalized using the min-max

normalization method, the seed was set to 123. An ANN model

was constructed using the R package, “neuralnet.” The ANN

consists of three layers: 1) Input layer, which includes the gene

expressions of the seven SRP-DGs normalized by the min-max

method; 2) hidden layer, which includes the gene expressions of

the seven SRP-DGs normalized by the min-max method and the

weights of the seven SRP-DGs; 3) output layer, which represents

the results of determining whether the samples belong to the

control group or treatment group. The number of neurons in the

hidden layer should be two-thirds of the number of neurons in

the input layer plus two-thirds of the number of neurons in the

output layer, and should be in the range between the number of

neurons in the input layer and the number of neurons in the

output layer (Sheela and Deepa, 2013). Therefore, we set the

number of neurons in the hidden layer to six and used the ROC

to evaluate the predictive performance of the ANN in the training

and test sets.

TABLE 2 Neural network diagnostics for the training and test sets.

Training set Test set

Control Treat Control Treat

Prediction results Control 43 1 5 2

Treat 1 58 5 8

Control accuracy 0.977 0.500

Treat accuracy 0.983 0.800

AUC 0.999 0.860
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Correlation of SRP-DGs with immune
characteristics and SSc-PH-related
pathways

To assess the correlations between SRP-DGs

with immune features and SSc-PH-related pathways,

we calculated Spearman’s rank correlation coefficients

and p values of the SRP-DGs with normalized ssGSEA

scores of 29 immune gene sets and 14 SSc-PH-related

pathways, which were visualized using the R package,

“ggplot2.”

GSEA based on single gene batch
correlation analysis

To further explore SRP-DGs’ functions, we performed

GSEA based on single gene batch correlation analysis for

FIGURE 11
Correlation analysis. (A) Correlation analysis between SRP-DGs and immune characteristics. (B) Correlation analysis between SRP-DGs and
SSc-PH-related pathways. Red represents positive correlations, and purple represents negative correlations. The deeper the color, the greater the
correlation. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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each SRP-DG. The idea is to calculate Spearman’s rank

correlation coefficients and p values for all genes in the

training set with a single gene and to perform GSEA for

genes that are significantly positively and negatively

correlated with a single gene, respectively, thus simulating

the possible involvement of a single gene in activation and

suppression of signaling pathways. See Supplementary Table

S2 for the code.

Screening of drugs associated with
SRP-DGs

Using the Enrichr platform (https://maayanlab.cloud/

Enrichr/), we entered the gene names of the SRP-DGs and

screened for drugs associated with the SRP-DGs based on the

DSigDB database in the “Diseases/Drugs” module with a

criterion of p-value < 0.05 (Kuleshov et al., 2016).

Results

Gene expression data processing

Data heterogeneity and batch effects exist between

datasets from different studies, which will adversely affect

subsequent analyses if not correctly handled. Figures 1A,C

show the tSNE plot and UMAP plot of the samples from the

GSE19617 and GSE33463 datasets. As shown in Figures

1A,C, there was a clear difference between GSE19617 and

GSE33463. Therefore, we must remove the batch effect before

proceeding with the analysis. We used the “ComBat” function

from the R package, “sva” to remove the batch effect. In the

“sva” package, the “sva” function can be used for variable

estimation, and the “ComBat” function removes batch

effects, thereby reducing dependencies, stabilizing error

rate estimates, and improving the reproducibility of the

analysis (Leek et al., 2012). Figures 1B,D show the tSNE

and UMAP plots for the samples from GSE19617 and

GSE33463 after we removed the batch effect using the

ComBat function. The results showed that the batch effect

between GSE19617 and GSE33463 was removed and the data

could then be used for subsequent analyses. In addition, tSNE

(Figure 1E) and UMAP (Figure 1F) for the control group (SSc

patients without pulmonary hypertension) and treatment

group (SSc-PH patients) revealed no significant differences

between the control and treatment groups, suggesting

diagnostic difficulties.

Differential analysis of PBMC samples
from SSc-PH patients and SSc patients
without pulmonary hypertension

We performed a differential analysis of 113 SRP-related

genes present in the PBMC samples from SSc-PH patients

versus SSc patients without pulmonary hypertension in the

training set. The results showed that 30 differentially

expressed SRP-related genes (DE-SRPGs) were identified

using p < 0.05 as the criterion (Supplementary Table S3).

Figure 2A is a box plot of the 30 DE-SRPGs. Notably, all

30 DE-SRPGs were downregulated in SSc-PH. Subsequently,

we verified the expression patterns of the DE-SRPGs in the

test set. Due to platform differences, the expressions of

RPL10, RPL13A, RPL21, RPL23, RPL4, and RPSA were

missing in the test set (GSE22356) among the 30 DE-

SRPGs. In the test set, all 24 DE-SRPGs were also

significantly downregulated in SSc-PH, except for 6 DE-

SRPGs that were missing due to platform differences

(Figure 2B, Supplementary Table S3). This suggests that

SRP-related dysfunctions and defects may occur in the

pathogenesis of SSc-PH. For further investigation, we

clustered SSc-PH patients based on the DE-SRPGs and

performed gene enrichment analysis.

TABLE 3 Potential drugs that may have regulatory effects on the seven SRP-DGs.

Drug P-value Combined score Target genes

2,6-DICHLORO-4-NITROPHENOL CTD 00000815 0.0076757 771.8855079 RPS3

Fenbuconazole CTD 00004512 0.0125339 416.2019442 RPS7

Artesunate CTD 00001840 0.0128802 402.1028593 RPS12

Beryllium sulfate CTD 00001005 0.0135723 376.3201193 RPS7

okadaic acid CTD 00007275 0.0344842 112.7746184 RPS12

3,3′-Diindolylmethane CTD 00000841 0.0361814 105.7945348 RPS3

ursodiol CTD 00006973 0.0476541 72.9883936 RPL32

Disodium selenite CTD 00007229 0.0091245 47.9593338 RPL32, RPS7, RPS3

hydralazine CTD 00006108 0.0277972 35.5378836 SRP9, RPS12

estradiol CTD 00005920 0.0439133 15.0614469 RPS14, RPL32, RPS7, RPS3
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Identification of two SRP clusters based on
the expression patterns of DE-SRPGs

To further analyze the role of SRP-related genes in SSc-PH,

we performed unsupervised clustering of the PBMC samples

from SSc-PH patients in the training set using the expression

values of 30 DE-SRPGs with the R package,

“ConsensusClusterPlus.” The consensus matrix indicates that

at k = 2, the number of patients in each cluster was equally

distributed, none of the clusters contained abnormally high or

abnormally low numbers of patients, and the correlation between

the two clusters was low (Figure 3A). When k = 2, the CDF curve

was flat (Figure 3B). Figure 3C shows the variations in the area

under the CDF curve for k = 2–9. Finally, SSc-PH patients from

the training set were categorized into two clusters: SRPcluster A

and SRPcluster B.

We performed dimensionality reduction of the training set

using tSNE and UMAP based on the expression of DE-SRPGs.

The tSNE plot (Supplementary Figure S1A) and the UMAP plot

(Supplementary Figure S1B) indicated that SRPcluster A was

closer to the control group than SRPcluster B, suggesting that

SRPcluster A may be an SSc-PH subtype closer to the control

group in the two clusters.

SRP-related pathways and immune
infiltration

We performed gene enrichment analysis to explore the

potential signaling pathways involved in the SRP gene

signature. GSEA indicated that in SRPcluster A, “primary

immunodeficiency,” “ribosome,” “RNA degradation,”

“spliceosome,” and “T cell receptor signaling pathway” were

the significant processes (Figure 3D). In SRPcluster B, the

major processes included the “chemokine signaling pathway,”

“complement and coagulation cascades,” “Leishmania infection,”

“lysosome,” and “regulation of actin cytoskeleton” (Figure 3E).

To further explore the functions of the DE-SRPGs, we

performed GO annotation (Figure 4A) and KEGG enrichment

analysis (Figure 4B) on 30 DE-SRPGs. Supplementary Table S4

shows the complete GO annotation results, and Supplementary

Table S5 shows the complete KEGG enrichment analysis results.

The GO annotation results suggested that the 30 DE-SRPGs were

predominantly enriched in functions and pathways associated

with SRP. The most abundant GO biological process (BP) was

protein targeting to ER (Figure 4A). Meanwhile, the most

abundant GO cellular component (CC) was cytosolic

ribosome (Figure 4A), and the most abundant GO molecular

function (MF) was structural constituent of ribosome

(Figure 4A). The results of the KEGG enrichment analysis

indicated that 30 DE-SRPGs were significantly enriched in

three signaling pathways: ribosome, coronavirus

disease—COVID-19, and protein export (Figure 4B).

Subsequently, to determine the relationships among the DE-

SRPG expression patterns and immune characteristics, we

quantified the normalized ssGSEA scores of typical immune

cells and pathways (Figure 5). Between SRPcluster A and

SRPcluster B, there were a series of immune cells and

pathways that were significantly upregulated in SRPcluster A,

including APC costimulation, B cells, T-cell costimulation, T

follicular helper cells (Tfh), and tumor-infiltrating lymphocytes

(TIL) (Figure 5A). B cells, dendritic cells (DCs), NK cells, T

helper cells, and the type II IFN response showed significant

differences between the control group (SSc patients without

pulmonary hypertension) and treatment group (SSc-PH

patients) (Figure 5B). Among the 14 SSc-PH-related pathways,

complement and coagulation cascades, complement system,

endothelin, interleukin-1, interleukin-8, and osteopontin were

significantly upregulated while immunoglobulin was

significantly downregulated in SRPcluster B compared with

SRPcluster A (Figure 6A). Complement activation,

complement and coagulation cascades, complement system,

interleukin-12, and troponin were significantly upregulated,

while immunoglobulin and interleukin-5 were significantly

downregulated in the treatment group compared to the

control group (Figure 6B).

Identification and validation of SRP-
related diagnostic genes for SSc-PH based
on machine learning

We further screened the SRP-related diagnostic genes

(SRP-DGs) for SSc-PH in the DE-SRPGs with two machine

learning algorithms. The results showed that we identified

nine SRP-related potential diagnostic markers with the

LASSO regression algorithm (Figure 7A). Meanwhile,

16 SRP-related potential diagnostic markers were identified

by the SVM-RFE algorithm (Figure 7B). Finally, they were

intersected to obtain eight SRP-related diagnostic genes (SRP-

DGs), namely, RPL10, RPL32, RPS12, RPS14, RPS23, RPS3,

RPS7, and SRP9 (Figure 7C).

From the previous results, we learned that the expression of

RPL10 was missing in the test set (GSE22356) among the eight

SRP-DGs due to platform differences. This leads to the fact that if

the diagnostic model is constructed using all eight SRP-DGs, it

will cause inconsistencies between the model in the training set

and test set and cause difficulties in validation. Therefore, we

used seven SRP-DGs, namely, RPL32, RPS12, RPS14, RPS23,

RPS3, RPS7, and SRP9, to construct the diagnostic model for

SSc-PH.

Subsequently, we plotted the ROC curves for the seven SRP-

DGs. The results showed that RPL32, RPS12, RPS14, RPS23,

RPS3, RPS7, and SRP9 had good diagnostic efficacy in the

training set, with area under the ROC curve (AUC) values of

0.682, 0.639, 0.634, 0.615, 0.707, 0.676, and 0.644, respectively
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(Figure 7D). When the seven SRP-DGs were combined into one

signature, the AUC value was 0.769 (Figure 7E). We also

validated the diagnostic efficacy of the seven SRP-DGs in the

test set. The results showed that the AUC values of RPL32,

RPS12, RPS14, RPS23, RPS3, RPS7, and SRP9 were 0.875, 0.765,

0.965, 0.875, 0.940, 0.790, and 0.785 in the test set, respectively

(Figure 7F). When the seven SRP-DGs were combined into one

signature, the AUC value was 1.000 (Figure 7G).

As a result, these seven SRP-DGs can effectively distinguish

SSc-PH patients from SSc patients without pulmonary

hypertension and have better diagnostic efficacy when combined.

In addition, we compared the expression levels of seven SRP-

DGs in SRPcluster A, SRPcluster B, and the control group

(Supplementary Figure S2A–G). The results indicated that the

expression levels of seven SRP-DGs in SRPcluster A were closer

to those in the control group than in SRPcluster B.

Generation and analysis of the SRP scoring
system

To more accurately quantify the personalized SRP-related

gene expression pattern of each patient, we constructed a scoring

system, SRPscore, based on the seven SRP-DGs. Supplementary

Table S6 shows the SRPscore values of the samples in the training

set, and Supplementary Table S7 shows the SRPscore values of

the samples in the test set. We visualized the attributes of each

SSc-PH patient using alluvial plots (Figure 8A). The results

showed that most SSc-PH patients with high SRPscore values

belonged to SRPcluster B, whereas the majority of SSc-PH

patients with low SRPscore values belonged to SRPcluster A

(Figure 8A). The SRPscore values in the treatment group were

significantly higher than those in the control group in both the

training and test sets (Figures 8B,C).

Subsequently, we investigated whether patients in the high

SRPscore group had a different type of immune cell infiltration

than those in the low SRPscore group. The ssGSEA results

showed that the patients in the high SRPscore group had

significantly lower normalized ssGSEA scores for “B cells,”

“check-point,” “T cell co-inhibition,” “T cell co-stimulation,”

“Tfh” (T follicular helper cells), “Th2” (T helper 2 cells) and

“TIL” (tumor-infiltrating lymphocytes) but significantly higher

normalized ssGSEA scores for “parainflammation” and “type I

IFN response” than those in the low SRPscore group (Figure 8D).

Then, we tested whether the SRPscore values could be used as

an independent diagnostic biomarker to distinguish SSc-PH

patients from SSc patients without pulmonary hypertension.

The results showed that the AUC values of the SRPscore were

0.723 and 0.910 in the training set (Figure 8E) and test set

(Figure 8F), respectively, thus validating the diagnostic efficacy of

the SRPscore.

We compared the SRPscore values in SRPcluster A,

SRPcluster B, and the control group (Supplementary Figure

S2H). The results showed that the SRPscore values in

SRPcluster A were closer to the control group than SRPcluster

B, further demonstrating that the SRP-related gene expression

patterns in SRPcluster A were closer to that of the control group.

Construction of the SSc-PH nomogram
model

To further investigate the relationships among the SRP-DGs

and risk of SSc-PH, we constructed a nomogram model using

seven SRP-DGs (RPL32, RPS12, RPS14, RPS23, RPS3, RPS7, and

SRP9) to predict the risk of pulmonary hypertension

complications in patients with SSc (Figure 9A). The

calibration curve indicated that the nomogram model was

relatively accurate in predicting SSc-PH (Figure 9B). The

decision curve demonstrated that the predictions made using

the nomogram model could be beneficial to patients (Figure 9C).

Moreover, the clinical impact curve indicated the good predictive

capacity of the nomogram model (Figure 9D).

Prediction performances of the ANN
model in the training and test sets

After normalizing the expressions of the seven SRP-DGs

using the min-max method, we constructed an ANN model to

predict whether the samples belonged to the control group or

treatment group (Figure 10A). The output results of the

artificial neural network are shown in Supplementary Table

S8. Then, we compared the prediction results of the ANNmodel

with the actual grouping information and evaluated the model

prediction accuracy. Subsequently, we performed ROC to

evaluate the prediction performances of the ANN in the

training and test sets. The results showed that the AUC

values for the training and test sets were 0.999 and 0.860,

respectively (Figures 10B,C). Table 2 shows the complete

results of the prediction accuracies and AUC values of the

ANN for the training and test sets. Overall, the ANNmodel was

credible and has potential as an independent diagnostic

predictor of SSc-PH. The results also confirmed that SRP-

related genes are likely to play an essential role in the

pathogenesis of SSc-PH.

Correlation analysis of seven SRP-DGs
with immune characteristics and SSc-PH-
related pathways

We calculated Spearman correlation coefficients and p values

for the expressions of seven SRP-DGs with normalized ssGSEA

scores for 29 immune gene sets and 14 SSc-PH-related pathways.

The results showed that the seven SRP-DGs were related to a
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series of immune cells, functions, and SSc-PH-related pathways

(Figure 11).

For example, RPL32 was significantly positively correlated

with “aDCs” (activated dendritic cells), “APC co-inhibition”

(Figure 11A), and “interleukin-5” (Figure 11B) while

significantly negatively correlated with “vitamin D”

(Figure 11B) (p < 0.001). RPS14 was significantly positively

correlated with “check-point,” “T cell co-stimulation,” and

“TIL” (Figure 11A) while significantly negatively correlated

with “complement activation,” “complement and coagulation

cascades,” and “complement system” (Figure 11B) (p < 0.001).

RPS3 was significantly positively correlated with “TIL”

(Figure 11A) while significantly negatively correlated with

“complement activation,” “complement and coagulation

cascades,” and “complement system” (Figure 11B) (p <
0.001). RPS12 was significantly negatively correlated with

“complement and coagulation cascades,” “complement

system,” “endothelin,” and “troponin” (Figure 11B) (p <
0.001). RPS7 was significantly positively correlated with

“interleukin-5” (Figure 11B) (p < 0.001). The results

suggest that SRP-related genes may influence the immune

microenvironments of SSc and SSc-PH patients and disease

progression by regulating dendritic cells, T cells, and B cells.

Meanwhile, SRP-related genes may regulate functions and

pathways that play essential roles in pulmonary vascular

remodeling, such as complement activation, the

complement system, complement and coagulation cascades,

endothelin, troponin, interleukin, and vitamin D.

Further exploration of the functions of the
seven SRP-DGs

Supplementary Figure S3 shows the results of single gene

batch correlation analysis-based GSEA for RPL32, RPS3, RPS7,

and RPS12. Supplementary Figure S4 shows the results of single

gene batch correlation analysis-based GSEA for RPS14, RPS23,

and SRP9.

The results indicated that all seven SRP-DGs might inhibit

heme metabolism. RPS3, RPS7, RPS12, RPS14, RPS23, and

SRP9 might inhibit coagulation. RPL32, RPS3, RPS12, RPS14,

RPS23, and SRP9 might be involved in the inhibition of

interferon-alpha response. RPS3, RPS12, RPS14, RPS23,

and SRP9 are likely to be involved in suppressing the

interferon-gamma response. RPL32, RPS3, RPS12, and

RPS14 may be involved in inhibiting the complement

system. RPS3, RPS7, RPS12, and RPS14 potentially

activate DNA repair. In addition, the results demonstrated

that SRP-DGs might be linked to a series of functions and

pathways such as epithelial-mesenchymal transition, IL-6/

JAK/STAT3 signaling, TNF alpha signaling, mTORC1,

oxidative phosphorylation, inflammatory response, and

apoptosis.

Screening for drugs targeting SRP-DGs.

Based on the DSigDB database, we used the Enrichr platform

to identify drug molecules associated with the seven SRP-DGs

with a p-value < 0.05. The combined scores reflect the

correlations between drugs and genes, and higher combined

scores indicate stronger correlations between drugs and genes.

Table 3 lists the drugs with the top ten rankings in their

combined score and p values < 0.05. The results indicate that

2,6-DICHLORO-4-NITROPHENOL CTD 00000815 has a

strong affinity for RPS3, while Fenbuconazole CTD

00004512 is likely to have a regulatory effect on RPS7.

Discussion

The DETECT and ASIG algorithms are routine methods for

screening SSc-PH, but the heterogeneity of patient clinical

outcomes may limit their application. The entry criteria for

the DETECT study were DLCO <60% and SSc durations

longer than 3 years, which were designed to ensure that high-

risk patients were included; however, in clinical practice, this may

have resulted in patients with DLCO ≥60% and patients with

early SSc being missed (Hao et al., 2015; Young et al., 2021). It has

been shown that the ASIG algorithm has higher specificity than

the DETECT algorithm, but it is likely to missWHOGroup 2 PH

patients (Hao et al., 2015). Its applicability in different racial

populations remains to be explored (Coirier et al., 2021).

Therefore, finding new genetic biomarkers and developing

more straightforward and objective diagnostic models are

necessary. Meanwhile, there is increasing evidence that SRP

depletion plays an integral role in autoimmune diseases,

cancer, and neurodegenerative diseases (Kellogg et al., 2022).

In this study, we identified complex correlations between SRP-

related genes and SSc-PH diagnosis. We developed a diagnostic

model for SSc-PH containing seven SRP-related genes by using

LASSO regression, SVM-RFE, and ANN to effectively distinguish

SSc-PH patients from SSc patients and guide SSc-PH diagnosis

and treatment.

We obtained 30 DE-SRPGs. In the training set, all 30 DE-

SRPGs were significantly downregulated in SSc-PH. Meanwhile,

in the test set, except for 6 DE-SRPGs that were missing due to

platform differences, all other 24 DE-SRPGs were also

significantly downregulated in SSc-PH. This suggests that

SRP-dependent cotranslational protein targeting may be

dysfunctional in SSc-PH. At the molecular cell biology level,

the characteristics of PH include endoplasmic reticulum stress,

mitochondrial dysfunction, DNA damage, and transcription

factor dysregulation (Lopez-Crisosto et al., 2021). During

endoplasmic reticulum stress, the XBP1 protein has a role in

increasing the size of the endoplasmic reticulum and reducing

endoplasmic reticulum stress. However, the XBP1 protein can

only be synthesized when a portion of XBP1 mRNA is cleaved
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(Park et al., 2021). To cleave this portion of XBP1 mRNA, Ire1α
first localizes to the Sec61 channel on the endoplasmic reticulum

membrane, while the XBP1 protein is cotranslationally targeted

to the Sec61 channel by SRP, and this portion of XBP1 mRNA is

cleaved by Ire1α (Plumb et al., 2015). SRP depletion, SRP

receptor depletion, and Sec61 depletion all block the above

processes. Furthermore, upon SRP depletion, proteins that

should be cotranslationally targeted to the endoplasmic

reticulum may be mislocalized to the mitochondria, directly

leading to mitochondrial dysfunction (Costa et al., 2018). This

may also be one reason why SRP depletion leads to SSc-PH. The

relationship of SRP with DNA damage and transcription factor

dysregulation remains to be explored.

To our surprise, the “coronavirus disease—COVID-19,” was

identified in the KEGG enrichment analysis results. It has been

demonstrated that two severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) viral proteins, NSP8 and NSP9,

can bind to the 7SL RNA component of SRP, disrupting the

function of SRP and inhibiting the transport of membrane

proteins, thereby suppressing host immune defenses (Banerjee

et al., 2020). Whether this process can lead to pulmonary

hypertension in patients with coronavirus disease 2019

(COVID-19) and the potential common pathogenic

mechanisms of SSc-PH and COVID-19 remain to be

investigated.

In terms of phenotyping, based on different clinical features

and pathogenesis, the World Health Organization (WHO)

classified PH into five groups (Simonneau et al., 2019). Each

group requires a different treatment protocol. SSc-PH may be

caused by primary vasculopathy of the small pulmonary arteries

(Group 1), left heart failure (Group 2), or interstitial lung disease

(Group 3) (Attanasio et al., 2020). However, due to the complexity

of SSc-PH, multiple groups of PH are likely to overlap in a single

SSc-PH patient, making it challenging to develop a treatment

protocol (Attanasio et al., 2020). In this study, we clustered SSc-PH

patients based on the SRP-related genes and developed SRPscore,

an SRP-related scoring system, to explore the differences in

signaling and immune infiltration in SSc-PH patients with

different clusters and different scores, which can provide a basis

for precision and personalized medicine for SSc-PH. By

performing dimensionality reduction by tSNE and UMAP and

comparing the expression of SRP-DGs and SRPscore values in

SRPcluster A, SRPcluster B, and the control group, we found that

the expression patterns of SRP-related genes in SRPcluster A were

closer to those in the control group compared with SRPcluster B.

Meanwhile, the ssGSEA results indicated that between SRPcluster

A and SRPcluster B, the immune responses might be more active

in SRPcluster A, while the pathways related to SSc-PH were likely

to be more activated in SRPcluster B. However, whether the

expression patterns of SRP-related genes and SRPscore are

associated with the progression of SSc-PH and have the

potential to predict the prognosis of SSc-PH patients needs to

be further investigated, which is the direction of a future study.

We identified seven SRP-DGs and constructed a nomogram

and ANN model for SSc-PH predictions based on our findings.

Among the seven SRP-DGs, downregulation of SRP9 is related to

the development and progression of multiple types of cancer. It has

been indicated that in breast cancer, deficiencies of SRP9 and

SRP14 activate RIG-1, which further causes an interferon

response, increases inflammation, and leads to breast cancer

metastasis (Nabet et al., 2017). In addition, SRP9 has shown

potential as a prognostic marker for colorectal cancer and non-

Hodgkin’s lymphoma (Lee et al., 2017; Matsumoto et al., 2021).

Among the seven SRP-DGs, RPL32, RPS12, RPS14, RPS23, RPS3,

and RPS7 all encode ribosomal proteins. Among them, the protein

encoded by RPL32 is part of the large (60S) subunit of ribosomes,

while the proteins encoded by RPS12, RPS14, RPS23, RPS3, and

RPS7 are involved in structuring the small (40S) subunit of

ribosomes (Kang et al., 2021). Ribosomal proteins may regulate

SRP-mediated cotranslational protein targeting in two ways. On the

one hand, the S domain of SRP binds to the 60S subunit of the

ribosome, during which some ribosomal proteins inside the

ribosomal tunnel reach the outside of the ribosome, affecting the

interaction of the ribosome-nascent chain complex with cytosolic

targeting factors, thus regulating SRP and influencing Sec61 channel

opening and closing (Schäuble et al., 2012; Denks et al., 2017; Pool,

2022). On the other hand, the N domain of SRP54 also contacts

ribosomal proteins, facilitatingmore timely and efficient recognition

of signals, while blocking this process would lead to deficiencies in

SRP-dependent cotranslational protein targeting (Dalley et al.,

2008). RPS14 haploinsufficiency is associated with

myelodysplastic syndrome with chromosome 5q deletion

(Schneider et al., 2016). RPS7 may inhibit glycolysis through

HIF-1α-related signaling and thus play a protective role in

colorectal cancer (Zhang et al., 2016).

Studies have shown that SRP proteins that undergo immune

system attack can cause lung and heart diseases (Kassardjian et al.,

2015; Milone, 2017). Meanwhile, in a cohort of 460 patients,

researchers observed that patients with anti-SRP antibodies

developed lung diseases more frequently than those with anti-

HMGCR antibodies (Watanabe et al., 2016). Case reports by Below

and Bashir (2021) and Baah et al. (2021) also indicated that the

early onset of pulmonary hypertension in patients might be

associated with SRP proteins. Nevertheless, most of these

studies focused on inflammatory myopathies, and the

relationships between SRP-DGs and other diseases remain to be

explored. Our study suggests that these seven SRP-DGs are

important potential biomarkers for SSc-PH, but more studies

are needed to validate our results.

Furthermore, we studied the relationships between SRP-DGs

and immune characteristics. The results showed that SRP-DGs

might affect the immune infiltration microenvironment of SSc-

PH by influencing multiple immune cells and pathways, such as

activated dendritic cells, B cells, APC coinhibition, and T-cell

costimulation. There are few studies on the relationship between

SRP and the immune system. It has been demonstrated that anti-
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SRP antibodiesmay be involved in the complement cascade and that

destruction of SRP subunits by CD5+ B cells and CD4+ T cells

contributes to inflammation (Allenbach et al., 2018; Bergua et al.,

2019; Kellogg et al., 2022). Correlation analysis for SRP-DGs and

14 SSc-PH-related pathways revealed that SRP-DGs might involve

in complement-related biological processes such as complement and

coagulation cascades, complement activation, and the complement

system, as well as in the regulation of endothelin, troponin, vitamin

D, and interleukins. The crucial role of complement activation in

pulmonary hypertension has been clarified. Activation of classical

and alternative complement pathways has been reported in

perivascular lesions (Frid et al., 2020). Meanwhile, the

upregulation of granulocyte-macrophage colony-stimulating

factor and proliferation of pulmonary vascular tissue can be

found downstream of complement activation (Hu et al., 2020).

Endothelin levels can reflect the severity of PH and have the

potential to predict the response of SSc-PH patients to bosentan

treatment (Kawashiri et al., 2014). Troponin is closely correlated

with PH and has been identified as a predictive biomarker of

mortality in patients with PH (Odler et al., 2018). Reduced

serum vitamin D levels are associated with pulmonary

involvement in systemic sclerosis (Groseanu et al., 2016). In

addition, studies have shown that plasma interleukin-1β,
interleukin-6, and interleukin-8 levels are significantly increased

in SSc-PH patients, but interleukin-5 levels are not statistically

different between SSc-PH and SSc patients (Christmann et al.,

2011; McMahan et al., 2015).

Single gene batch correlation analysis-based GSEA revealed

that SRP-DGs might be mainly involved in heme metabolism,

coagulation, interferon-alpha response, interferon-gamma

response, complement system, and DNA repair. In the previous

paragraph, we discussed the role of complement in the

pathogenesis of SSc-PH. Increased heme metabolism might

affect mitochondrial respiration and has been reported to be

observed in the lung tissue of patients with advanced PH

(Sommer et al., 2022). Coagulation processes have been

demonstrated to play an essential role in the pathogenesis of

PH (Bazan and Fares, 2018). Hyperactivation of coagulation

processes and thrombocytopenia can be observed in patients

with PH (Vrigkou et al., 2020). However, the use of

anticoagulation reduces mortality in idiopathic PH patients but

may increase mortality in SSc-PH patients, and the reasons behind

this phenomenon need to be investigated (Khan et al., 2018).

George et al. (2014) found elevated levels of interferon-alpha and

interferon-gamma in SSc-PH patients compared to SSc patients

and demonstrated that type I interferon mediates PH through

IFNAR1. DNA damage, genomic instability, and dysregulation of

the DNA damage response pathway play a crucial role in the

pathogenesis of PH (Sharma and Aldred, 2020). Our study reveals

that the expression levels of RPS3, RPS7, RPS12, and RPS14 are

positively correlated with DNA repair. Nevertheless, whether SRP-

related genes can promote DNA repair and the specific

mechanisms involved need to be investigated.

Using the Enrichr platform, we conclude that 2,6-dichloro-4-

nitrophenol has a strong affinity for RPS3. 2,6-dichloro-4-

nitrophenol is a broad-spectrum inhibitor of sulfotransferases.

In hepatocytes, pretreatment with 2,6-dichloro-4-nitrophenol

may reduce the hepatotoxicity associated with the application

of labetalol hydrochloride (Yang L. et al., 2021). However,

whether 2,6-dichloro-4-nitrophenol can be used to treat SSc-

PH and its possible interaction pattern with RPS3 still need to be

corroborated by more studies.

This study has several limitations. With respect to internal

validity, regulation of the immune system by SRP and the role of

SRP in the pathogenesis of SSc-PH need more research to be

substantiated. We did not filter DE-SRPGs by fold change, which

may lead to insufficient stability and interpretability of the

results. With respect to external validity, the accuracy of the

ANN model needs further investigation, and more basic and

clinical studies should be conducted to find more straightforward

and cost-effective screening methods for SSc-PH.
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