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Hepatoblastoma is a malignant embryonal tumor with multiple differentiation

modes and is the clearest liver malignancy in children. However, little is known

about genetic and epigenetic events in Hepatoblastoma. Increased research

has recently demonstrated, unique genetic and epigenetic events in

Hepatoblastoma, providing insights into its origin and precise treatment.

Some genetic disorders and congenital factors are associated with the risk

of Hepatoblastoma development, such as the Beckwith-Wiedemann

syndrome, Familial Adenomatous polyposis, and Hemihypertrophy.

Epigenetic modifications such as DNA modifications, histone modifications,

and non-coding RNA regulation are also essential in the development of

Hepatoblastoma. Herein, we reviewed genetic and epigenetic events in

Hepatoblastoma, focusing on the relationship between these events and

cancer susceptibility, tumor growth, and prognosis. By deciphering the

genetic and epigenetic associations in Hepatoblastoma, tumor pathogenesis

can be clarified, and guide the development of new anti-cancer drugs and

prevention strategies.
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Introduction

Digestive system cancer represents one of the most conventional malignancies. It

causes problems for clinicians and patients due to its high incidence and recurrence rates,

limited drug options, and poor treatment outcomes. Hepatoblastoma is a malignant

embryonal tumor with multiple differentiation modes and is the clearest liver malignancy

in children (Calderwood et al., 1986). Its incidence occurs at a rate of 1.2–1.5 cases per
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million people annually. Most diagnoses are in children under

3 years and presentations above 4 years are extremely rare

(Czauderna et al., 2014). Before the 1980s, the 5-year overall

survival (OS) rate for children with Hepatoblastoma was only

36% (Hafberg et al., 2019). With the subsequent use of cisplatin

chemotherapy and the development of a multidisciplinary

treatment model, the 2022 cancer data show that the 5-year

OS rate for children with Hepatoblastoma has reached an

impressive 82%, with significantly improved prognoses.

However, the path to treatment for advanced and refractory

Hepatoblastoma remains challenging (Siegel et al., 2022).

Additionally, the cause of Hepatoblastoma remains unknown.

Meanwhile, studies have shown that some genetic disorders and

congenital factors are associated with the risk of developing

Hepatoblastoma, such as the Beckwith-Wiedemann syndrome

(Mussa et al., 2019), Familial Adenomatous Polyposis (Giardiello

et al., 1996), and Hemihypertrophy (Ahmad et al., 2016).

Although precision medicine has been increasingly

incorporated into clinical practice and has enabled cancer

prevention and treatment. However, the highly sensitive and

specific genetic and epigenetic-related molecular markers

currently used for clinical diagnosis, treatment, and prognosis

are still unsatisfactory, especially as the molecular mechanisms

involved in tumorigenesis, development, and treatment require

further exploration and validation. Until now, the strong

convergence shown by researchers towards genetics and

epigenetics has contributed to further understanding

Hepatoblastoma development.

Malignant tumors are the product of the interaction of

environmental and host factors. The rapid proliferation,

invasion, and metastasis of cells from carcinogenesis to

tumor is a complex pathological process involving multiple

factors and genes, accumulating through multiple change

stages. An important feature of malignant tumor cells is the

instability of their genome, which results in the creation of new

mutated cells during cell division and the emergence of a

population of mutated cells with different biological

characteristics in the tumor cells (Mullard, 2020). Among

these, genetic alterations and epigenetic modifications are

also considered the main factors that regulate the

development of cancer cells (Nam et al., 2021). On the other

hand, genetic and epigenetic alterations are opposing concepts.

Genetic alterations are based on changes in gene sequence

leading to changes in gene expression levels, such as

mutations, loss of gene heterozygosity, and microsatellite

instability. Epigenetic modifications are based on non-genetic

sequence changes such as DNA methylation and chromatin

conformational changes leading to modifications in gene

expression levels (Dawson and Kouzarides, 2012). The role

of genetic factors in most tumorigenesis is to increase the body’s

propensity to develop tumors and its susceptibility to

carcinogenic factors. In contrast, abnormal epigenetic

alterations work in multiple ways to activate single or

multiple cellular pathways and genes, influencing the

development of malignant tumors. Herein, we provided an

overview of the genetic and epigenetic events in

Hepatoblastoma (Table 1). Deciphering the genetic and

epigenetic relationships in Hepatoblastoma will further

elucidate its pathogenesis and guide the development of new

anti-cancer drugs and prevention strategies.

Genetics and hepatoblastoma

Cancer is caused by a mutation in one or more genesets,

resulting in abnormal cell function, rapid and unrestricted

growth, and the formation of malignant tumors. It is widely

believed that the basic cause of cancer is genetic mutations. There

are two possibilities for genetic mutations. One is inherited,

passed from parent to child, increasing the risk of disease in

the offspring. The other type is acquired later in life. Cancer is

often easier to develop when genetic factors interact with

environmental factors. If there are people in the patient’s

immediate family who have Hepatoblastoma, this can increase

the probability of the offspring developing the disease when

influenced by the genetic factors involved. It is not the tumor

itself, but the cancer susceptibility passed on from generation to

generation. Hence, susceptible people are more likely to develop

cancer in response to carcinogenic environmental factors than

the general population.

Genetically related disorders and
hepatoblastoma

The Beckwith-Wiedemann syndrome is a cancer

susceptibility syndrome caused by a defect in chromosome

11p15.5 and a congenital overgrowth disorder. Patients are

usually at risk of overgrowth before birth and might develop

neonatal hypoglycemia after birth, along with a giant tongue,

enlarged internal organs, hemianopsia, and special creases and

small indentations in the ears. This syndrome can predispose

affected individuals to embryonic tumors such as

nephroblastoma, rhabdomyosarcoma, adrenocortical

carcinoma, neuroblastoma, and especially Hepatoblastoma

(Derlin et al., 2018).

In a retrospective cohort study in Germany that evaluated

cancer incidence and spectrum in children diagnosed with

Belleville syndrome, 13 cancer cases were observed in the

entire Beckwith-Wiedemann syndrome cohort, with

Hepatoblastoma accounting for nearly 50% of the cases (n =

6) (Cöktü et al., 2020). (Sobel Naveh et al. (2022) conducted the

first multidimensional study of samples collected from seven

patients diagnosed with Beckwith-Wiedemann syndrome and

Hepatoblastoma and showed that alterations in 11p15 drive

Hepatoblastoma carcinogenesis by dysregulating chromatin
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organization. Steenman et al. (2000)further expanded their study

by including solid childhood tumors associated with the

Beckwith-Wiedemann syndrome, such as Wilms’ tumor,

adrenocortical carcinoma, rhabdomyosarcoma, and

Hepatoblastoma. They found that the development of these

tumors shares a common genetic pathway involving

chromosome 11. These studies were corroborated by Koufos

et al. (1985)with the help of molecular probes in 1985. Children

with Beckwith-Wiedemann syndrome have an increased

potential for Hepatoblastoma progression via mutations at a

locus on human chromosome 11. Zivot et al. (2020)

demonstrated the close association of Hepatoblastoma with

the Beckwith-Wiedemann syndrome based on magnetic

resonance imaging, percutaneous puncture biopsy, and

methylation testing. These authors suggested that all

Hepatoblastoma patients should be considered for Beckwith-

Wiedemann syndrome testing, even if they do not exhibit other

diagnosable phenotypes. Additionally, Duffy et al. (2019)created

predictive AFP values for preterm and non-preterm Beckwith-

Wiedemann syndrome patients, establishing reference ranges for

serum AFP at different ages in Beckwith-Wiedemann syndrome

patients to help interpret and monitor the risk of

Hepatoblastoma, as well as to better predict its occurrence in

this population.

Familial Adenomatous polyposis (FAP) is an autosomal

dominant disorder characterized by extensive adenomatous

polyps throughout the colorectum. It is associated with APC

gene mutation, an allele on the long arm of chromosome 5,

5q21-q22, and is at high risk of cancer (Vasen et al., 2008).

Various other malignancies can occur in FAP, including

Craniopharyngioma (Passos et al., 2020), Hepatoblastoma

(Giardiello et al., 1996), Acute leukemia (Greenberg et al.,

1981), and Thyroid and Pancreatic carcinoma (Giardiello

et al., 1993). Achatz et al. clarified that multiple syndromes,

including FAP, are associated with an increased incidence of

gastrointestinal tumors and other cancer types by reviewing

the literature on polyposis syndromes diagnosed in childhood

and based on a workshop on childhood cancer susceptibility in

October 2016; and even further recommended promoting

cancer screening to them (Achatz et al., 2017). A possible

non-random association between FAP and Hepatoblastoma

has also been confirmed and might be associated with an

increased risk. Numerous correlative studies have confirmed

this to date. In a series of 93 Hepatoblastoma patients, eight

suggested a family history of FAP (Hirschman et al., 2005). In

1987, identical twin boys diagnosed with Hepatoblastoma had

polyps in the colon of their mother and grandmother, and

their Hepatoblastoma was possibly associated with FAP

(Riikonen et al., 1990). These observations reinforce the

possible link between the two conditions. Trobaugh-

Lotrario et al. (2018)reviewed the Hepatoblastoma cases in

FAP patients reported in the literature. Of the 49 patients with

available data, 35 were diagnosed with FAP before they were

diagnosed with Hepatoblastoma. They highlighted the need

for earlier identification and screening of infants in the FAP

family for Hepatoblastoma. Multiple synchronous tumors in

infancy also require earlier identification and screening. In

one reported case, a 7-month-old male infant with concurrent

Beckwith-Wiedemann syndrome, FAP, and Li-Fraumeni

syndrome, and an autopsy showing Hepatoblastoma,

further indicated a unique association between multiple

synchronous tumors and genetics (Ozawa et al., 2016). A

maternally inherited APC mutation was confirmed in

another surviving child diagnosed with metastatic

Hepatoblastoma (Liu et al., 2021a). The association of

Hepatoblastoma in FAP families can occur through affected

relatives. Gupta et al. noted that the risk of Hepatoblastoma in

FAP individuals can increase to terrifying 750 to 7500 times

(Gupta et al., 2013). Since there is a clear correlation between

Hepatoblastoma and FAP, any treatment for FAP might be a

possible therapeutic target for Hepatoblastoma. A

Randomized Controlled Trial (RCT) demonstrated the

efficacy of low-dose aspirin as an alternative method of

preventing FAP-related colorectal cancer

(UMIN000018736) (Ishikawa et al., 2021). It has also been

demonstrated that Metformin (NCT01725490) (Park et al.,

2021) and Curcumin (NCT00641147) (Cruz-Correa et al.,

2018) are ineffective for FAP treatment. There is still a

need to screen children affected by FAP for serum

methemoglobin levels and abdominal computed

tomography (CT) scans.

Hemihypertrophy is a progressive asymmetry of the limbs

and trunk on one-half of the body. It mainly occurs in infants and

children, and its etiology and pathogenesis are unknown. The

diagnosis of Hemihypertrophy is based on clinical presentation

and relevant laboratory tests, which also requires an experienced

TABLE 1 The keynotes of studies in each section of this review.

Section Keynotes

Genetics and Hepatoblastoma Beckwith-Wiedemann syndrome, Familial Adenomatous polyposis, Hemihypertrophy, Chromosomal aberrations,
Chromosomal abnormalities, Wnt/β-catenin

Epigenetics and Hepatoblastoma DNA methylation, Histone Modification, Non-coding RNA regulation (LncRNAs, miRNA)

Treatment associated with Hepatoblastoma Surgical resection, Autologous or allogeneic liver transplantation, Chemotherapy and interventional therapy
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clinical geneticist to rule out other limb asymmetry causes, such

as neurological or skeletal abnormalities or tumors. No specific

genetic changes cause Hemihypertrophy, and the number,

location, and function of the genes involved are unknown.

Furthermore, it is impossible to predict the risk of

Hemihypertrophy for tumor development with current

molecular techniques. Hence, routine screening for tumors is

required in all children.

Hemihypertrophy is associated with an increased risk of

embryonic tumors, mainly Wilms’ and Hepatoblastoma. In a

retrospective survey, Dempsey et al. found that

Hemihypertrophy had a significantly lower risk of

concomitant tumors than other syndromes, with an

incidence of only 1.2% (Dempsey-Robertson et al., 2012),

similar to an earlier study. In the nine Hemihypertrophy

cases investigated, only one case developed Hepatoblastoma

(Geormăneanu et al., 1983). There is often a partial overlap in

clinical management between Hemihypertrophy and

Beckwith-Wiedemann syndrome. Most Beckwith-

Wiedemann syndrome patients have a defect in

chromosome 11p15.5. In contrast, Hemihypertrophy

patients do not have an identifiable cause. Therefore,

Clericuzio and Martin. (2009)recommended that all

Hemihypertrophy patients be screened for tumors. The

association between Hemihypertrophy and Hepatoblastoma

remains a concern for many scholars to find an early

breakthrough in Hepatoblastoma treatment (Rattan et al.,

1995). Besides the above Hepatoblastoma-related genetic

disorders, Simpson-Golabi-Behmel syndrome, trisomy 18

(Nussbaumer and Benesch, 2022), and ARID1A Coffin-Siris

syndrome (Cárcamo et al., 2022) are also associated with

Hepatoblastoma (Figure 1).

Cell genetics and hepatoblastoma

Chromosomes are mainly composed of DNA and proteins

and act as carriers of genetic information. Chromosomes have a

species specificity and vary in number, size and morphology

depending on the organism, cell type, and development stage.

The most notable are chromosomal aberrations, which are

changes in the number and structure of a cell’s normal

FIGURE 1
Hepatoblastoma and genetically related disorders, including Beckwith-Wiedemann syndrome, Familial Adenomatous polyposis and
Hemihypertrophy.
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chromosomes. Some chromosomal aberrations are a prominent

cause of human genetic disorders. For example, three copies of

chromosome 21 exist in Down’s syndrome (Roizen and

Patterson, 2003). Additionally, chromosomal translocations

might increase the chances of their offspring developing the

disease (Nambiar and Raghavan, 2013). Chromosomal

aberrations have an important place in oncology research. In

a follow-up survey of almost 30 years, 2396 healthy Hungarians

were tested cytogenetically. Interestingly, smoking intensity was a

predictor of chromosomal aberrations rather than duration. It

was also confirmed that cancer incidence was associated with

chromosomal aberrations (Farkas et al., 2021). Another sizeable,

pooled cohort study showed that the frequency of chromosomal

aberrations was significantly associated with cancer risk and

predicted the risk of developing cancer (Bonassi et al., 2008).

Chromosomal instability and aneuploidy are also hallmarks of

cancer cells and are often associated with aggressiveness and poor

prognosis (Chiarle, 2021).

There are also multiple chromosomal abnormalities found

in Hepatoblastoma. Previous studies have highlighted the

relevance of numerical and structural abnormalities of

chromosomes 1q, 4q, 2, 8, and 20 in Hepatoblastoma

development. Nagata et al. reported a Hepatoblastoma case

in which chromosomal translocation was unbalanced, and

4q35 was the only chromosomal abnormality of a unique type

(Nagata et al., 2005). In a genome-wide analysis of

chromosomal aberrations in Hepatoblastoma based on

high-density single nucleotide polymorphism genotyping

microarrays, 17 Hepatoblastoma samples presented

chromosomal aberrations, observable in approximately 88%

of the samples and increased in chromosomes 1q, 2/2q, 8, 17q,

and 20. Chromosomes 4q and 11q were frequently lost. Suzuki

et al. further added to the above studies (Suzuki et al., 2008).

Furthermore, chromosome 2 and 20 trisomies were the most

consistent changes in these studies, and their frequent

occurrence in Hepatoblastoma suggests their pathogenic

significance (Bardi et al., 1992; Yeh et al., 2000). This was

also corroborated by a comparative study by Sumazin et al.

They used a diagnostic algorithm to identify molecular

signatures of Hepatoblastoma and Hepatocellular

carcinoma and observed recurrent large-scale chromosomal

gains, including gains in chromosome arms 2q, 6p, and 20p,

all associated with poor prognosis (Sumazin et al., 2022).

Furthermore, sequencing analysis of human

Hepatoblastoma specimens revealed a crucial role of the

Wnt/β-catenin protein pathway (Zhang et al., 2021). The

Wnt/β-catenin signaling pathway is a conserved signaling

axis involved in various pathophysiological processes,

including cell proliferation, apoptosis, invasion, and

migration. Targeting the Wnt/β-catenin signaling pathway

can inhibit self-renewal, cell proliferation, and

differentiation of various cancer stem cells (Huang et al.,

2020). Some studies have also linked the Wnt/β-catenin gene

to chromosomal aberrations. Fukuzawa detected mutations

or accumulation of β-catenin proteins in both cases of

Hepatoblastoma with Beckwith-Wiedemann syndrome,

suggesting that Wnt signaling activation can be a

subsequent event involving Beckwith-Wiedemann

syndrome-associated Hepatoblastoma (Fukuzawa et al.,

2003). Sha et al. (2019) conducted a review based on a

large body of evidence from preclinical and clinical

studies suggesting that Wnt/β-catenin protein is a

potential therapeutic target for Hepatoblastoma. Its

mechanisms involve somatic mutations in exon three of

the β-catenin protein gene, which is activated in

Hepatoblastoma. This was also confirmed by Wang et al.

(2019). There are also common signaling pathways involved

in Hepatoblastoma development, such as PI3K/Akt/mTOR,

MAPK, and p53. Cui et al. (2019)found that miR-193a-5p

directly targets DPEP1 and participates in Hepatoblastoma

progression by regulating the expression of the PI3K/Akt/

mTOR signaling pathway. The lncRNA MIR205HG has also

been reported to accelerate cell proliferation, migration, and

invasion in Hepatoblastoma by activating the MAPK and

PI3K/AKT signaling pathways (Zhang et al., 2022).

Yamamoto et al. (2007)suggested that reduced expression

of the tumor suppressor p53 could confer resistance to

oxidative stress in Hepatoblastoma, partly contributing to

its development. Additionally, other related pathways

involved include NF-κB, JAK/STAT, and TGFβ/SMAD

(Buenemann et al., 2001; Nagai et al., 2003; Wang et al.,

2022) (Figure 2).

Epigenetics and hepatoblastoma

Epigenetics was initially proposed by Conrad H.

Waddington and became a research hotspot with the

resolution of the DNA double helix structure and the rapid

development of biochemical techniques (Peixoto et al., 2020).

It typically refers to heritable changes resulting from non-

genetic sequence alterations, such as DNA methylation,

histone modifications, and non-coding RNA regulation of

chromatin, associated with the occurrence and progression

of many prevalent diseases, including cancer (Flavahan et al.,

2017; Harvey et al., 2018).

DNA methylation

DNA methylation regulates gene expression at an epigenetic

level. The covalent addition of methyl usually occurs to 5-carbon

cytosine nucleotides to produce 5-methylcytosine, a reaction

usually established and maintained by DNA

methyltransferases (von Känel and Huber, 2013). DNA

methylation regulates several processes, such as embryonic
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development, transcription, chromatin structure, and

chromosome stability, and its defects can lead to various

diseases (genomic instability) (Meng et al., 2015). It is also an

epigenetic regulator of gene expression and induces the silencing

of various oncogenes, such as cell cycle regulators, pro-

differentiation factors, DNA repair proteins, and anti-

apoptotic factors (Esteller, 2008; Fukushige and Horii, 2013).

The CpG-rich regions are known as CpG islands, which are

usually unmethylated. Additionally, most of the human genome

is methylated (Lister et al., 2009). Numerous studies have shown

that many cancers are associated with promoter-specific

hypermethylated CpG islands and concomitant gene silencing

(Kulis and Esteller, 2010; Morgan et al., 2018). Local

hypermethylation of tumor suppressor promoters in cancer

can also disrupt cancer-related cellular pathways, such as

DNA repair, cell cycle, P53 network, apoptosis, Ras signaling,

and Wnt signaling (Pan et al., 2021). Besides the

hypermethylation of CpG islands described above, DNA

hypomethylation can also induce tumorigenesis (Klutstein

et al., 2016). For example in Figure 3, in Hepatoblastoma,

demethylation of the igf2 P3 region causes upregulation of

promoter activity, while hypermethylation of h19 DNA leads

to downregulation. This gene expression alteration due to

aberrant methylation might be important in Hepatoblastoma

development (Li et al., 1998).

Altered DNA methylation patterns are important in

Hepatoblastoma, where genes show global hypomethylation

changes, specific tumor suppressor genes show

hypermethylation, and significantly higher methylation levels

in Hepatoblastoma tissue than in non-tumor tissues (Cui

et al., 2016; Shen et al., 2020). RASSF5 is a member of the

RAS-associated domain family and participates in cell growth

regulation, and is inactivated by promoter hypermethylation in

various cancers, including Hepatoblastoma (Suryaraja et al.,

2013). Liu et al. (2018a)measured the RASSF5 methylation

status in nine pairs of Hepatoblastoma and normal liver

tissues, which showed that all five CpG loci in the

RASSF5 gene region were significantly more methylated in

Hepatoblastoma tissues than in normal liver tissues. Similarly,

Sakamoto et al. (2010) performed methylation tests on several

FIGURE 2
Hepatoblastoma has a clear association with chromosomes, as exemplified by chromosomal aberrations.
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paraffin-embedded Hepatoblastoma and normal liver samples

showing high levels of tumor-specific DNA hypermethylation in

the promoter regions of APC, CDH1, MT1G, RASSF1A, and

SOCS1, with MT1G hypermethylation showing a slight

association with poor prognosis in Hepatoblastoma patients.

Several studies have shown that methylation genes are

associated with the Hepatoblastoma prognosis as a key

predictor. Nagae et al. (2021) performed methylation

analysis of CpG island promoters and liver enhancers in

154 Hepatoblastomas, which indicated that enhancers rich in

ASCL2-regulated transcription factors exhibited

hypomethylation. Promoter hypermethylated isoforms were

useful for assessing prognostic risk in Hepatoblastoma, in

which DLX6-AS1 hypermethylation was predicted as an

important molecular marker. Additionally, Honda et al.

detected nine methylation genes in Hepatoblastoma tumor

samples. GPR180, MST1R, OCIAD2, and PARP6 were

associated with tumor suppressors, and their

hypermethylation suggested a poor tumor prognosis. There

was also an association between methylation status and the

onset age of Hepatoblastoma patients (Honda et al., 2016).

RASSF1A is a tumor suppressor in cell signaling and acts as a

hub in signal transduction. DNA hypermethylation causes the

silencing of RASSF1A expression in various tumors (García-

Gutiérrez et al., 2020). In a related study, the methylation status

of the RASSF1A promoter region was examined using bisulfite

pyrosequencing, and the results showed that RASSF1A

methylation was present in several patients who developed

recurrence or distant metastases after surgery, leading to a

strong correlation between RASSF1A methylation and tumor

prognosis (Honda et al., 2013). Honda et al. (2008) evaluated

33 patients with stage 3B or four and showed that patients with

methylated tumors had a lower OS rate than patients with

unmethylated tumors.

Histone modification

Histones are the spool of twisted DNA and form the

nucleosome. Two molecules of each of the four core

histones, H2A, H2B, H3, and H4, form the core of the

nucleosome (Audia and Campbell, 2016). Many specific

residues in the tails of these histones can undergo post-

translational modifications that affect DNA-associated

processes, including chromatin structure and transcription

(Lawrence et al., 2016). Post-translational modification of

histones is a reversible process that includes various

modifications such as methylation, acetylation,

ubiquitination, and acylation. Abnormal regulation of post-

translational modifications is associated with cancer

development. For example, inappropriate activation and

inactivation of oncogenes in cancer can be caused by the

dysregulation of histone modifications (Park and Han, 2019;

Borkiewicz, 2021). Additionally, in most cancers, epigenetic

FIGURE 3
Epigenetic mechanisms involved in Hepatoblastoma, including DNA methylation, histone modifications, and regulation of non-coding RNAs.
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and metabolic states can interact, with altered metabolism

causing abnormal epigenetic regulation, which can even

drive immune escape and promote adverse tumor

progression (Thakur and Chen, 2019; Sun et al., 2022).

There are relatively few Hepatoblastoma studies on histone

modification and it is a relatively blank area.

Acetylation of lysine residues in histones is a common

histone modification regulated by two enzymes with opposite

effects, histone acetyltransferases (HATs) and histone

deacetylases (HDACs). Resveratrol has an antiproliferative

effect on the Hepatoblastoma cell line HepG2, and this effect

is associated with its specific inhibition of HDACs, causing

histone hyperacetylation (Venturelli et al., 2013). Liu et al.

found that quercetin can promote the histone

H3K9 deacetylation by upregulating SIRT6, thus affecting the

subordinate pathway to inhibit malignant phenotypes, such as

proliferation and metastasis of Hepatoblastoma cells (Liu et al.,

2021b). Tumor necrosis factor-related apoptosis-inducing ligand

(TRAIL) is a potential antitumor agent. For example, combining

a histone deacetylase inhibitor with TRAIL can improve the

resistance of Hepatoblastoma cell lines to TRAIL, which is

friendly to normal cells (Dzieran et al., 2008).

Non-coding RNA regulation

Long non-coding RNAs (lncRNAs) are non-coding RNAs

with more than 200 nucleotides that do not normally encode

proteins but are involved in various cellular processes and

pathways. Their aberrant expression has been shown to play

an important role in many cancer-related signaling molecules/

pathways, such as Notch, mTOR, NF-kb, and the Wnt/β-catenin
pathway, and can affect various malignant phenotypes in cancer

cells (Chi et al., 2019; Chen et al., 2020). Since lncRNAs are

involved in various cellular processes and are associated with

multiple pathways, increasing research suggests that mutations

or dysregulation of lncRNAs can lead to abnormal gene

expression and contribute to tumorigenesis and progression

(Sharma et al., 2020). In a genome-wide analysis of lncRNA

expression in Hepatoblastoma tissues, 2736 lncRNAs were

differentially expressed. Among them, 1757 lncRNAs were

upregulated, and 979 lncRNAs were downregulated compared

to normal tissues. Additionally, about a quarter of the

420 matched lncRNA-mRNAs in tumor tissue were

differentially expressed lncRNAs (Dong et al., 2014).

Increasing studies have demonstrated that multiple lncRNAs

can play a regulatory role in Hepatoblastoma development. Zhu

et al. (2021) found that the expression of NBR2 was upregulated

under glucose starvation. The lncRNAs NBR2 and TCF7 are

competitively bound to miR-22, and the inhibitory effect of miR-

22 on TCF7 decreases with reduced binding, thereby

exacerbating the malignancy of Hepatoblastoma cells. The

lncRNA NBR2 could serve as a potential target to suppress

the malignant phenotype of Hepatoblastoma. Moreover, the

lncRNA TUG1 was significantly upregulated in

Hepatoblastoma specimens and cells, and TUG1knockdown

inhibited tumor growth in vivo and the proliferation and

migration of Hepatoblastoma cells in vitro, suggesting that

regulation of the lncRNA TUG1 is also one of the targets for

Hepatoblastoma treatment (Dong et al., 2016). Additionally,

lncRNA not only serves as a therapeutic target but also affects

various malignant phenotypes of Hepatoblastoma by regulating

signaling pathways. The lncRNA MIR205HG is significantly

overexpressed in Hepatoblastoma and competitively binds to

miRNA-514a-5p to activate the mitogen-activated protein kinase

signaling pathway. It also activates the PI3K/AKT signaling

pathway, and lncRNA MIR205HG promotes the proliferation,

migration, and invasion of Hepatoblastoma by activating both

pathways (Zhang et al., 2022). The lncRNA OIP5-AS1 can

activate β-catenin signaling by promoting binding between

PTBP1 and β-catenin, thereby promoting Hepatoblastoma

proliferation and silencing. Thus, OIP5-AS1 might be a

potential target to counteract Hepatoblastoma (Jiang et al.,

2022). Also, lncRNAs have been associated with tumor risk.

H19 is a highly conserved lncRNA transcript known as lncRNA-

H19. It is associated with the development of various tumors and

plays an important role in epigenetic, transcriptional, and post-

transcriptional regulation (Lecerf et al., 2019). In a survey of

213 Hepatoblastoma patients, three H19 polymorphisms,

rs2839698, rs3024270, and rs217727, were associated with

susceptibility to Hepatoblastoma. The rs2839698 and

rs3024270 polymorphisms were associated with a significantly

increased risk of Hepatoblastoma, while rs217727 was associated

with a significantly decreased risk (Tan et al., 2021).

Furthermore, microRNAs (miRNAs) are short-stranded

non-coding RNAs that can influence many biological

processes, such as cell differentiation, cell metabolism, and

signal transduction, by regulating gene expression. Their

dysregulation is associated with various diseases, including

cancer (Iorio and Croce, 2012). In cancer, miRNAs can

influence tumor immune processes with miRNA sponges (He

et al., 2020). Moreover, miRNAs regulate not only genes but also

multiple signaling pathways. Each miRNA can regulate multiple

target genes and influence the activity of signaling pathways,

corresponding to the fact that many different miRNAs regulate a

particular gene and that a gene might have more than half a

hundred miRNA binding sites (Okugawa et al., 2015). In a

comprehensive genomic analysis of the Hepatoblastoma

miRNA-mRNA interaction network, clusters of differentially

expressed miRNAs were detected between fetal-type tumors,

embryonic-type tumors, and corresponding normal liver

groups, with 33 upregulated and 12 downregulated hub

miRNAs in the intersection of these two clusters (Chen et al.,

2021).

Several studies have shown that miRNAs can play an

important role in regulating Hepatoblastoma status. By
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analyzing the expression of miR-17, miR-146a, miR-302days,

and miR-19b in 22 Hepatoblastoma tumor samples and

10 surrounding normal liver samples, Ecevit et al.

demonstrated that miRNA-17 expression levels were lower,

and miR-19b expression levels were higher in Hepatoblastoma

samples compared to surrounding normal liver samples. This

lower miRNA-17 expression could also predict prognosis in

Hepatoblastoma patients (Ecevit et al., 2019). Another

miRNA, miR-492, was studied by Frowein et al. The non-

kinase transmembrane glycoprotein CD44 is a target of miR-

492, which can act directly on the CD44 target to affect the ability

of Hepatoblastoma cells to proliferate and metastasize. Besides,

miR-492 can be used as a biomarker for Hepatoblastoma

prognosis, and its high expression can promote

Hepatoblastoma malignant phenotypes (von Frowein et al.,

2018; Chen et al., 2018). Cui et al. showed that miR-186

overexpression significantly suppressed the malignant

phenotype of Hepatoblastoma cells, and methyltransferase-like

3 (METTL3) inhibited this miR-186 overexpression. The miR-

186/METTL3 axis promoted the proliferation and migration of

Hepatoblastoma cells through the Wnt/β-catenin signaling

pathway, which might be a target for the treatment of

Hepatoblastoma (Cui et al., 2020). Liu et al. identified

869 differentially expressed circular RNAs (circRNAs) between

Hepatoblastoma samples and corresponding normal liver

samples. These circRNAs can fine-tune gene expression and

influence tumor development. For example, circ_0015756 is a

sponge for miR-1250–3p and was significantly upregulated, while

its silencing suppressed the proliferation and metastatic capacity

of Hepatoblastoma cells (Liu et al., 2018b; Kristensen et al., 2022).

Treatment associated with
hepatoblastoma

With the development of cross-disciplinary disciplines

such as medical imaging and molecular biology,

Hepatoblastoma treatment has advanced, including the

discovery of targeted pathways and clinical trials. There is

now a consensus on the traditional treatment options for

Hepatoblastoma, including surgical resection, autologous or

allogeneic liver transplantation, chemotherapy, and

interventional therapy. Sunil et al. (2018) analyzed

Hepatoblastoma patients who underwent hepatectomy

between 2000 and 2013. They analyzed their survival

outcomes and concluded that patients who underwent

surgery had a well-controlled disease and could have long-

term survival. Liver transplantation is the only effective

treatment for end-stage liver disease. (Filin et al. (2020)

followed 19 Hepatoblastoma patients who underwent liver

transplantation over a long time and found that their 4-year

survival rate was 68%. Liver transplantation has shown a

favorable outcome in Hepatoblastoma, as demonstrated by

another retrospective analysis. After 20 years of prolonged

follow-up, liver transplantation showed a favorable outcome

in cases of unresectable Hepatoblastoma, and the number of

perioperative complications was acceptable (Moosburner

et al., 2021). Additionally, interventions and chemotherapy

play an important role. Transcatheter arterial

chemoembolization (TACE) has been considered a unique

and remarkable tool for local Hepatoblastoma control, which

can maximize the antitumor effect of the drug with good

efficacy, rapid efficacy, and minimal side effects (Hishiki,

2013).

Hepatoblastoma is one of the clinical challenges of childhood

disease because it is common and often unresectable. Vogl et al.

(2006) recognized the benefits of the TACE technique and

showed that its combination with other treatments could be

an alternative to surgery and offer new hope for patients with

unresectable tumors. In a study of high-intensity focused

ultrasound (HIFU) combined with TACE for Hepatoblastoma,

12 unresectable Hepatoblastoma patients presented survival rates

at 1 and 2 years of 91.7 and 83.3%, respectively. The combination

of HIFU and TACE is a safe and promising approach with a low

incidence of serious complications. As a minimally invasive

approach, it might offer a new local treatment for

unresectable Hepatoblastoma patients (Wang et al., 2014).

Although the efficacy of TACE is positive, it also has

limitations, such as incomplete embolization leading to

treatment failure and inappropriateness in cases where the

patient is in poor health and intolerant to this treatment.

FIGURE 4
Major targeted signaling pathways and targeted drugs
involved in Hepatoblastoma.
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Hepatoblastoma is the most common malignant liver tumor

in children. Recently, its prognosis has been greatly improved

with the development of optimized chemotherapy schemes,

improved surgical approaches, and the maturation of liver

transplantation techniques. Moreover, many treatments

previously used for adult liver tumors, such as oncologic

interventional chemotherapy and ultrasound focusing, have

been gradually introduced in children (Wang et al., 2014).

Additionally, gene-targeted therapy, tumor-induced

differentiation therapy, and immunotherapy have also been

developed in basic experiments and clinics (Li et al., 2017).

In refractory Hepatoblastoma, when conventional surgery

and radiotherapy fail, target-specific inhibitors might also be

considered for precision therapy, which is essential for

developing relevant treatment protocols and assessing

treatment and prognostic outcomes. Currently, the classical

targeting signaling pathways for Hepatoblastoma include

PI3K/Akt and Wnt/β-catenin. Compared to chemotherapeutic

drugs with non-specific targets, targeted drugs are ideal and

effective treatments because they are highly specific and kill fewer

normal cells. Some targeting factors, such as PI3K, mTOR, and

Wnt, are also being explored. These targeting factors can

selectively interfere with targeted pathways such as tumor

growth, development, and vascular development.

Furthermore, PI3K is a dimer consisting of the regulatory

subunit p85 and the catalytic subunit p110. When PI3K binds to

the growth factor receptor, it can alter Akt protein structure and

activate it, activating or inhibiting the activity of various downstream

substrates by phosphorylation, thereby regulating cell proliferation,

differentiation, apoptosis, and migration phenotypes. PI3K and Akt

are specifically highly expressed inHepatoblastoma. Thus, the PI3K/

Akt pathway is involved in the development of Hepatoblastoma.

When the proteins involved in this signaling pathway are directly

targeted and inhibited, Hepatoblastoma proliferation andmetastasis

can be effectively controlled (Zhang et al., 2021). Classical targeted

drugs include the PI3K inhibitor LY294002, mTOR inhibitor

rapamycin, and others. Hartmann et al. (2009) used LY294002 to

treat a Hepatoblastoma cell line and found a positive reversal effect,

which significantly reduced the growth of Hepatoblastoma cells by

increasing apoptosis and decreasing cell proliferation. Wagner et al.

(2012) used an oral dose of rapamycin of 5 mg/kg/day for 3 weeks to

treat mice with subcutaneous Huh6 xenograft tumors and observed

the therapeutic effect. They found that rapamycin significantly

reduced tumor growth in mice, as well as reduced tumor-specific

AFP serum levels. The herb Polyphyllin VII has strong anticancer

activity in various cancer types and induces autophagy and apoptosis

in HepG2 cells by inhibiting the PI3K, AKT, and mTOR

phosphorylation. Thus, it can act as an mTOR inhibitor (Zhang

et al., 2016). The Wnt/β-catenin protein pathway has emerged as a

research priority as one of the more well-defined Hepatoblastoma

initiation mechanisms. In healthy livers, β-catenins are inactive due
to the absence of extracellularWnt ligands. In contrast, in malignant

tumors, the presence of Wnt ligands due to functional loss or

mutations in genes, such as APC, increases the susceptibility to

Hepatoblastoma development (Perugorria et al., 2019). β-Catenins
are important targets for Hepatoblastoma therapy. Extensive studies

have confirmed that inhibition of Wnt/β-catenin protein signaling

in Hepatoblastoma can lead to surprising therapeutic effects, and

many approaches to inhibit this signaling have been reported,

including siRNA, miRNA, and pharmacological agents (Sha

et al., 2019). Xie et al. (2021) elucidated the value of traditional

Chinese medicine (TCM) for Hepatoblastoma. They showed that

Babao Dan dramatically attenuated the activation of the Wnt/β-
catenin protein pathway in Hepatoblastoma and significantly

reduced the expression of Wnt target genes and cancer stem

cells. Furthermore, sorafenib, a multi-targeted oral drug for

treating tumors, selectively targets the receptors of certain

proteins and might act as a molecular switch during tumor

growth. The application of sorafenib in Hepatoblastoma

treatment effectively inhibits cell viability, tumor progression, and

TABLE 2 Clinical trials for hepatoblastoma.

NCT
number

Drug Condition Conclusion Ref

NCT00077389 Cisplatin High-risk Hepatoblastoma Feasible and effective Kristensen et al.
(2022)

NCT00980460 Cisplatin, fluorouracil, vincristine Hepatoblastoma with surgical
resection

Minimal post-operative chemotherapy ensures control
of patient’s condition

Sunil et al. (2018)

NCT00003912 Cisplatin versus cisplatin plus
doxorubicin

Standard-risk Hepatoblastoma Similar rates of complete resection and survival Filin et al. (2020)

NCT00428272 Lexatumumab Hepatoblastoma Showed a dramatic biomarker response Moosburner et al.
(2021)

NCT00929903 Pazopanib Hepatoblastoma Achieved a partial response Hishiki, (2013)

NCT00652132 Sodium Thiosulfate, Cisplatin Hepatoblastoma Sodium Thiosulfate for Protection from Cisplatin-
Induced Hearing Loss

Vogl et al. (2006)

NCT00716976 Sodium Thiosulfate Hepatoblastoma Protects against cisplatin-induced hearing loss Wang et al. (2014)

NCT01331135 Sirolimus, metronomic therapy
(CHOAnome)

Hepatoblastoma Well tolerated Li et al. (2017)
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angiogenesis (Eicher et al., 2012). Its combination with cisplatin also

significantly reduces Hepatoblastoma cell viability and is a

promising treatment option for high-risk or recurrent

Hepatoblastoma (Eicher et al., 2013). Immunotherapy can be

used as a branch of targeted therapy, usually targeting the body’s

immune regulatory processes against tumors and correcting

immune escape occurrence, with a high generalization degree.

For refractory or resistant Hepatoblastoma after surgery and

chemotherapy, immunotherapy might induce an immune

response against the tumor cells, thereby inhibiting the

Hepatoblastoma development (Figure 4).

Although there are several commonly used anti-tumor drugs,

such as sorafenib and cisplatin, new drugs are still being developed.

However, there must be a rational treatment schedule, including

administration timing, selection and combination of drugs,

administration sequence, dosage, and treatment course and

interval, to achieve a comprehensive, rational, and effective

choice of combination chemotherapy schedule. Hence, many

clinical trials have been conducted to find the optimal treatment

for Hepatoblastoma. These trials are presented in Table 2.

Conclusion and perspectives

Unraveling the genetic changes and epigenetics involved in

cancer pathogenesis is challenging and remains a necessary task.

Despite excluding the worldwide impact of COVID-19, the latest

cancer data show that the number of cancer deaths continues to rise

annually (Siegel et al., 2022). With a deeper understanding of genetic

changes and epigenetics, new clues have been provided to the

molecular mechanisms of disease. Nevertheless, there is still an

urgent need to translate these findings into the clinic for

application in diagnosis, prognosis, and response to treatment. A

new strategy is now gradually complementing some gaps in this

research field. Since the first Genome Wide Association Study

(GWAS) was reported in Science in 2005 (Klein et al., 2005),

there have been reports on cancer (Farashi et al., 2019), obesity

(Loos and Yeo, 2014), type 2 diabetes (Langenberg and Lotta, 2018),

and related phenotypes. A technologically highly feasible GWAS by

identifying previously unrecognized genetic and epigenetic

alterations might also improve understanding of the combination

of genetic and acquired genetic and epigenetic changes critical for

tumorigenesis. Therefore, it is crucial to understand the function of

complex cancer-associated genetic alterations and epigenetic variants

at the molecular level. Greater knowledge of how chromatin

structure, DNA methylation, and gene expression affect cancer is

progressively changing our view of carcinogenesis and cancer staging

and classification. Genetic alterations and epigenetic modifications

might become useful biomarkers for disease prognosis and treatment

and will pave the way for truly personalized treatments and clinical

applications for diagnosis, prognosis, and prevention.

Moreover, there is still much room to explore and review the

understanding of genetic alterations and epigenetic

modifications associated with cancer. Most clinical studies are

cross-sectional or preliminary trials where the understanding of

genetic alterations and epigenetic modifications has remained

theoretical. Most of the current trials are limited to studying the

effects of a particular epigenetic alteration on cancer. For

example, Rivas et al. (2019) explored the potential

mechanisms associated with aberrant epigenetic modifications

in Hepatoblastoma. They found that the expression of genes

associated with DNA methylation was in a generally disrupted

state in Hepatoblastoma, demonstrating the role of epigenetic

modifications in Hepatoblastoma progression. Rumbajan et al.

(2013) analyzed the methylation status of 33 imprinted

differentially methylated regions based on MALDI-TOF MS

and pyrophosphate sequencing in 12 Hepatoblastomas and

adjacent normal liver tissues and identified chromosomal

abnormalities and frequent genetic and epigenetic alterations

at the 11p15.5 and 20q13.3 sites. Large-scale cohort studies are

needed to enrich these findings. Furthermore, genetic alterations

and epigenetic modifications play a key role in the development

and progression of Hepatoblastoma. To some extent, certain

epigenetic modifications can be reversed under certain

conditions, but there is a lack of more convincing evidence

for their relationship. Moreover, most studies are often

isolated and require greater support for further and deeper

exploration.

In summary, with further research into Hepatoblastoma,

the discovery of more genetic alterations and epigenetic

modifications might provide new tools and targets for

cancer prevention and treatment. Although the mechanisms

of action are not yet elucidated and complex, genetic

alterations and epigenetic modifications are crucial in

cancer development.
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