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Grade II and III gliomas are heterogeneous and aggressive diseases. More efficient

prognosismodels and treatmentmethods are needed. This study aims to construct

a new risk model and propose a new strategy for grade II and III gliomas. The data

were downloaded from The Cancer Genome Atlas (TCGA), the Gene Expression

Omnibus (GEO), gene set enrichment analysis (GSEA), and the EMTomewebsite for

analysis. The Human Cell Landscape website and the Genomics of Drug Sensitivity

in Cancer website were used for single-cell analysis and drug susceptibility analysis.

Gene set enrichment analysis, gene function enrichment analysis, univariate and

multivariate Cox regression analyses, Pearson’s correlation analysis, log-rank test,

Kaplan–Meier survival analysis, and ROC analysis were performed.We constructed

an immune-related prognostic model associated with the isocitrate

dehydrogenase 1 (IDH1) mutation status. By analyzing the immune

microenvironment of patients with different risk scores, we found that high-risk

patients weremore likely to have an inflammatory immunemicroenvironment and

a higher programmed death ligand-1 (PD-L1) expression level.

Epithelial–mesenchymal transition (EMT)-related gene sets were significantly

enriched in the high-risk group, and the epithelial–mesenchymal transition

phenotype was associated with a decrease in CD8+ T cells and an increase in

M2 macrophages. Transforming growth factor-β (TGF-β) signaling was the most

important signaling in inducing epithelial–mesenchymal transition, and TGFB1/

TGFBR1 was correlated with an increase in CD8+ T cytopenia and

M2 macrophages. Survival analysis showed that simultaneous low expression of

TGFBR1 and PD-L1 had better survival results. Through single-cell analysis, we

found that TGFB1 is closely related to microglia and macrophages, especially

M2macrophages. Finally,wediscussed the sensitivity of TGFB1 inhibitors in gliomas

using cell line susceptibility data. These results demonstrated a potential

immunotherapy strategy in combination with the TGFB1/TGFBR1 inhibitor and

PD-1/PD-L1 inhibitor for grade II and III gliomas.
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1 Introduction

Grade II and III gliomas are the most common primary brain

tumors and proved to be with substantial heterogeneity in terms

of pathological features and clinical outcomes (Louis et al., 2021).

In order to distinguish the different pathological features of

patients and develop individualized treatment strategies,

glioma-related biomarkers have been identified. The

IDH1 was reported to mutate frequently in gliomas (Yan

et al., 2009). It had been proved that gliomas with the

IDH1 mutation were more sensitive to chemotherapy and

radiotherapy, resulting in a better prognosis (Sanson et al.,

2009). Other biomarkers, for example, codeletion of 1p and

19q (1p/19q) (Smith et al., 2000), Capicua (CIC)

transcriptional repressor mutation (Gleize et al., 2015), loss of

chromosome 9p, mutation of phosphatidylinositol-4,5-

bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) and

phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1)

(Draaisma et al., 2015), and deletion of cyclin-dependent

kinase inhibitor 2 A (CDKN2A) (Reis et al., 2015), were

confirmed to have prognostic value and important for rational

selection of surgery, radiotherapy, and chemotherapy treatment.

However, over 50% of grade II and III gliomas eventually develop

into highly aggressive gliomas, indicating the need for a more

efficient prognosis model and treatment methods (Zhu et al.,

2021).

In the past decades, there has been little progress in the

treatment of gliomas. Although immunotherapy successfully

promoted the treatment results of other cancer types and was

the major research direction for gliomas, limited progression had

been made in immunotherapy treatment of gliomas (Yang et al.,

2022). In CheckMate-498, a randomized clinical trial, nivolumab

combined with bevacizumab and nivolumab combined with

chemoradiotherapy in newly diagnosed glioma patients with O6-

methylguanine DNA methyltransferase (MGMT) promoter

unmethylation were both ineffective (Reardon et al., 2020).

Comparing with IDH-wild gliomas, the IDH-mutant gliomas

have significantly low tumor-infiltrating lymphocytes and PD-L1

expression (Berghoff et al., 2017). Numerous studies had

demonstrated that gliomas were infiltrated by immune cells that

made up to 30% of a tumor’s mass (Kaminska et al., 2021). Such

extensive accumulation of innate immune cells in gliomas might be

misleading as these events did not reflect the effective anti-tumor

immunity. This phenomenon enlightened us that tumor immune

infiltration in gliomas might be accompanied by other pathological

processes that promote tumor progression.

As mentioned previously, the construction of a new risk

model and improving the efficacy of immunotherapy are

essential for the treatment of gliomas. In this study, we

attempted to construct an immune-related risk model and

proposed a feasible strategy for improving the immunotherapy

efficacy for gliomas.

2 Materials and methods

2.1 RNA sequencing data

The IDH1 somatic mutation status for 500 samples, gene

expression data for 525 samples, and the corresponding clinical

datasheets for 515 samples were obtained from TCGA website

(https://portal.gdc.cancer.gov/). Among these grade II and III

glioma samples, 493 samples with RNA sequencing data and

IDH1 mutation information were subjected to subsequent

analyses. Log2 (x+1) normalization was performed for all gene

expression data. Rows and columns with more than 50% missing

values were removed. The study report fully met TCGA

publication requirements.

2.2 Microarray data

The gene expression profile matrix files from GSE107850

(including 195 samples) and GSE43388 (including 43 samples,

15 from GSE43388-GPL570 and 28 from GSE43388-GPL8542)

were downloaded from the GEO database (https://www.ncbi.

nlm.nih.gov/geo/). We used the R package inSilicoMerging

[DOD: 10.1186/1471–2105–13–335] to merge the datasets.

Also, we used empirical Bayes methods (Johnson et al., 2007)

to remove batch effects.

2.3 Construction and validation of the risk
model

GSEA was performed to determine how the immunological

pathways and corresponding immune genes differ between

IDH1-wild (IDH1-wt) (n = 117) and IDH1 mutation (IDH1-

mut) (n = 376) samples in TCGA cohort. An annotated gene set

file (c7. immunesigdb.v7.4. symbols.gmt; downloaded from the

Molecular Signatures Database) was selected for use as the

reference gene set. The expression profiles of the top 50 genes

expressed in the IDH1-wt and IDH1-mut groups were analyzed

via univariate Cox regression analysis. In this analysis, genes were

regarded as significant at p < 0.05. For the significant genes, least

absolute shrinkage and selection operator (LASSO) Cox analysis

was performed by using the glmnet R package. Then, the nine

candidate genes were analyzed by multivariate Cox regression

analysis based on progression-free survival (PFS). Finally, two

independent prognostic factors for PFS were analyzed by

multivariate Cox regression analysis based on overall survival

(OS) to construct the risk model

(Risk Score � ∑
i

Coefficient of(i)*Expressionofgene(i)).
The log-rank test and Kaplan–Meier survival analysis were used

to assess the predictive ability of the prognostic model. The

maxstat R package was applied to determine the best cutoff value,
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and then patients were classified into low-risk and high-risk

groups. We performed ROC analysis using the R package pROC.

2.4 Correlation of immunophenotype with
the risk model

Using the deconvo_CIBERSOR method of the IOBR R

package, the immune cell infiltration score was calculated. The

R package ESTIMATE was used to calculate the immune scores

for each patient based on gene expression. Pearson’s correlation

coefficients for risk scores and immune infiltration were

calculated. The rank sum test was used to compare differences

in immune cells and immune-related molecules between high-

risk and low-risk groups. p < 0.05 was considered significant.

2.5 Functional enrichment analysis

The STRING website (https://cn.string-db.org/) was used to

construct a 32-gene functional protein association network. We

used the Kyoto Encyclopedia of Genes and Genomes Application

Programming Interface (KEGG API) to obtain genetic

annotations for the latest KEGG pathway. Enrichment

analysis was performed using the R package clusterProfiler.

2.6 Epithelial–mesenchymal transition
(EMT) gene set-related analysis

The 61 EMT gene sets were downloaded from the EMTome

website (http://emtome.org/) (Vasaikar et al., 2021). GSEA was

performed between the high-risk and low-risk groups. The

enrichment scores of the EMT gene sets were analyzed by

univariate Cox analysis through the EMTome website. The gene

set with the highest prognostic significance and the highest GSEA

enrichment score was selected for gene set variation analysis (GSVA)

to obtain the enrichment scores of samples. Pearson’s correlation

coefficients for enrichment scores, risk scores, immune cells, and

immune-related molecules were calculated. The log-rank test and

Kaplan–Meier survival analysis were applied to assess the predictive

ability of the enrichment score. By reviewing the literature, we

identified five EMT phenotype-related signaling pathways and

downloaded corresponding gene sets from the GSEA website

(http://www.gsea-msigdb.org/), namely, REACTOME_

SIGNALING_BY_TGFB_FAMILY_MEMBERS, GOBP_

CANONICAL_WNT_SIGNALING_PATHWAY, BIOCARTA_

RAS_PATHWAY, GOBP_NOTCH_SIGNALING_PATHWAY,

and GOBP_PHOSPHATIDYLINOSITOL_3_KINASE_

SIGNALING (Dongre and Weinberg, 2019). We divided the

samples into two groups according to the enrichment score, with

263 samples in the high-enrichment score group and 262 samples in

the low-enrichment score group, and performedGSEA to obtain the

most significant enrichment signaling pathway.

2.7 Effects of transforming growth factor-
β (TGF-β)-associated molecules, PD-L1
(CD274), and CTLA-4 on immune cell
infiltration and prognosis

Pearson’s correlation coefficients for enrichment scores,

TGFB1, TGFBR1, TGFB2, and TGFB3 were calculated, and

the correlation matrix was plotted. Multivariate Cox

regression analysis was performed on TGFB1, TGFBR1,

TGFB2, TGFB3, PD-L1, and cytotoxic T-lymphocyte-

associated protein 4 (CTLA-4). For TGFB1, TGFBR1,

CD274, CTLA-4, and immune cells, we calculated the

Pearson’s correlation coefficient and plotted the correlation

scatterplot. The log-rank test and Kaplan–Meier survival

analysis were used to assess the predictive ability of

TGFBR1 and PD-L1. The maxstat R package was applied to

determine the best cutoff value, and then patients were

classified into the low-expression group and the high-

expression group. The samples were then divided into four

groups (TGFBR1-H+CD274-L, TGFBR1-H+CD274-H,

TGFBR1-L+CD274-L, and TGFBR1-l+CD274-H) for

survival analysis, and the differences in immune cell

infiltration between groups were compared by the rank sum

test, and violin charts were plotted.

2.8 Single-cell analysis was performed to
determine cell localization of TGF-β
signaling-related molecules

This analysis was conducted through the Human Cell

Landscape website (https://db.cngb.org/HCL/index.html) (Han

et al., 2020). Platform creators analyzed >700,000 single cells

from >50 human tissues (2–4 replicates per tissue in general)

and cultures. Through the brain section of the Gallery module,

we can acquire the single-cell data matrix and analysis results related

to brain tissue.

2.9 Anti-TGFB1 drug susceptibility analysis

We adopted the Genomics of Drug Sensitivity in Cancer

website (https://www.cancerrxgene.org/) and the EMTome

website (http://emtome.org/) for drug sensitivity analysis. The

two websites provided drug susceptibility data on the

TGFB1 inhibitor LY2109761 in different cell lines, as well as

online analysis tools. Using online tools from both websites, we

performed drug susceptibility analysis.
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2.10 Data processing platform

All the data processing was performed on Sangerbox (http://vip.

sangerbox.com/home.html), a powerful platform based on R (Shen

et al., 2022), including RNA sequencing data normalization,

merging of datasets, removing batch effects, gene set enrichment

analysis, gene set variation analysis, gene function enrichment

analysis, univariate and multivariate Cox regression analyses,

LASSO-Cox regression analysis, Pearson’s correlation analysis,

log-rank test, Kaplan–Meier survival analysis, ROC analysis, the

immune cell infiltration score and immune infiltration score

calculation, and KEGG enrichment analysis.

3 Results

3.1 Construction and validation of a risk
model associated with IDH1 and immune
status

We applied GSEA between IDH1-wt (n = 117) and IDH1-

mut (n = 376) groups using c7. immunesigdb.v7.4.

symbols.gmt as the reference gene set. All 3919 immune-

related gene sets with FDR < 0.05 were enriched in the

IDH1-wt group, suggesting that the IDH1-wt group was

more correlated with immune response than the IDH1-mut

group. The top 50 genes enriched in the two groups were used

for univariate Cox regression analysis. The results showed that

all 100 genes were significantly associated with prognosis

(Figure S1). These 100 genes were then analyzed by LASSO

Cox, and nine candidate genes were obtained for risk

modeling (Figures 1A–B). In order to better predict PFS,

we performed multivariate analysis on PFS for nine genes

and obtained two genes with independent prognostic value for

PFS, NOG, and IGFBP2 (Figure 1C). Through multivariate

analysis of NOG and IGFBP2 in OS, we obtained the

expression coefficients of these two genes and constructed a

risk model (Figure 1D). Risk score = -0.4253 * expression of

NOG + 0.3954 *expression of IGFBP2.

We calculated the risk scores of all 493 TCGA samples and

performed survival analysis, plotting K-M curves and ROC

curves. The results showed that the risk model was a good

predictor of patients’ OS (p = 1.3e-24, HR = 5.52) and PFS

(p = 3.2e-13, HR = 3.20) (Figures 2A–D). Clinically, the

FIGURE 1
Construction of a risk model associated with IDH1 and immune status. (A–B) Nine candidate genes for risk modeling by LASSO Cox regression
analysis; (C) multivariate analysis of nine genes on PFS; and (D) multivariate analysis of two genes on OS.
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IDH1 mutation status was used to determine patient prognosis,

and we explored whether our risk model could further stratify the

IDH1 mutation status. In both the IDH1-mut and IDH1-wt

groups, a high-risk score indicates a worse prognosis (Figures

2E–F), whereas the IDH1 status in the low-risk group does not

affect prognosis (Figure 2G). Multivariate analysis of IDH1 and

risk score suggested that risk score is an independent prognostic

factor relative to IDH1 (Figure 2N).

GSE107850 (including 195 samples) and GSE43388

(including 43 samples) were used to validate the risk

prediction capabilities of risk models. Among them, the

study endpoint of the GSE107850 sample was PFS after

radiotherapy (RT) and temozolomide (TMZ) treatment,

and the study endpoint of the GSE43388 sample was OS, so

we used these two sets of sample data to verify the predictive

efficacy of risk models on PFS and OS, respectively.

Furthermore, we used the GSE107850 dataset to analyze

the predictive power of risk models for response to

radiotherapy and chemotherapy treatment. As shown in

Figures 2H–M, the risk model can predict not only the

patient’s OS (p = 3.2e-6, HR = 7.89) and PFS (p = 8.8e-8,

HR = 2.84) but also the patient’s response to radiation (p =

7.7e-6, HR = 3.45) and chemotherapy (p = 1.9e-3, HR = 2.39).

3.2 High-risk patients are more likely to
have a “hot” immune microenvironment

We analyze the correlation of the risk model with immune

infiltration scores, immune cell infiltration, and expression of

immune molecules. There is a significant positive correlation

between immune risk scores and immune infiltration scores,

including stromal score (p = 6.2e-36, r = 0.52), immune score (p =

1.8e-18, r = 0.38), and ESTIMATE score (p = 1.0e-25, r = 0.45)

(Figures 3A–C). The high-risk group had higher expression of

immunosuppressive molecules (CD274, CTLA-4, IDO1, and

IL10) and also had higher expression of immunostimulant

molecules (CD27, CD28, CD40, CD40LG, and ICOS) (Figures

3D–E). Regulatory T cells (Tregs) were elevated in the high-risk

group (p = 1.1e-6). However, B naïve cells (p = 4.0e-4), mast

resting cells (p = 4.3e-3), CD4+ T memory resting cells (p = 6.1e-

10), CD8+ T cells (p = 6.6e-5), neutrophils (p = 4.4e-5), and M0

(p = 3.7e-5) and M1 (p = 2.2e-6) macrophages were also elevated

in the high-risk group. Risk stratification did not appear to affect

M2 macrophage infiltration results (p = 0.62) (Figure 3F). From

these results, a higher level of inflammation coexisted with a

higher level of immunosuppression, but unfortunately, although

this immunosuppression was accompanied by increased PD-L1

FIGURE 2
Validation of the two-gene risk model. (A) K-M survival curve for OS of TCGA cohort; (B) ROC curve for OS of TCGA cohort; (C) K-M survival
curve for PFS of TCGA cohort; (D) ROC curve for PFS of TCGA cohort; (E) high-risk patients in the IDH1-mut group have shorter OS; (F) high-risk
patients in the IDH1-wt group have shorter OS; (G) K-M curve combining the IDH1 mutation status and risk score; (H–I) validation of the two-gene
risk model in GSE43388; (J–M) validation of the two-gene risk model in GSE107850; and (N) multivariate analysis of IDH1 and risk score.
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expression, it could not be reversed by PD-L1 inhibitors and

transformed into clinical benefit. We hypothesized that along

with this immunosuppressive process, there were other

malignant phenotypes that promoted tumor progression.

3.3 EMT-related signaling pathways are
closely related to the risk model

In order to explore the signaling pathways related to the risk

model, we first used the STRING website to construct a gene

regulatory network of 32 genes for the risk model (Figure 4A),

and then we performed KEGG enrichment analysis on this

regulatory network (Figure 4B). Some signaling pathways that

are closely related to EMT had been enriched, including TGF-β
signaling pathway (Hao et al., 2019), signaling pathways

regulating pluripotency of stem cells (Mani et al., 2008;

Shibue and Weinberg, 2017), Hippo signaling pathway

(Cordenonsi et al., 2011), PI3K-Akt signaling pathway, and

mTOR signaling pathway (Song et al., 2014). This suggested

that the EMT phenotype may be also formed at the same time as

the tumor formed an inflammatory immune microenvironment.

3.4 EMT phenotypes are significantly
associated with M2 macrophages and are
regulated by the TGF-β signaling pathway

The EMTome website provided 61 gene sets that are

associated with the EMT phenotype, and we downloaded all

of them for GSEA between the two risk groups. At the same time,

we used the online tool of the EMTome website to perform

univariate Cox regression analysis of each gene set enrichment

score. The top gene sets are listed in Table 1; Table 2.

PMID29212455: Wang_et_al. 2017 was the gene set with the

most significant prognostic value and highest normalized

enrichment score (NES), and we plotted the GSEA

enrichment curve for this gene set (Figure 5A).

We then performed GSVA with the PMID29212455: Wang_

et_al. 2017 gene set and obtained an enrichment score for each

FIGURE 3
Immunocorrelation analysis of the risk model. (A–C) Correlation of the risk model with immune infiltration scores; (D–E) correlation of the risk
model with the expression of immune molecules; and (F) correlation of the risk model with immune cell infiltration.
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sample. Enrichment scores had a significant positive correlation

with risk scores (p = 1.1e-29, r = 0.48) (Figure 5B), and high

enrichment scores indicated shorter survival (p = 1.0e-9, HR =

2.92) (Figure 5C). The enrichment score was positively correlated

with immunosuppressive cells and immunosuppressive

molecules, for example, Tregs, M2 macrophages, PD-L1, and

CTLA-4, but negatively correlated with B memory cells and

CD4+ T cells, suggesting the immunosuppressive properties of

the EMT phenotype (Figures 5D–J). In particular, unlike risk

scores, EMT enrichment scores were positively correlated with

M2 macrophage infiltration (p = 2.1e-8, r = 0.25) but not with

CD8+ T-cell infiltration (p = 0.45, r = -0.03).

In order to determine the main signaling pathways that

induce EMT phenotypes, we reviewed the relevant literature,

identified five candidate signaling pathways, downloaded the

gene sets of each pathway through the GSEA website, and

FIGURE 4
Risk model-related gene function enrichment analysis. (A) Gene regulatory network of 32 genes related to the risk model and (B) KEGG
enrichment analysis of this regulatory network.

TABLE 1 Univariate Cox regression analysis for EMT gene sets by the EMTome website.

Signature Cox coefficient Hazard ratio Log-rank p-value

PMID29212455: Wang_et_al. 2017 1.38 4 (2.6–6.1) 8.00E-12

PMID26061747: Huang_et_al. 2015 1.22 3.4 (2.2–5.1) 5.40E-10

PMID29700419: Liang_et_al. 2018 1.16 3.2 (2.1–4.8) 3.90E-09

PMID29440769: Chae_et_al. 2018 1.15 3.1 (2.1–4.7) 6.00E-09

PMID20215510: Choi_et_al. 2010 1.13 3.1 (2.1–4.6) 4.80E-09

PMID24004852: Cieslik_et_al. 2013 1.13 3.1 (2.1–4.7) 1.40E-08

PMID19666588: Creighton_et_al. 2009 1.11 3 (2–4.5) 1.50E-08

PMID26088755: Kim_et_al. 2015 1.09 3 (2–4.4) 1.20E-08

PMID26771021: MsigDB_v7.0 1.1 3 (2–4.4) 1.30E-08

Note: By the online tool of the EMTome website, univariate Cox regression analysis was applied to determine the effects of different EMT phenotypes and gene set enrichment scores on the

survival of grade II and III gliomas. p < 0.05 was considered statistically significant.

Frontiers in Genetics frontiersin.org07

Luo et al. 10.3389/fgene.2022.1070630

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1070630


then divided the samples into two groups according to the EMT

enrichment score for GSEA. The TGF-β signaling pathway,

WNT signaling pathway, Notch signaling pathway, and PI3K

signaling pathway were all significantly enriched in the high-

enrichment score group, with the TGF-β signaling pathway

having the largest NES (|NES| = 2.0875), and we believed that

TABLE 2 GSEA rank list for EMT gene sets.

Term ES NES p-value FDR FWER

PMID29212455: Wang_et_al. 2017 0.5657 2.3413 0.0000 0.001 0.001

PMID25744723: Schliekelman_et_al. 2015 0.4556 2.2449 0.0000 0.0005 0.001

PMID30728376: Soo Min_et_al. 2019 0.5228 2.2231 0.0000 0.0003 0.001

PMID24510113: Reka_et_al. 2014 0.7297 2.2166 0.0000 0.0003 0.001

PMID29346386: Hollern_et_al. 2018 0.5984 2.2083 0.0000 0.0002 0.001

PMID20713713: Taube_et_al. 2010 0.6191 2.1953 0.0000 0.0001 0.001

PMID23734191: Zarkoob_et_al. 2013 0.6186 2.1953 0.0000 0.0002 0.001

PMID19340593: Joyce_et_al. 2009 0.6535 2.184 0.0000 0.0001 0.001

PMID25214461: Tuan_et_al. 2014 0.594 2.175 0.0000 0.0001 0.001

PMID29700419: Liang_et_al. 2018 0.6864 2.1655 0.0000 0.0003 0.002

Note: EMT gene sets were acquired from the EMTome website, and GSEA was performed between the high-risk and low-risk groups. FDR <0.05 was considered significantly different in

gene set enrichment between the two groups.

FIGURE 5
EMT phenotypes are significantly associated with M2 macrophages and are regulated by the TGF-β signaling pathway. (A) GSEA enrichment
curve for the PMID29212455:Wang_et_al. 2017 gene set; (B) enrichment score and risk score are significantly positively correlated; (C) K-M curve for
the enrichment score; (D–J) correlation analysis of enrichment scores and immunity; and (K–O) GSEA enrichment curve for EMT-related signaling
pathways.
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TGF-β signaling played an important role in inducing EMT

phenotypes in gliomas (Figures 5K−O).

3.5 Compared with PD-L1 and CTLA-4,
TGFB1/TGFBR1 is much associated with
the immunosuppressive
microenvironment

In this section, we explored specific molecules of the TGF-β
signaling pathway, and we selected TGFB1, TGFBR1, TGFB2,

and TGFB3 as research subjects because the drugs targeting these

molecules are currently in the clinical research stage (Tauriello

et al., 2022), and exploring them will make our research

conclusions more likely to guide clinical practice. First, we

analyzed the correlation between four candidate molecules

and EMT enrichment scores, and the results showed that all

four molecules were significantly correlated with EMT

enrichment scores, among which TGFBR1 had the highest

correlation (p < 0.001, r = 0.55) (Figure 6A). We then

performed multivariate Cox regression analysis on four

candidate molecules together with PD-L1 and CTLA-4, and

the results suggested that PD-L1, TGFB2, and TGFBR1 were

independent prognostic factors (Figure 6B). Based on the

previous conclusions, we selected TGFB1/TGFBR1 for

subsequent analysis.

Next, we focused on the correlation between TGFB1/

TGFBR1, PD-L1, CTLA-4, and immune cell infiltration. With

the increase in TGFB1/TGFBR1 expression, the infiltration of

CD4+ T naïve cells and CD8+ T cells (p = 8.0e-5, r = -0.18; p =

FIGURE 6
TGFB1/TGFBR1 may be a suitable target in the treatment of gliomas. (A) Correlation between TGFB1/TGFBR1, TGFB2, TGFB3, and enrichment
score and (B) multivariate survival analysis of TGFB1/TGFBR1, TGFB2, TGFB3, PD-L1, and CTLA-4.
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3.6e-7, r = -0.23) decreased significantly, while the infiltration

of M2 macrophages (p = 8.8e-15, r = -0.34; p = 1.0e-13, r =

0.33) and Tregs increased significantly (Figures 7A–K).

Although CD4+ T naïve cell infiltration was decreased with

PD-L1 expression, there was no significant change in CD8+

T cells and Tregs. In addition, M1 macrophage infiltration was

also increased (p = 8.5e-6, r = 0.20), while M2 macrophage

infiltration was relatively low (p = 0.01, r = 0.12), suggesting

that M0 macrophages were more likely polarized toward

M1 macrophages (Figures 7L–P). As for CTLA-4, CD4+ T

naïve cell infiltration also decreased, while CD8+ T cell (p =

0.02, r = 0.11) and M1 macrophage (p = 2.4e-6, r = 0.21)

infiltration increased, and M2 macrophages and Tregs showed

no significant changes (Figures 7Q–U). Compared with PD-L1

and CTLA-4, TGFB1/TGFBR1 was tightly associated with a

decrease in CD8+ T cells and an increase in M2 macrophages

and Tregs infiltration, suggesting that TGFB1/TGFBR1 may

have more powerful immunosuppressive properties.

3.6 Simultaneous blocking of TGFB1/
TGFBR1 and PD-L1 might significantly
improve survival

We calculated the optimal cutoff value for TGFBR1 and PD-

L1 using the R package maxstat (maximally selected rank

statistics with several p-value approximations, version: 0.7-25).

We then grouped the samples according to cutoff values and

performed survival analysis. Patients with higher PD-L1 and

TGFBR1 expression had shorter survival (p = 1.4e-9, HR = 2.92;

p = 1.0e-7, HR = 2.58) (Figures 8A–B). Patients with both high

expression of TGFBR1 and PD-L1 had the worst prognosis, and

those with low expression of both TGFBR1 and PD-L1 had the

best prognosis, while those with high expression of one of the two

molecules had a moderate prognosis (Figure 8C; Supplementary

Table S1). The group with the best prognosis tended to have more

CD4+ T naïve cells and CD8+ T-cell infiltration (although no

statistically significant difference was achieved) and less

FIGURE 7
Compared with PD-L1 and CTLA-4, TGFB1/TGFBR1 is more associated with the immunosuppressive microenvironment. (A–E) Correlation of
TGFBR1 with immune cell infiltration; (F–K) correlation of TGFB1 with immune cell infiltration; (L–P) correlation of PD-L1 with immune cell
infiltration; and (Q–U) correlation of CTLA-4 with immune cell infiltration.
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M2 macrophage and Tregs infiltration (Figures 8D–H). These

results suggested that simultaneous blocking of TGFB1/

TGFBR1 and PD-L1 is more likely to confer a survival benefit

than blocking PD-L1 alone.

3.7 TGFB1 is closely related to microglia
and macrophages in brain tissues

We analyzed the cellular localization of TGF-β-related
molecules in brain tissue through Human Cell Landscape, a

single-cell analysis website. In four single-cell samples of brain

tissue, we found that TGFB1 and TGFBI (transforming growth

factor-beta induced, a protein induced by TGFB1) were mainly

expressed in microglia and macrophages, especially

M2 macrophages. The results of the clustering analysis with

marker genes are shown in Figures 9A–D and Table 3.

3.8 Gliomas may be one of the tumors
most sensitive to the TGFB1 inhibitor

LY2109761 is an inhibitor of TGFB1 and is widely used in

in vitro studies of various tumors. Through the Genomics of

Drug Sensitivity in Cancer website and the EMTome website, we

analyzed the susceptibility results of LY2109761 in various

tumors. Figure 10A shows the IC50 values of LY2109761 in

different LGG cell lines, and the IC50 values of LY2109761 in

all available tumor cell lines are shown in Figure 10B. After

standardizing the susceptibility data of all tumor cell lines, we

found that LGG ranked sixth in drug sensitivity among 29 tumor

species (Figure 10C). This suggested that TGFB1/

TGFBR1 inhibitors may be sensitive in gliomas.

4 Discussion

Previous studies had demonstrated that the IDH1 mutation

status has a significant effect on the immune microenvironment

of diffuse glioma, and IDH1 wild-type patients generally have

higher lymphocyte infiltration and PD-L1 expression (Yan et al.,

2009; Berghoff et al., 2017). Also, the IDH1 mutation status has a

significant correlation with prognosis (Sanson et al., 2009).

Therefore, we can utilize these features of IDH1 to construct a

risk model related to the inflammatory immune

microenvironment and survival. Through GSEA, we found

that the 3,919 immune-related gene sets with significant

differences between the two groups were enriched in the

FIGURE 8
Survival analysis of PD-L1 and TGFBR1 and comparison of immune cell infiltration between groups. (A) K-M curve for PD-L1; (B) K-M curve for
TGFBR1; (C) K-M curve for patients with different TGFBR1 and PD-L1 expression levels; and (D–H) immune cell infiltration between groups.
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IDH1-wild group, suggesting that the IDH1-wild type is more

related to immune response, which is consistent with the

conclusions mentioned previously. According to the gene rank

list of GSEA, top 50 genes in each group were selected for

univariate analysis, and the results showed that these

100 genes had significant prognostic value. By performing

LASSO Cox and multivariate Cox regression analyses on

100 genes, we constructed a two-gene risk model consisting of

IGFBP2 and NOG.

IGFBP2 is a pleiotropic oncogene and plays a role in the

occurrence and development of a variety of tumors (Brouwer-

Visser and Huang, 2015). It has been confirmed that IGFBP2 can

induce tumor epithelial–mesenchymal transformation and

metastasis through the NF-κB signaling pathway (Gao et al.,

2016). NOG is a natural inhibitor of bone morphogenetic protein

(BMP), especially BMP2 and BMP4, which are the members of

the TGF-β family. BMPs suppressed the tumorigenic function of

human glioma-initiating cells by inducing cell differentiation, cell

cycle arrest, and apoptosis (Bao et al., 2013). Several reports have

shown that BMP4 is expressed in low-grade gliomas and that it

serves as a favorable prognostic marker in gliomas (Bao et al.,

2013; Nayak et al., 2020; Zhou et al., 2020). In addition,

BMP4 was able to abolish cancer stem cell populations in

human cancers, including malignant gliomas (Piccirillo et al.,

2006; Piccirillo and Vescovi, 2006). Interestingly, as an inhibitor

of BMPs, the expression of NOG and BMP2/4 was positively

correlated. The high-risk group had lower levels of BMPs,

consistent with the studies mentioned previously. We verified

that the risk model has good prognostic value in TCGA cohort

and two GEO cohorts and can further stratify the IDH1-mut and

IDH1-wt groups. The multivariate Cox regression analyses

further confirmed the independent prognostic value of the

FIGURE 9
(A–D) Clustering analysis for brain tissues.

TABLE 3 TGFB1 and TGFBI are the top markers for microglia/macrophage in the brain.

Cluster Annotation Gene p_value avg_diff pct.1 pct.2

Adult-Cerebellum1_Cluster16 Macrophage TGFBI 5.82E-63 1.8518 0.367 0.011

Fetal-Brain_Zhong_Cluster3 Microglia TGFB1 1.46E-48 1.1991 0.284 0.013

Fetal-Brain4_Cluster10 Macrophage TGFBI 1.33E-15 0.8792 0.158 0.005

Fetal-Brain5_Cluster11 M2 macrophage TGFBI 4.94E-30 1.6913 0.348 0.016

Fetal-Brain5_Cluster6 Fibroblast TGFBI 6.48E-91 1.5493 0.254 0.011

Note: Single-cell differential gene expression analysis for four brain tissues was performed on the Human Cell Landscape website; p < 0.05 was considered statistically significant.
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risk model. Thus, this model might be used as a risk indicator in

clinical practice.

To further investigate the relationship between the risk

model and the immune microenvironment, we analyzed the

correlation between immune infiltration scores, immune-

related molecules, and immune cell infiltration with immune-

related prognostic models. The stromal score, immune score, and

ESTIMATE score were positively correlated with the risk score.

The high-risk group had higher expression of

immunosuppressive molecules and also had higher expression

of immunostimulant molecules. Tregs were elevated in the high-

risk group. However, B naïve cells, mast resting cells, CD4+ T

memory resting cells, CD8+ T cells, neutrophils, and M0 and

M1 macrophages were also elevated in the high-risk

group. Similar conclusions had been reached in other people’s

studies. Berghoff et al. (2017) found significantly higher levels of

PD-1-positive tumor-infiltrating lymphocytes and PD-L1

expression in IDH-wild-type gliomas than IDH-mutant

gliomas. Liu et al. (2020) demonstrated higher CTLA-4

expression in higher-grade IDH-wild-type tumors than lower-

grade IDH-mutant tumors. We would summarize these

phenotypes as “hot” tumor microenvironments. “Hot” tumors

and high expression of PD-L1 were known as hallmarks of

sensitivity to immunotherapy (Xiong et al., 2018; Gao et al.,

FIGURE 10
Drug susceptibility analysis of the TGFB1 inhibitor. (A) IC50 values of LY2109761 in different LGG cell lines; (B) IC50 values of LY2109761 in all
available tumor cell lines; and (C) LGG ranked sixth in drug sensitivity among 29 tumor species.
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2022), while inexplicably, the efficiency of immunotherapy was

limited in gliomas, regardless of the IDH1 status and tumor

grades (Blumenthal et al., 2016; Bouffet et al., 2016; Johanns et al.,

2016; Lukas et al., 2018; Reardon et al., 2020). We hypothesized

that the patient’s inflammatory immune microenvironment is

accompanied by other malignant phenotypes.

We then established a 32-gene functional protein association

network for NOG and IGFBP2 on the STRING website. These

32 genes were analyzed for gene function enrichment using the

KEGG database. The TGF-β signaling pathway, Hippo signaling

pathway, PI3K-AKT–mTOR pathway, and signaling pathways

regulating pluripotency of stem cells were found to be closely

linked to the risk model. It had been reported that stem cell

properties could be acquired by tumor cells through EMT.

Induction of EMT in immortalized human mammary

epithelial cells was sufficient to induce the expression of stem

cell markers, enhance self-renewal, and increase the number of

tumor-initiating cells (Mani et al., 2008; Shibue and Weinberg,

2017). TGF-β had been thought to be the most important factor

inducing EMT via the classic Smad and non-Smad pathways

(Lamouille et al., 2014; Hao et al., 2019). The Hippo pathway and

PI3K-AKT–mTOR pathway had also been proved to be related to

EMT (Cordenonsi et al., 2011; Song et al., 2014). It had been

reported that there exists a strong correlation between EMT and

immune activation. Further analysis demonstrated high

expression of immune checkpoints and other druggable

immune targets such as PD-1, PD-L1, CTLA-4, OX40L, and

PD-L2 in patients with the EMT phenotype (Mak et al., 2016).

Therefore, we speculated that the inflammatory immune

microenvironment of gliomas is accompanied by the EMT

phenotype.

In subsequent analyses, we found that EMT enrichment

scores were significantly positively correlated with risk scores,

M2 macrophage infiltration, Tregs, PD-L1, and CTLA-4

expression and negatively correlated with CD8+ T-cell

infiltration. Although Mak et al. (2016) discovered that the

EMT phenotype is always accompanied with immune

activation and higher expression of immune checkpoint

molecules and declared that immunotherapy might have

potential, the reality was far from that (10). The inflammatory

immune microenvironment is accompanied by EMT, which in

turn induces immunosuppression against the inflammatory

immune microenvironment. Reversing the EMT phenotype

might be necessary for immunotherapy treatment.

Dongre and Weinberg (2019) reviewed the main signaling

pathways that induce EMT, including the TGF-β signaling

pathway, the WNT signaling pathway, the Notch signaling

pathway, the PI3K signaling pathway, and the RAS signaling

pathway. Through the enrichment analysis of the

aforementioned pathway, we found that the TGF-β
signaling pathway is the most important. TGFB1/TGFBR1,

TGFB2, and TGFB3 were elected for further investigation.

Among these four molecules, TGFBR1 not only had the

highest correlation with EMT enrichment scores but also

was an independent prognostic factor relative to PD-L1.

Immunocorrelation analysis showed that TGFB1/

TGFBR1 had more powerful immunosuppressive properties

than PD-L1 and CTLA-4, especially in inducing

M2 macrophage infiltration and CD8+ T-cell depletion.

According to the different expressions of TGFBR1 and PD-

L1, we performed survival analysis in groups, and the results

showed that patients with both TGFBR1 and PD-L1

expression had obvious survival advantages, and the high

expression of either molecule led to poor prognosis. This

indicates that the combined inhibition of TGFB1/

TGFBR1 and PD-1/PD-L1 has a good clinical application

prospect.

Through single-cell analysis, we further determined that

TGFB1 and TGFBI are mainly derived from microglia and

M2 macrophages. As resident macrophages of the central

nervous system (CNS), microglia are associated with diverse

functions essential to the developing and adult brain during

homeostasis and disease (Borst et al., 2021). Microglia-derived

TAM (tumor-associated macrophages) increased angiogenesis

and suppressed T-cell proliferation. Depletion of TAM provides

survival advantages and delays recurrence when combined with

standard-of-care treatment such as irradiation (Akkari et al.,

2020). Numerous studies have demonstrated that gliomas are

infiltrated by immune cells that make up to 30% of a tumor’s

mass (Nduom et al., 2015). The predominant population consists

of glioma-associated microglia and macrophages, and their

numbers inversely correlate with patients’ survival (Gieryng

et al., 2017). We speculated that by synthesizing and secreting

TGFB1, microglia and M2 macrophages simultaneously induced

EMT phenotype and immunosuppression.

Finally, we explored the relative drug sensitivity of the

TGFB1 inhibitor in glioma cell lines through the Genomics of

Drug Sensitivity in Cancer website and the EMTome website.

Although these studies are in vitro experiments, the relative

sensitivity between different tumor species can still give us

some hints that gliomas have relatively good sensitivity

relative to most tumors.

In this study, we constructed an immune-related prognostic

model associated with the IDH1 mutation status. This model

enables further risk stratification of patients with different

IDH1 mutation states. By analyzing the immune

microenvironment of patients with different risk scores, we

found that high-risk patients were more likely to have an

inflammatory immune microenvironment and a higher PD-L1

expression level, although clinical studies showed that patients

with different IDH1 mutation states did not benefit from PD-1/

PD-L1 inhibitors. We speculated that there were other malignant

phenotypes that accompanied the inflammatory immune

microenvironment, so we performed KEGG analysis on the

risk model gene and found that it may be closely related to

the EMT phenotype. This hypothesis was confirmed because
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EMT-related gene sets were significantly enriched in the high-

risk group. Subsequently, we found that the EMT phenotype was

associated with a decrease in CD8+ T cells and an increase in

M2 macrophages, which is different from the risk model. By

analyzing the main signaling pathways that induce the EMT

phenotype, we found that TGF-β was the most important one in

gliomas, and TGFB1/TGFBR1 showed stronger

immunosuppressive properties than PD-L1 and CTLA-4,

especially in inducing an increase in CD8+ T cytopenia and

M2macrophages. It is clinically instructive that simultaneous low

expression of TGFBR1 and PD-L1 has obvious survival

advantages over other expression modes. Through single-cell

analysis, we also found that TGFB1 is closely related to microglia

andmacrophages, especially M2macrophages, which can explain

why the increase in TGFB1/TGFBR1 expression is accompanied

by a significant increase in M2 macrophages. Finally, we

discussed the sensitivity of TGFB1 inhibitors in gliomas using

cell line susceptibility data. From these analyses, we

demonstrated a viable clinical strategy in combination with

TGFB1/TGFBR1 inhibitors and PD-1/PD-L1 inhibitors for the

treatment of high-risk gliomas.
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