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Background: Tumor pathology can assess patient prognosis based on a

morphological deviation of tumor tissue from normal. Digitizing whole slide

images (WSIs) of tissue enables the use of deep learning (DL) techniques in

pathology, which may shed light on prognostic indicators of cancers, and avoid

biases introduced by human experience.

Purpose: We aim to explore new prognostic indicators of ovarian cancer (OC)

patients using the DL framework on WSIs, and provide a valuable approach for OC

risk stratification.

Methods: We obtained the TCGA-OV dataset from the NIH Genomic Data

Commons Data Portal database. The preprocessing of the dataset was

comprised of three stages: 1) The WSIs and corresponding clinical data were

paired and filtered based on a unique patient ID; 2) a weakly-supervised CLAM

WSI-analysis tool was exploited to segment regions of interest; 3) the pre-trained

model ResNet50 on ImageNet was employed to extract feature tensors. We

proposed an attention-based network to predict a hazard score for each case.

Furthermore, all cases were divided into a high-risk score group and a low-risk one

according to themedian as the threshold value. Themulti-omics data ofOCpatients

were used to assess the potential applications of the risk score. Finally, a nomogram

based on risk scores and age features was established.

Results: A total of 90 WSIs were processed, extracted, and fed into the

attention-based network. The mean value of the resulting C-index was

0.5789 (0.5096–0.6053), and the resulting p-value was 0.00845. Moreover,

the risk score showed a better prediction ability in the HRD + subgroup.

Conclusion:Our deep learning framework is a promising method for searching

WSIs, and providing a valuable clinical means for prognosis.
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1 Introduction

Ovarian cancer (OC), as the “silent killer” of women’s health, is

the leading cause of cancer-related death in gynecologic malignant

diseases (Kuroki and Guntupalli, 2020). OC is a highly

heterogeneous disease with a variety of subtypes that have

various histologic and molecular characteristics (Kurman and

Shih Ie, 2016), which raises challenges for effective prognosis

stratification and clinical treatment management. High-

throughput sequencing technologies have expedited research in

cancer biology and provided a comprehensive genetic landscape

(Lu et al., 2019). In recent years, more potential biomarkers for

diagnosis and prognosis have been discovered based on the rapid

advances in sequencing technologies. Similar to high throughput

sequencing, the analysis of digital pathological images has provided

an opportunity for biomarker detection and prognostic stratification

(Desbois et al., 2020; Saillard et al., 2020; Skrede et al., 2020; Shi

J. et al., 2021; Jin et al., 2021). Pathological analysis of OC patients is

essential for obtaining patient diagnosis and cancer characteristics

including histological subtype, grade and stage. Whole slide images

(WSIs) harbor vast amount of information, such as growth patterns

and intercellular interactions within tumor microenvironment,

which is associated with the survival outcome. However, the

high-dimensional information of pathology images cannot be

recognized by the naked eyes of a pathologist.

Deep learning has presented outstanding advantages in

medical image analysis due to its powerful feature

representation (Litjens et al., 2017). Recent articles have

shown that deep learning can enhance the analysis of

pathology images for diagnostic and prognostic stratification

(Skrede et al., 2020; Shi J. et al., 2021; Zhang X. et al., 2022).

In practice, the labeling task mostly needs to spend much manual

labor with experienced experts to implement a specific task for

determining the target tissue. Especially, it is extremely

challenging to finish a pixel-level labeling task for gigapixel

images. Fortunately, the weakly-supervised learning approach

can be exploited to alleviate this question because the clinical

information almost includes a patient-level label (Lu et al., 2021).

Some works have investigated survival analysis based on time-

to-event data via deep learning methods. Both learning the

underlying dynamics of the modeling survival data and censoring

are two important issues in the survival analysis. The right-censored

cases led to the bias in the cross-Entropy-basedmodel. Aimed at this

question, the bias between them was analyzed systematically via

different deep-learning model comparisons (Zadeh and Schmid,

2021). For right-censored data, the recurrent neural network was

also utilized to conduct survival prediction and analysis. In addition,

the survival loss function was also improved to reduce the bias by

introducing the weight coefficient (Ren et al., 2019). Based on these

works, multi-modality data was exploited and fused to predict the

risk stratification for multiple types of cancers (Chen et al., 2022).

However, risk stratification according to existing clinical indicators is

not sufficient for OC patients. Thus, this study proposed a deep

survival network based on WSIs to predict risk scores and obtained

prediction of prognosis.

2 Materials and methods

2.1 Data collection and processing

For ovarian cancer prognostic analysis, we collected

106 patients’ H&E diagnostic WSIs with corresponding clinic

data from TCGA-OV (https://portal.gdc.cancer.gov/projects/

TCGA-OV) via the National Cancer Institute GDC Data

Portal. The inclusion criteria herein consist of three aspects:

1) The quality of WSIs was assessed by an experienced clinic

doctor; 2) retaining only one WSI for each case; 3) the case

contained both clinical information and WSIs. As a result,

90 cases (60 uncensored patients and 30 censored ones) were

incorporated to obtain a prediction model. Additionally, we

exploited the five-cross validation method to train the model.

Herein, we utilized an open-source tool, CLAM WSI-analysis

toolbox (Lu et al., 2021), to implement the segmentation and feature

extraction tasks for each WSI. In this scenario, each original WSI

consists of four levels of different resolutions. First, we segmented

the tissue region of interest from the level 0 with the highest

resolution in each WSI. Second, the whole slide image for each

patient was split into M patches with 256 × 256 pixels without

overlap. Third, a pre-trained deep network ResNet50 (trained on the

ImageNet dataset) was exploited to extract feature tensors by feeding

patches into it. Finally, the third block in the ResNet50 model was

selected to output the feature tensor with 1,024 dimensions.

Additionally, normalized gene expression was measured as

Transcripts Per Kilobase Millions, and we processed the genetic

mutation data of the TCGA dataset using the R package “maftools”.

2.2 Deep learning model

For each gigapixelWSI, it is a challenging task to provide pixel-

level labels via human labor. The goal of survival data analysis is to

train a predictor for hazard probability in a time interval based on

plenty of image patches. Thus, we designed a weakly-supervised

deep learning architecture as shown in Figure 1A, and the

representative images were shown in Figure 1B.

We split the entire pipeline into two parts. In the first part,

we extract M feature tensors X from M patches with 256 × 256

pixels via the pre-trained model. As we knew, the tissue region

of interest varies with each WSI. In the second part, an

attention-based network is designed to assign weights for

each feature tensor as the input of the subsequent fully

connected layer (FC). A set of learnable weight parameters

are obtained for all patches feature for one case.

Due to the size of the dataset being slightly small, a two-layer

network is designed to build the prediction layer. The overall
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network is optimized to predict the four hazard probabilities in

four intervals via the loss function. The patient-level risk score is

calculated by summing the four hazard scores. For subsequent

analysis, the high-group and low-group are divided according to

the median of all risk scores.

2.3 Loss function

To realize the survival analysis from patient-level data, we

divide evenly the overall patient survival time into four

intervals [ti,ti+1), i = 0,1,2,3 according to the uncensored

cases. Yj ∈ 0, 1, 2, 3{ } denotes the ground truth for the jth

case. The subscript j denotes the jth patient. The prediction

layer outputs the corresponding hazard probability as shown

in Eq. 1.

fhazard r
∣∣∣∣xj( ) � P Tj � r

∣∣∣∣Tj ≥ r, xj( ) (1)

where xj denotes the feature tensor for the jth case. Given Tj ≥ r
and xj, the conditional probability fhazard(r|xj) denotes the

probability that the time period Tj (in months) ends at time

r. The survival function fsurv is described in Eq. 2.

fsurv r
∣∣∣∣xj( ) � P Tj > r

∣∣∣∣xj( ) � ∏r

u�1 1 − fhazard u
∣∣∣∣xj( )( ) (2)

The loss function is exploited as shown in Eq. 3 (Zadeh and

Schmid, 2021).

L � Lcensored + Luncensored

� −cj log fsurv Yj

∣∣∣∣xj( )( ) − 1 − cj( )

log fsurv Yj − 1
∣∣∣∣xj( ) · fhazard Yj

∣∣∣∣xj( )( )

(3)

To balance the differences between the uncensored cases and

censored counterparts, a hyper-parameter α is utilized in the final

loss function Lsurv.

Lsurv � 1 − α( )L + αLuncensored (4)

2.4 HRD analysis

The HRD score is calculated as the sum of telomeric allelic

imbalance (TAI), large-scale state transitions (LST), and loss of

heterozygosity (LOH) scores (Shi Z. et al., 2021). HRD scores are

derived from research by Thorsson et al. (2018). HRD+ was

defined as a high HRD score (threshold >42 score).

2.5 Tumor immune infiltration and
pathway enrichment analysis

The relative infiltration level of immune cell types was

quantified via single sample gene set enrichment analysis

FIGURE.1
The overall network architecture. (A) The weakly-supervised deep learning architecture. (B) The representative images.
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(ssGSEA) by the “GSVA” R package (Hanzelmann et al., 2013).

GSEA was performed to assess related pathways.

2.6 Chemotherapeutic sensitivity
prediction

Chemotherapeutic response prediction for OC samples was

conducted in R by using the “oncoPredict” package (Maeser et al.,

2021) from the Genomics of Drug Sensitivity in Cancer (GDSC)

database (Yang et al., 2013). The ridge regression model was

applied to evaluate the half maximal inhibitory concentration

(IC50).

2.7 Nomogram construction

We performed a univariate analysis based on clinic

parameters and risk scores. Afterward, multivariate Cox

regression was conducted using the significant prognostic

variables (p < 0.05). The nomogram was generated using

the R package “rms”. We used calibration curves to test the

consistency between predicted and actual survival rates. A

time-dependent Receiver operating characteristic (ROC)

curve was also used to assess the predictive accuracy of the

nomogram. In addition, the Decision Curve Analysis (DCA)

was used to demonstrate the advantage of the prediction curve

using the R package “ggDCA”.

2.8 Statistical analysis

The statistical significance for variables with non-normal

distribution was analyzed using the Wilcoxon rank sum test.

The comparison between two groups of variables with

normal distribution was estimated using an unpaired

Student’s t-test. Non-parametric correlation analyses were

conducted based on Spearman’s rank correlation coefficient.

The prognostic analysis was performed by the Kaplan-Meier

analysis method, and the log-rank test was used to evaluate

significant differences. All statistical analyses were

conducted using Python software (version 3.7) and R

software (version 4.1.3). p < 0.05 was considered

statistically significant.

3 Results

3.1 The training and validation of deep
neural network

Overall 90 cases picked from the original TCGA-OV dataset

were divided randomly into training (72 cases) and test (18 cases)

datasets, respectively. We initialized the network parameters with

“nn.init ()” and adopted the Adam solver with a momentum of

0.9 for the training process. Batch size, epoch number, and α are

initialized as 1.40, 0.31, respectively. Additionally, the initial

learning rate is set to 0.0002 and decayed with a Cosine

Annealing schedule (Loshchilov and Hutter, 2017). To verify

the effectiveness of the proposed network model proposed, we

conducted a 5-fold cross-validation experiment on one NVIDIA

GeForce RTX 3090 GPU. We utilize Pytorch based on Python

3.7 to implement all training and test tasks.

C-index was originally proposed to evaluate predictions for

binary responses (Harrell et al., 1996). As an evaluation metric

utilized widely, it is herein utilized to evaluate the network

performance. Figure 2A demonstrated that the C-index overall

increased in the process of training. The C-index in the cross-

validation experiment varies from 0.5096 to 0.6053 and the

corresponding mean value was 0.5789. Figure 2B showed that

the loss function reduces overall in 5-fold cross-validation results.

To verify further the effectiveness of the deep survival

network, the KM curve was employed to analyze the

prediction results. The high- and low-risk cohort was

classified via the median value of the sorted hazard value

associated with each patient. The KM cure of overall survival

and recurrence-free survival were plotted as shown in Figures

3A, B. In addition, the p-value was calculated to analyze these

two distributions based on the log-rank test. p-value of

0.00845 demonstrated that there was a significant

difference between the high- and the low-risk score group

The clinical characteristics between the high and low risk

score subgroups, including age, stage, grade, and residuals

were presented in Table1 to provide a clearer understanding of

the sample distribution. Detailed risk score and clinical

characteristics were shown in Supplementary Table S1.

3.2 Predicting survival outcome of HRD
patients via risk score

Platinum-based chemotherapy is the essential treatment

for OC. Patients with HRD+ (HRD score> 42) and BRCA1/

2 mutation are more beneficial from chemotherapy, thus, we

evaluated the prognostic applications of the risk score in

HRD+ and HRD-subgroups. In the TCGA-OV cohort, the

HRD + subgroup displayed a significantly better OS than

HRD-group (p < 0.0001, Figure 4A). 61 overlapped patients

with WSIs and HRD scores were detected (Figure 4B). The

HRD + subgroup harbored mainly high-risk score population,

while the HRD-group revealed an opposite result (Figure 4C),

which suggested that the risk score may work in a different

way from the method based on HRD in predicting survival

outcomes. Moreover, survival analysis demonstrated a

significantly better OS in patients with high-risk score than

that with low-risk score in HRD + subgroup (p = 0.013;
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Figure 4D). Interestingly, there was no significant difference

in HRD-group comparing the OS of the two risk populations

(p = 0.92, Figure 4E). ROC curve analysis is used to assess the

sensitivity and specificity of prediction models and validate

the results of risk prediction values. The time-dependent ROC

curve proved the reliable performance of risk score in HRD +

subgroup (2-years AUC = 0.743, 3-years AUC = 0.718, 5-years

AUC = 0.775, Figure 4F). To present the HRD score, FIGO

staging, survival status, and risk score calculated by WSI as a

unified system, Sankey diagram was constructed to describe

the relationship between these features (Figure 4G).

3.3 Mutant landscape and immune
infiltration

The relationship between risk score and mutation landscape

has been assessed in OC patients. In both high- and low-risk

score groups, the top 20 mutated genes were presented in Figures

5A,B. TP53 (93%), USH2A (20%), and TTN (17%) exhibited the

most frequent mutations in the high-risk score group, while the

highly mutant genes in the low-risk score group were TP53

(79%), TTN (18%) and AHNAK (11%). Moreover, the high-risk

score group genes were enriched in HOMOLOGOUS

FIGURE 2
Evaluation metric and training loss were visualized. (A) The C-index changes with the epoch. (B) The whole loss reduces with the epoch.

FIGURE 3
The Kaplan-Meier curve was plotted based on the prediction hazard value for each case. (A,B), The overall [(A), p= 0.0085] and recurrence-free
[(B), p = 0.15] survival difference between high- and low-risk score groups.
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RECOMBINATION, OXIDATIVE_PHOSPHORYLATION,

and RIBOSOME pathway (Figure 5C), as well as the low-risk

score group genes were enriched in FOCAL ADHESION, JAK

STAT SIGNALING PATHWAY, and ECM RECEPTOR

INTERACTION pathway (Figure 5D). The mutation

(Supplementary Tables S2, S3) and GSEA data

(Supplementary Table S4) were shown in Supplementary

Material. We also tried to analyze the correlation between the

risk score and TMB, but got a negative result (Figure 5E). Since

the high antigenicity induced by tumor mutations can recruit a

large number of immune cells, we studied the relationship

between risk and TIDE score, to evaluate the predictive value

of risk score in immunotherapy outcomes. Unfortunately,

although the risk score was correlated with TIDE (p = 0.0091,

Figure 5F), the spearman correlation coefficient was relatively

low. These results were consistent with the poor response of

ovarian cancer to immunotherapy. Next, we analyzed the

relationship between risk score and immune cell infiltration

by ssGSEA. Several types of immune cells, such as the central

memory CD4 T-cell, central memory CD8 T-cell, and effector

memory CD8 T-cell, were found significantly less recruited in

high-risk group tumor environment (Figure 5G). The risk score

may be a supplemented as an indicative tool to further investigate

immune cell infiltration in ovarian cancer.

3.4 Chemotherapeutic response analysis

We attempted to identify whether the risk score could be

applied to predict the sensitivity of response to chemotherapies

using the GDSC database. The results revealed that the low-risk

score group had a lower half maximal inhibitory concentration

of BMS-754807, doramapimod, JAK1_8709, JQ1, NU7441,

RO3306, SB216763, and WZ4003, while the high-risk score

group had a lower half maximal inhibitory concentration of

cisplatin, leflunomide (Figure 6). The p38MAPK inhibitors

ralimetinib have been shown to play an anti-cancer role in

ovarian cancer (Campbell et al., 2014). While Doramapimod

also showed potent anti-inflammatory effects as p38MAPK

inhibitors (Schreiber et al., 2006), perhaps our study will

explore a new alternative for the application of

Doramapimod in ovarian cancer. Similarly, RO3306 (Yang

et al., 2016), SB216763 (Kaltofen et al., 2020) were also

shown to play an anti-cancer role in ovarian cancer.

Moreover, the combination of JQ1 and cisplatin helped

ovarian cancer-bearing mice survive (Yokoyama et al., 2016).

However, previous study showed that NU7441 could induce

resistance to PARP inhibitor in BRCA1-defective cells

(McCormick et al., 2017), and BMS-754807 combined with

carboplatin/paclitaxel was observed resistance in ovarian

TABLE 1 Characteristics between high- and low-risk score groups.

Characteristics Overall (N = 90) High risk score group (N = 45) Low risk score group (N = 45) p-value

Risk score (mean ± SD) 2.33 ± 0.42 2.66 ± 0.18 2.01 ± 0.33 <0.001

Age (mean ± SD) 59.96 ± 10.84 58.13 ± 10.40 61.78 ± 11.08 0.111

Stage (n, %) 0.494

I 2 (2.2) 0 (0.0) 2 (4.4)

II 3 (3.3) 2 (4.4) 1 (2.2)

III 62 (68.9) 32 (71.1) 30 (66.7)

IV 22 (24.4) 11 (24.4) 11 (24.4)

Unknow 1 (1.1) 0 (0.0) 1 (2.2)

Grade (n, %) 0.234

G2 2 (2.2) 0 (0.0) 2 (4.4)

G3 84 (93.3) 44 (97.8) 40 (88.9)

Unkown 4 (4.4) 1 (2.2) 3 (6.7)

Residual (n, %) 0.324

0 4 (4.4) 2 (4.4) 2 (4.4)

1–10 mm 44 (48.9) 25 (55.6) 19 (42.2)

11–20 mm 7 (7.8) 1 (2.2) 6 (13.3)

>20 mm 15 (16.7) 8 (17.8) 7 (15.6)

No macroscopic disease 20 (22.2) 9 (20.0) 11 (24.4)
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carcinosarcoma of patient-derived xenograft (Glaser et al.,

2015). Therefore, we should actively explore new strategies

for more drug combinations to avoid the resistance in

ovarian cancer. Our model provided possibility for novel

pathways of drugs. Also, we hope that more pre-clinical

models will prove our predicted results.

FIGURE 4
Predicting survival of HRD patients. (A) The survival difference between HRD+ and HRD-groups. (B) Obtaining HRD score and risk score
intersections with venn diagrams. (C) In the HRD+ subgroup, a high percentage of people with high risk score. (D, E) The survival difference in HRD+
subgroup (D) and HRD-group (E) between high and low risk score groups. (F) Time dependent ROC curves of risk score in HRD + group at 2, 3, and
5 years. (G) Described the relationship among HRD score, risk score, stage, and survival status by sankey diagram.
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3.5 Development of a nomogram for
predicting survival

Based on the available clinic features, Cox regression analyses

were conducted to identify the possibility that risk score was an

independent prognostic factor for OS. The univariate Cox

regression analysis revealed significant associations between

risk score and OS (HR = 0.48, 95% CI = 0.266–0.86, p =

0.0138, Figure 7A). When other confounding factors were

corrected, multivariate Cox regression analysis proved the risk

FIGURE 5
Mutant landscape and immune infiltration between high and low risk score groups. (A,B)Mutation landscape of OC patient with low risk score
(A) and high risk score (B). (C,D) Enrichment analysis based onGSEA in high risk score group (C) and low risk score group (D). (E)Comparison of tumor
mutation burden between high and low risk score groups. (F) Relationship between risk score and TIDE score. (G) Relationship between risk score
and immune infiltration.
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score of WSIs was an independent predictor of prognosis (HR =

0.505, 95% CI = 0.275–0.928, p = 0.028, Figure 7B).

Following the results of the Cox regression analysis, we

have further developed a nomogram incorporating two

independent prognostic factors (risk score and age) to offer

a quantitative method for estimating 2-, 3-, and 5-years

survival rates of OC patients (Figure 7C). In addition,

calibration plots showed that the nomogram was

comparable to an ideal model (Figure 7D). At 2, 3, and

5 years, the AUC of the risk score was 0.605, 0.578, and

0.680. Nomogram’s accuracy of prediction over 2, 3, and

5 years was significantly higher, at 0.680, 0.613, and 0.745,

respectively (Figure 7E). DCA result also indicated our

nomogram had a promising potential for clinical

application (Figure 7F).

4 Discussion

Tumor histology remains essential in predicting tumor

aggressiveness and evaluating prognostic stratification.

Previous studies have proved that deep learning models,

such as DeepSurv (Katzman et al., 2018)and AECOX

(Huang et al., 2020), can provide better predicted

performance than traditional Cox regression model in

predicting prognosis since learning the complex non-linear

interactions (Tran et al., 2021). In addition, several recent

studies have provided preliminary evidence that deep learning

can help predict patient prognosis from digital pathology

images (Skrede et al., 2020; Shi J. et al., 2021), but it is yet

unclear how this contributes to OC risk categorization. In our

study, we showed that WSIs data had a predictive capacity for

survival.

Based on this concept, we exploited an attention-based

network architecture to predict the hazard function based on

patient-level labels. Unfortunately, the sample size of the

TCGA-OV obtained 106 cases and only 90 cases were

incorporated into this experiment finally. It was prone to

overfitting for small sample datasets. To overcome the

overfitting issue, we reduced the parameter number of FC.

In the modeling process, the cross-entropy loss function and

negative log-likelihood loss function are popular approaches.

(Zadeh and Schmid (2021) analyzed the bias between two loss

functions. Experiment results showed that the cross-entropy-

based network tended to be similar to the respective results

obtained from log-likelihood-based training if the censoring

rate was high. The censored/uncensored case belongs to two

kinds of survival data. For deep learning algorithms, we

generally assume that the training dataset and test one are

subject to the same distribution. Especially, The TCGA-OV

dataset herein only obtained 90 cases after deleting some

unsuitable cases. Thus, we randomly split the dataset and

made the training have a similar portion in each fold. Of

course, we conducted the same operation in the test dataset.

The experiment results showed that the network presents a

good performance in terms of the C-index. However, more

cases incorporated will be helpful to enhance the model’s

accuracy. The prognostic analysis of ovarian cancer by

pathological images was included in the previous pan-

cancer analysis, which achieved a c-index of 0.57243 (Fu

et al., 2020), but our c-index was up to 0.6053. Moreover,

our method automatically selects regions of interest (ROI)

from the entire tissue field, which will allow pathologists to

enhance standard clinical workflows without additional

manual steps. And previous study has successfully

predicted the recurrence in breast cancer without ROI label

FIGURE 6
The predicted IC50 for chemotherapeutic drugs in the low and high risk score groups.
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FIGURE 7
Predicting survival by integrating risk score and clinical feature. (A,B) Univariate (A) and multivariate Cox regression analysis (B) showed risk
score and age were significantly correlated with overall survival. (C) Nomogram was constructed to predict the 2-, 3-, and 5-years survival of OC
patients. (D)Calibration curve of the nomogram for predicting the probability of OS at 2, 3 and 5 years. (E) Time dependent ROC curves of nomogram
at 2, 3 and 5 years. (F) Decision curve analysis of OS for the predicted nomogram model.
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(Phan et al., 2021). We believe that the approach will avoid

subjective bias.

We also performed analysis at the molecular level associated

with the pathological images, including in HRD subgroup

analysis, pathway enrichment analysis, etc., which was not

seen in the previous study. OC patients with HRD can

increase sensitivity to PARP inhibitors and improve overall

survival benefits. Previous studies have shown that integrating

image information and HRD status using machine learning

methods has increased the capability of prognostic prediction

for OC patients (Boehm et al., 2022), but no studies are using

WSIs data to assess prognosis in HRD patients. Thus, we

researched the survival differences in the HRD + subgroup

with a risk score. The results showed that patient survival

with a high-risk score was better than that with a low-risk

score. And AUC of time-dependent ROC curves verified the

reliable predicted performance of the risk score. Thus, the

pathological images can not only determine the risk

stratification of overall ovarian cancer patients but also

differentiate the prognosis of HRD subgroups of patients,

which may provide options for targeted therapy in OC patients.

Tumor microenvironment (TME) has been proved to play

an essential role in tumor proliferation, migration and

metastasis (Jiang et al., 2020). Here we found the low risk

score group slides harbor complex cellular components as a

common characteristics in WSI. In addition, Park et al. (2022)

analyzed tumor-infiltrating lymphocytes based on AI using

WSI, which illustrated the relationship between the

characteristics of WSI and TME. The similar relationship

between risk score based on WSI and immune cell

infiltration was presented in our study.

Ovarian cancer with low tumor-infiltrating lymphocyte is

considered “cold” tumor (Yang et al., 2022). The results of our

immune infiltration analysis also showed no difference in

activated CD8 T-cells between the high and low risk score

subgroups. Interestingly, we found that there was significant

difference in central memory T-cells, such as central memory

CD8 and CD4 T-cells. The central memory T-cells have high

proliferative potential compared to effector memory T-cells,

which contributes to the formation of the patient’s immune

memory pool (Sallusto et al., 2004). Sckisel et al. (2017)

showed that the composition of the memory pool at

different loci had a strong influence on the overall

expression of those markers in the memory pool. For

example, the memory ratio of CD8 subpopulations was

more skewed toward central memory T-cell in the

lymphoid region (Sallusto et al., 2004). Therefore, we

hypothesized that the characteristic marker distribution of

the immune memory pool in ovarian cancer patients could be

detected by the advantage of spatial visualization of WSI, and

predicting the recurrence and survival of patients. However,

there are fewer studies on central memory T-cells in ovarian

cancer, and experiments will be needed to explore in the

future.

By GSEA analysis, we found that pathways associated with

HRD were enriched, such as homologous recombination

pathways. DNA can be repaired by high-fidelity homologous

recombination when double-stranded damage occurs. The risk of

cancer will increase when HR is dysregulated (Helleday, 2010). In

addition, we observed that the ribosomal pathway was also

enriched. It has been shown that deficient ribosome assembly

was associated with cancer, while mutation in ribosomal proteins

regulated the translation and activity of p53, ultimately leading to

disease (Goudarzi and Lindstrom, 2016). Interestingly, it was

found that pathways associated with TME, such as the ECM

pathway (Sangaletti et al., 2017), were enriched by GSEA

analysis. The previous study has proven that the invasion and

survival of tumor cells can be promoted by ECM-mediated

signaling (Conklin and Keely, 2012). Cancer patients, such as

pancreatic and colorectal cancer, with high levels of ECM change

deposition have a poor prognosis (Levental et al., 2009; Calon

et al., 2015; Isella et al., 2015). Similarly, several studies have

suggested that abnormal activation of focal adhesion and JAK-

STAT was associated with progression and poor prognosis of

ovarian cancer (Yang et al., 2019; Zhang J. et al., 2022).

We further observed the different sensitivity to

chemotherapy drugs in two risk groups. The risk scores

obtained from the WSIs had a low correlation coefficient with

the TIDE score, which meant that the risk score was not a good

predictor of response to immunotherapy. Our findings

demonstrated that the high-risk score group had higher

IC50 levels for several chemotherapeutic drugs, indicating the

OC patients with low-risk scores were more responsive to the

selected drugs. Additionally, the risk score can be utilized as an

independent prognostic factor. By combining risk score with age

to draw a nomogram, the model had a stable and powerful

survival predictive capability. However, some limitations of this

research should be noted. Firstly, the risk score has not been

validated in external clinical settings, although we are planning

the clinical validation of our WSI datasets. Additionally,

prospective multi-center studies may be needed to test our

model and to overcome possible biases of the retrospective

research.

In summary, this study proposed a deep learning framework

based on WSI to predict patient prognosis in OC. We believed

that the prognostic indicator has the possibility of being used by

clinicians to improve decision-making.
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