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Antimicrobial peptides (AMPs) are alkaline substances with efficient bactericidal

activity produced in living organisms. As the best substitute for antibiotics, they

have been paid more and more attention in scientific research and clinical

application. AMPs can be produced from almost all organisms and are capable

of killing a wide variety of pathogenic microorganisms. In addition to being

antibacterial, natural AMPs havemany other therapeutically important activities,

such as wound healing, antioxidant and immunomodulatory effects. To

discover new AMPs, the use of wet experimental methods is expensive and

difficult, and bioinformatics technology can effectively solve this problem.

Recently, some deep learning methods have been applied to the prediction

of AMPs and achieved good results. To further improve the prediction accuracy

of AMPs, this paper designs a new deep learning method based on sequence

multidimensional representation. By encoding and embedding sequence

features, and then inputting the model to identify AMPs, high-precision

classification of AMPs and Non-AMPs with lengths of 10–200 is achieved.

The results show that our method improved accuracy by 1.05% compared to

the most advanced model in independent data validation without decreasing

other indicators.
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1 Introduction

Antimicrobial peptides (AMPs) are host defense molecules produced by the innate

immune system in a variety of organisms and have many advantages, such as rapid killing,

low toxicity, and broad activity (Fjell et al., 2009), and their drug resistance is relatively

low. About 50% of the amino acids in AMP are hydrophobic, and they can adopt an

amphiphilic structure, which enables them to interact with and penetrate cell membranes,

which then lead to disruption of membrane potential, changes in membrane permeability,

and permeation of metabolites leakage, eventually leading to bacterial cell death (Kumar
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et al., 2018). AMPs not only exhibit synergy with antibiotics, but

may also synergize with the immune system (Pasupuleti et al.,

2012). At present, there are corresponding drug-resistant

pathogenic strains of conventional antibiotics, and the drug-

resistant problem of pathogenic bacteria has increasingly

threatened people’s health. Finding new antibiotics is an

effective way to solve the drug-resistant problem. The

characteristics of high antibacterial activity, broad antibacterial

spectrum, and wide selection range are considered to be an

effective way to solve the problem of drug resistance

(Hancock and Sahl, 2006). Given the multiple advantages of

AMPs, there is an urgent need to identify new AMPs.

In recent years, the rapid development of bioinformatics has

provided a rational design method for the acquisition of AMPs.

We can predict AMPs based on their sequence information. At

present, the research on sequence classification algorithms

mainly focuses on the combination of classification algorithms

and biological sequence features. Various applied machine

learning models have also been applied in AMPs prediction,

for example, support vector machines (SVM) (Lata et al., 2010;

Meher et al., 2017; Agrawal et al., 2018; Gong et al., 2021; Zou

et al., 2021; Zhang Q. et al., 2022), random forest (RF) (Bhadra

et al., 2018; Veltri, 2015; Nakayama et al., 2021; Yang et al., 2021;

Ao et al., 2022; Lv et al., 2022a), discriminant analysis (DA)

(Thomas et al., 2010; Waghu et al., 2016), Hidden Markov (Fjell

et al., 2009), k-nearest neighbors (Xiao et al., 2013), etc. The core

problem of such methods is how to perform feature extraction on

protein sequences, which is greatly affected by the feature

extraction method, which limits the maximum performance of

the model. In addition, artificial feature engineering is often

required when machine learning builds a classification model. In

this process, important information is likely to be lost. Deep

learning methods that have developed rapidly in recent years can

effectively solve this problem.

Deep learning methods can automatically learn features

from the raw data through convolution operations, avoiding the

loss of data features. Various deep learning methods have been

applied in protein sequence classification, such as bidirectional

long short-term memory network (Bi-LSTM) (Tng et al., 2021;

Zhang Y. et al., 2022; Zhang et al., 2022c; Li et al., 2022; Qiao

et al., 2022; Wang et al., 2022), two-dimensional convolutional

neural network (2D CNN) (Le et al., 2021), deep residual

network (ResNet) (Xu et al., 2021), graph convolutional

network (GCN) (Chen et al., 2021), deep neural network

(DNN) (Gao et al., 2019; Han et al., 2019; Le et al., 2019;

Hathaway et al., 2021), and Recurrent Neural Network (RNN)

FIGURE 1
The workflow.
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(Zheng et al., 2020; Yun et al., 2021). These research methods

have generally achieved good classification results and have

attracted increasing attention. In the prediction of AMPs, deep

learning methods have also received attention, such as deep

neural network (DNN) (Veltri et al., 2018; Su et al., 2019; Fu

et al., 2020; Yan et al., 2020), bidirectional long short-term

memory network (Bi-LSTM) (Sharma et al., 2021a; Xiao et al.,

2021; Sharma et al., 2022), and Transformer (Zhang et al.,

2021). These models all demonstrate the superiority of deep

learning in AMPs prediction.

Whether it is a machine learning method or a deep

learning method, the first step of these methods is to

represent protein sequences as machine-readable and to

encode biological sequences with features, that is, to map

biological sequences to digital sequences using digital signal

processing methods. It is widely used in biological sequence

classification. As an important biological sequence analysis

method, biological sequence encoding has been studied by

many scholars, for example, the interaction of protein

sequences (Moretta et al., 2020; Khabbaz et al., 2021; Wani

et al., 2021; Söylemez et al., 2022), sparse coding (binary

coding) (Spänig and Heider, 2019; Akbar et al., 2021; Jain

et al., 2021; Ren et al., 2022). In addition, pre-trained models

in natural language processing (NLP) have been used in

protein sequence analysis, for example, the word2vec

method (Zhang et al., 2019; Dao et al., 2021) and the

N-gram method (Li et al., 2018; Wu and Yu, 2021) showed

excellent performance in prediction.

The AMPs classification methods are usually based on

machine learning or deep learning consider the interaction

between protein sequences and represents the sequences as a

matrix, ignoring the upstream and downstream information of

the sequences, and the prediction accuracy will be reduced during

the classification process. In this paper, deep learning-based

feature combinations of N-gram encoding, K-space amino

acid pair composition (CKSAAP), position-weighted amino

acid composition (PWAA), and raw sequence number

encoding were selected to predict AMPs. The CKSAAP

encoding effectively describes the short-range interactions

between amino acids, the PWAA encoding determines the

positional information of amino acids in the protein sequence,

and considers the upstream and downstream information of the

protein sequence, and the N-gram encoding enhances the

expression of the protein sequence and reduces the training

process. Information is lost. It not only considers the

interaction and positional weight of amino acids in the

protein sequence but also combines the upstream and

downstream information in the sequence and enhances the

expression of the AMPs sequence, avoiding the above

problems and improving the prediction performance. To

evaluate the model, we use a 10-fold cross-validation method.

Figure 1 shows our workflow.

2 Materials and methods

2.1 Baseline datasets

In this study, we used the dataset of (Sharma et al., 2021b),

which collected AMPs data belonging to 13 phyla and

41 kingdoms (animal kingdom) categories from NCBI and

StarPepDB databases and obtained Non-AMPs data from the

UniProt database. This dataset considers all AMPs of suitable

TABLE 1 Statistics for datasets.

Total Cross-validation Independent

AMPs 10,187 6,657 3,530

Non-AMPs 10,422 6,773 3,649

FIGURE 2
Bi-gram encoding process.
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length in the animal kingdom to train the model. After the data is

de-redundant, the dataset finally consists of 10,187 AMPs and

10,422 Non-AMPs, shown in supplementary materialthe, which

contains about 65% of AMPs and non-AMPs. AMPs were used

as the cross-validation dataset to train our model, and the rest

contained about 35% of AMPs and non-AMPs as independent

datasets for evaluating model performance, whose composition is

shown in Table 1.

2.2 Encoding method of sequence

2.2.1 Raw sequence encoding
Protein is composed of 20 kinds of amino acids, each

amino acid is represented by a character, and the sequences

represented by these 20 kinds of characters contain important

biological genetic information. The raw sequence encoding,

that is, mapping the sequence to a set of numbers, reflects the

selection bias of the AMPs sequence at each amino acid

position. If given a protein sequence of length n,

S � (s1, s2, . . . , sn), where si ∈ {A, R, N, D, C, Q,
E, G, H, I, L, K, M, F, P, S, T, W, Y, V }, i � 1, 2, . . . , n, then

the sequence S can be expressed as a one-dimensional vector of length

n. For example, a protein sequence FLPKLFAKITKKNMAHIRC

with a length of 19 can be used as a vector

[5, 1 0, 1 3, 9, 1 0, 5, 1, 9, 8, 1 7, 9, 9, 1 2, 1 1, 1, 7, 8, 1 5, 2]1 9.
The maximum length of protein sequences in the dataset used in

this paper is 200, so we set the sequence coding dimension to

200, and all sequences shorter than 200 are filled with 0 at

the end.

2.2.2 Composition of k-space amino acid pairs
(CKSAAP) encoding

CKSAAP is a coding scheme based on the interaction

between amino acid pairs, which has been widely used in

protein prediction (Yuan et al., 2022). CKSAAP can represent

amino acids as a combination of multiple amino acid pairs

with spacing K (Chen et al., 2011), reflecting the short-range

FIGURE 3
Model architecture diagram.
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interaction between amino acid pairs. If K = 0, there are

400 residue pairs with spacing 0 (AA, AC, AD, AE, . . ., YY).

The eigenvector can be calculated by Eq. 1:

( NAA

NTotal
,
NAC

NTotal
,
NAD

NTotal
,
NAE

NTotal
, . . . ,

NYY

NTotal
)

400

(1)

Where, NTotal = L-K-1, NTotal represents the total number of

residue pairs in the protein sequence, L represents the

sequence length, and K represents the amino acid spacing.

For example, when the sequence length is 200 and K = 0, 1, 2,

3, the values of NTotal are 199, 198, 197, and 196. In this paper,

we take K as 0, 1, 2, 3, 4, and 5, so the total dimension of this

feature is 2,400.

2.2.3 Position weighted amino acid composition
(PWAA) encoding

To determine the position information of amino acids in

the protein sequences, we used the PWAA method for

encoding. Given amino acid residue ai (i = 1, 2, 3,..., 20),

we can calculate the positional information of ai in a protein

sequence by Eq. 2:

Ci � 1
L(L + 1)∑L

j�−Lxi,j(j +
∣∣∣∣j∣∣∣∣
L
)(j � −L, . . . , q, . . . , L) (2)

Where L represents the data of upstream residue or downstream

residue at the central site of the protein sequence fragment, if ai is

the residue at the jth position of the protein sequence fragment,

then x (i, j) = 1, otherwise x (i, j) = 0. Generally, the closer ai is to

the center position (position 0), The smaller the absolute value of

Ci. The PWAA encoding involves 20 kinds of amino acid

residues, so this method encodes a dimension of 20.

2.2.4 N-gram encoding
N-gram is a statistical language model, which can be applied

to protein sequence analysis to enhance the expression of protein

sequences (Sharma and Srivastava, 2021). We treat each amino

acid residue of a protein sequence of length L-N+1 as a word and

each sequence as a sentence. In this study, our data length is

short, and the Bi-gram (binary model) and tri-gram (ternary

model) we used are enough to enhance the expression of AMPs

sequences. For an raw sequence of length n S= (s1, s2, . . . sn), Bi-

gram can be expressed as S2=(s1s2,s2s3, . . . ,s(n-1)sn), whose length

is n-1, and the coding process is shown in Figure 2. Similarly, Tri-

gram can be expressed as S3=(s1s2s3,s2s3s4, . . . ,s(n-2)s(n-1)sn),

whose length is n-2. To align the encoding length of the

N-gram, we set the encoding length of the N-gram to 200,

and the encodings shorter than 200 are padded with 0 at the

end, so the dimensions of the Bi-gram and Tri-gram are

200 respectively.

FIGURE 4
Benchmark dataset protein sequence length statistics.
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2.3 Deep learning model

Our deep learning model consists of three parts: encoding

layer, embedding layer, and convolutional layer. The model

architecture is shown in Figure 3.

We convert protein sequences into numerical vectors using

CKSAAP, PWAA, N-grams, and the numerical encoding of the

raw sequence and then pass these vectors into the embedding

layer. The embedding layer converts the sparse vector into a

dense vector and reduces the dimension of the vector to facilitate

the processing of the upper neural network. The processing

process of the embedding layer can be represented by the

following matrix operations. The first matrix represents the

input feature matrix, the middle matrix represents the weight

of this layer, and the multiplied result matrix represents the

dimension-reduced feature matrix.

[ 0 1 0 0 ] × ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
2
4

5
2

7
1

2 8 5
3 6 8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � [ 4 2 1 ]

The convolution layer convolutes the embedded matrix E

with N parallel convolution blocks, which can be composed of a

set of triples {(sk, qk, rk)}(k=1,..., N), where sK represents the size of

the convolution filter, qk represents the number of convolution

filters in the convolution block, and rk represents the activation

FIGURE 5
sequence logo diagram.
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function corresponding to the convolution block. The

convolution direction is one-dimensional convolution along

the direction of the sequence, and the convolution block will

output a set of feature maps {Zk ∈ R(l−sk+1) × qk }k�1, ...,N , the

convolution block k can be expressed by Eq. 3:

Zk(m, q) � ak(∑e

i�0∑sk

j�0C(i, j, k) × E(i,m + j)) (3)

Where, q = 1, . . . , qk, C∈ Re×sk×qk contains the weight tensors of

all qk convolution filters in this convolution block. ak is the

activation function, and we use Rectified Linear Unit (ReLU) as

the activation. Zk (m, q) is the feature map Zk of the (m, q)th

element in the training phase.

Global average pooling integrates global spatial information,

while CKSAAP and PWAA codes encode protein sequences as

sparse matrices (with many 0s). Choosing global average pooling

may reduce the accuracy of prediction, while global pooling can

preserve more Boundary information. Therefore, after obtaining

each feature map, we perform a global maximum pooling

operation to reduce the number of features in the training

phase to prevent overfitting. The vector hk can be calculated

by Eq. 4:

hk � [max Zk(: , 1); max Zk(: , 2); . . . ; max Zk(: , qk)] (4)

Finally, the vector h = [h1; h2; . . .; hN] is obtained by fully

connecting all hk, and the prediction results are output.

Because the learning rate is greatly affected by the output

error, the cross-entropy loss function has a larger parameter

adjustment range in the early stage of model training, which can

make the model training converge faster. To improve the

classification efficiency, we use the binary cross-entropy

function as our loss function, which can be expressed by Eq. 5:

Loss � − 1
N
∑N

i�1yi × log(p(yi)) + (1 − yi) ×log(1 − p(yi)) (5)

Where, y represents the binary label 0 or 1, and p(y) represents the

probability that the output belongs to the y label. If the predicted

value p(y) approaches 1, then the value of the loss function should

approach 0. Conversely, if the predicted value p(y) approaches 0 at

this point, the value of the loss function should be very large.

2.4 Model evaluation

To objectively evaluate the performance of this method,

we train the model using a 10-fold cross-validation method,

which randomly divides the negative and positive samples

into k (k = 10) equal-sized subsamples. Among the k

subsamples, one sub-sample is reserved as validation data

for testing the model, and the remaining k-1 subsamples are

used as training data (Lv et al., 2022b; Zhang et al., 2022d).

Then repeat the cross-validation process for K (k = 10) times

(folds), and each sub-sample is used only once as

validation data.

To evaluate the precision of the results, we use 7 metrics of

accuracy (Acc), sensitivity (Sn), precision (Pr), specificity (Sp),

F1 score (Fs), balance accuracy (Ba), and area under the curve

(AUROC) on independent datasets, as shown in Formulas 6 to 12.

Acc � TP + TN

TP + FN + TN + FP
(6)

Sn � TP

TP + FN
(7)

Pr � TP

TP + FP
(8)

Sp � TN

TN + FP
(9)

TABLE 2 Comparison of different combination feature coding methods.

Coding Acc(%) Sn(%) Pr (%) Sp(%) Fs(%) Ba (%) AUROC(%)

Seq + CKSAAP 96.36 97.34 95.36 95.42 96.34 96.38 99.38

Seq + PWAA 95.10 98.20 92.66 91.86 95.35 95.03 99.17

Seq + Bi-gram 97.57 98.48 96.83 96.62 97.65 97.55 99.64

Seq + Tri-gram 96.94 98.11 95.73 95.83 96.90 96.97 99.49

Seq + CKSAAP + PWAA + Bi-gram + Tri-gram 98.11 99.15 97.21 97.02 98.17 98.08 99.74

Note: the best performance on a metric is marked in bold.

FIGURE 6
Comparison of different combination feature coding
methods.
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Fs � 2 × Sn × Pr

TN + FP
(10)

Ba � Sn + Pr

2
(11)

AUROC � ∫TPRd(FPR) (12)

Where, TP is the true positive, FP is the false positive, TN is the

true negative, FN is the false negative, TPR is the true positive and

FPR is the false positive.

3 Results and discussion

3.1 Sequence composition analysis based
on benchmark datasets

All proteins are made up of 20 amino acid residues, but the

frequency of amino acid residues in each protein varies and the

lengths of the amino acid sequences that make up the protein vary.

During model training, the composition of peptides in the

benchmark dataset is very important to analyze the properties of

antimicrobial peptides. By counting the centralized peptide lengths

of the AMPs and Non-AMPs data, the peptide lengths of our AMPs

and Non-AMPs data sets are between 10 and 200, and most of the

peptides are below 100 in length, as shown in Figure 4.

To analyze the sequence consisting of the benchmark dataset,

we counted the occurrence frequency of different amino acids at

each sequence position. Since the length of AMPs sequences is

mainly concentrated in 10–100, we only draw the sequence logo

diagram of the first 100 positions, as shown in Figure 5. It can be

seen from the figure that specific amino acids belonging to AMPs

and Non-AMPs have different positional preferences. In the

AMPs sequence, the positions 22–42 are often occupied by

glutamic acid (E), and in the Non-AMPs sequence, the

positions 22–42 are often occupied by glutamic acid (E). The

positions 4–33 are often occupied by leucine (L), and this

difference may be due to their belonging to different protein

families.

FIGURE 7
Comparing ROC curves with different feature codes. Note: (B) is a partially enlarged view of (A).

TABLE 3 Performance comparison of different models.

Methods Acc(%) Sn(%) Pr (%) Sp(%) Fs(%) Ba (%) AUROC(%)

AMPFUN 54.76 53.85 54.01 55.63 53.93 54.74 64.26

AMP Scanner vr.2 81.71 90.40 76.61 73.31 82.94 81.85 89.37

CAMPR3-ANN 71.64 63.71 74.87 79.31 68.84 71.51 71.51

CAMPR3-RF 70.20 70.40 69.43 70.02 69.91 70.21 74.15

CAMPR3-SVM 74.45 75.98 73.12 72.98 74.52 74.48 76.60

CAMPR3-DA 68.85 67.28 68.72 70.38 67.99 68.83 72.75

ADAM 74.15 67.85 76.86 80.24 72.07 74.04 74.04

ANIAMPpred 96.82 94.99 98.50 98.60 96.71 96.79 99.30

Our model 97.87 98.39 97.46 97.32 97.92 97.85 99.73

Note: performance values of other methods come from Sharma. The best performance on a metric is marked in bold.

Frontiers in Genetics frontiersin.org08

Dong et al. 10.3389/fgene.2022.1069558

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1069558


3.2 Comparison of feature coding
methods for different combinations

To study the prediction effect of different feature encodings, we

conducted experiments on the combination of these three feature

encodings with the original sequences based on the verification set.

We treat the Bi-gram and Tri-gram encodings as independent

feature encoding methods, and finally, combine all the features

for experiments, so we did five sets of comparative experiments.

CKSAAP encoding and PWAA encoding only extract amino acid

combination and position information. The feature encoding is a

sparse matrix with many 0 elements. When it is used alone, the

prediction accuracy is relatively low, so the original sequence

encoding is added to the experiment to make up. The

experimental results are shown in Table 2.

It can be found by observation that in the combination with

the original sequence, Bi-gram encoding has the best prediction

effect, and the sizes of various indicators after combination are

most similar to Bi-gram encoding. Bi-gram encoding combines

two adjacent amino acids to enhance sequence expression.

Compared with Tri-gram encoding, Bi-gram encoding has

stronger local association expression. PWAA encoding has the

worst prediction effect and the various indicators are not as

balanced as the other three encoding methods. This encoding

method considers the upstream and downstream information of

the sequence and does not consider the interaction between amino

acids. It has only 20 dimensions and is a sparse matrix, which

contains data Relatively few, even if there is a supplementary

prediction effect encoded by the raw sequence, the effect is not

good enough. CKSAAP encoding describes short-range

interactions between amino acids. Although its form is also a

sparse encoding, it has higher dimensions and more information,

so the prediction effect is better than PWAA encoding. The

prediction results of this study are most affected by Bi-gram

encoding and less affected by PWAA encoding. After we

combine these kinds of codes, the prediction effect is improved.

As can be seen from Figure 6, this feature combination combines

the advantages of these kinds of feature codes and considers the

interaction of amino acids in protein sequences, position weights,

and upstream and downstream information. And it is not affected

by the imbalance of PWAA encoding indicators.

To judge the recognition ability of various encoding

combinations for AMPs, we plotted the ROC curves of

various combinations, as shown in Figure 7.

3.3 Comparison with other methods

To prove the effectiveness of our method, we compared the

prediction results of the method proposed in this paper with

other most advanced models (AMPFUN (Chung et al., 2020),

AMP Scanner vr.2 (Veltri et al., 2018), CAMPR3 (Waghu et al.,

2016), ADAM (Lee et al., 2015), ANIAMPpred (Sharma et al.,

2021b)) based on independent test sets. The results are shown in

Table 3 and Figure 8. It can be seen from the figure that the

performance of ANIAMPpred and the method proposed in this

paper is far superior to other models. In terms of PR and SP

indicators, ANIAMPpred is slightly higher than our method, but

we are the highest in other indicators. The accuracy of our model

is 1.05% higher than that of the most advanced method.

4 Discussion

In this paper, we combine CKSAAP, PWAA, N-gram, and

raw sequence encoding and apply a deep learning approach to

predict AMPs. First, we analyzed the benchmark dataset and

compared the differences. Then, we separately evaluated and

analyzed the prediction effects of CKSAAP, PWAA, N-gram

encoding, and raw sequence encoding combination. Finally, we

compare state-of-the-art methods, and the results show that this

method has the best performance. We combined CKSAAP,

PWAA, N-gram encoding, and original sequence encoding,

which not only considered the interaction between amino

acids commonly used by other methods, but also considered

the upstream and downstream information ignored by other

methods, and enhanced the AMPs sequence. Therefore, this

method has better performance.

Our method achieves high-precision classification of AMPs

based on protein sequence information and yields good

performance. But AMPs may have undesirable properties as a

drug, including instability and toxicity. In studies of synthesizing

and modifying AMPs, even small changes can alter the function

of AMPs. This method can only identify AMPs and does not

consider the functional characteristics of AMPs. Further research

can be carried out according to the functions of AMPs, which will

help to better understand the mode of action of AMPs and

predict their activities.

FIGURE 8
Performance comparison of different models.
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