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Background: Although mRNA vaccines have been effective against multiple

cancers, their efficacy against stomach adenocarcinoma (STAD) remains

undefined. Immunotyping can indicate the comprehensive immune status in

tumors and their immune microenvironment, which is closely associated with

therapeutic response and vaccination potential. The aim of this study was to

identify potential antigens in STAD for mRNA vaccine development, and further

distinguish immune subtypes of STAD to construct an immune landscape for

selecting suitable patients for vaccination.

Methods: The gene expression and clinicopathological features of patients with

gastric cancer were downloaded from The Cancer Genome Atlas (TCGA) and

Genotype-Tissue Expression Program (GTEx). 729 samples fromGSE66229 and

GSE84437 were downloaded through GEO and were used as the validation

cohorts. Differential gene expression, genetic alterations and prognosis were

analyzed using the R package, cBioPortal program and Kaplan-Meier. The

relationship between tumor antigens and immune cells was evaluated and

plotted by TIMER. ConsensusClusterPlus was used for consistency matrix

construction and data clustering, and graph learning-based dimensional

reduction was used to depict immune landscape. WGCNA was used to

estimate the relationship between the color modules and immune subtypes.

Results: Two overexpressed and mutated tumor antigens associated with poor

prognosis and infiltration of antigen presenting cells were identified in STAD,

including RAI14 and NREP. The immune subtypes showed distinct molecular,

cellular and clinical characteristics. IS1 and IS2 exhibited immune-activated

phenotypes and correlated to better survival compared to IS3, while IS3 tumors

was immunologically cold. Immunogenic cell death modulators, immune

checkpoints, and CA125, and CEA were also differentially expressed among

the three immune subtypes. Finally, the immune landscape of STAD showed a

high degree of heterogeneity between individual patients.

Conclusion: RAI14 and NREP are potential antigens for developing anti-STAD

mRNA vaccine, and patients with IS1 and IS3 tumors may be suitable for

vaccination.
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Background

Gastric cancer (GC) is a global health problem, with more

than one million new cases and an estimated 769,000 deaths in

2020, ranking fifth in global incidence and fourth in mortality.

Incidence rates of GC are highest in Eastern Asia and Eastern

Europe (Lin et al., 2021; Sung et al., 2021). The preferred method

for early GC is endoscopic gastrectomy. Non-early GC is treated

with surgery, which should include D2 lymphadenectomy for

radical effects (Smyth et al., 2020). Perioperative treatment and

adjuvant chemotherapy can provide curative resection and

extend the survival time for patients with stage 1B and higher

cancers (Sexton et al., 2020). Patients with progressive GC who

are treated with combination chemotherapy, median survival is

less than 1 year (Fuchs et al., 2019; Shitara et al., 2020; Janjigian

et al., 2021). Even with the advances made in the treatment of

biologics, anti-angiogenic therapy, and immunotherapy for

chemorefractory gastric cancer, the treatment efficacy remains

limited and is subject to different tumor biology in various

populations (Joshi and Badgwell, 2021).

Immunotherapy has revolutionized oncology treatment,

including cytokine therapy, adoptive cell transfer (ACT),

cancer vaccine, and immune checkpoint therapy. Cancer

immunotherapy acts directly on the tumor microenvironment

(TME) and re-engaged the anti-tumor immune response.

Patients can achieve significant clinical responses, but only a

subset of tumor types can benefit from it (Li et al., 2021). Immune

checkpoint inhibitors (ICIs) targeting programmed cell death

protein 1 (PD-1) and its ligand 1 (PD-L1) have prolonged

median survival in clinical trials with single or multiple drug

combinations, but many patients do not suit for the treatment

(Shitara et al., 2020; Janjigian et al., 2021; Kwon et al., 2021).

Cancer vaccines is a promising immunotherapy, and

sipuleucel-T plays an important role in the treatment of

prostate cancer as the first cancer vaccine approved by the

American Food and DrugAdministration (FDA). Although

there are several types of cancer vaccines, mRNA vaccines

have the advantages of providing the complete epitopes and

expressing more protein compared with other types of vaccines.

With the development of technology in recent years, the

difficulties of synthesis, purification, storage and

transportation in the development of mRNA vaccine have

been overcome. Therefore, using mRNA vaccine to treat

gastric cancer is very promising. However, the antigen and

potential patients of mRNA vaccine in gastric cancer remain

to be studied.

In our analysis, bioinformatics methods was used to

screen potential antigens for gastric cancer mRNA

vaccines by gene expression level, mutation frequency,

association with antigen presenting cells, and prognostic

effect. In addition, we constructed 3 subtypes of gastric

cancer by combining immune-related genes and consistent

clustering method. These subtypes have significant

differences in immune cell infiltration, tumor mutation

load and prognosis, which can be used as an indicator to

select the population suitable for tumor vaccine. Finally, we

used the method of pseudo-time analysis and WGCNA to

select potential predictors of mRNA vaccine efficacy.

Materials and methods

Data collection

The gene expression and clinicopathological features of

336 tumor samples and 36 paracancer samples and

174 normal samples were extracted from The Cancer Genome

Atlas (TCGA, https://portal.gdc.cancer.gov/) and Genotype-

Tissue Expression Program (GTEx, https://www.gtexportal.

org/) through UCSC Xena (http://xena.ucsc.edu/) (Goldman

et al., 2020). A total of 729 gastric cancer samples from

GSE66229 and GSE84437 were downloaded through GEO

DataSets (https://www.ncbi.nlm.nih.gov/gds/) and was used as

the validation cohort.

Data preprocessing

The exclusion criteria of transcriptome samples were as

follows: 1) Without survival information; 2) Without age, sex,

or the American Joint Committee on Cancer Tumor Node

Metastasis (AJCC TNM) stage information; 3) Has received

neoadjuvant therapy. Genes with zero Fragments per Kilobase

Million (FPKM) in more than half of the samples will be

eliminated.

Identification of tumor antigens

The differentially expressed genes (DEGs) between STAD

and normal tissue were identified by the Wilcox test with the

criteria of |log2FC| > 1 and p-value <0.01. Based on the

cBioPortal for Cancer Genomics (cBioPortal, http://www.

cbioportal.org), DEGs with significant genetic alterations

(p-value <0.05) were further selected for survival analysis.

Genes with p-value < 0.01 in Kaplan-Meier method of overall

survival (OS) and recurrence-free survival (RFS) were taken

for candidate tumor antigens. The relationship between
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tumor antigens and immune cells was evaluated and plotted

by Tumor IMmune Estimation Resource (Li et al., 2016)

TIMER.

Construction and validation of the
immune subtypes

4983 immune-related genes were extracted from

published immune gene sets and articles (Bindea et al.,

2013; Bhattacharya et al., 2014; Wolf et al., 2014; Newman

et al., 2015; Becht et al., 2016; Bhattacharya et al., 2018;

Nirmal et al., 2018; Miao et al., 2020). Based on TCGA

transcriptome expression profile, a matrix with

3367 immune genes was finally brought into Consensus

clustering analysis through R package named

ConsensusClusterPlus (Wilkerson and Hayes, 2010). The

“1-Pearson correlation” was used to evaluate distance and

500 bootstraps were performed to acquire robust subtypes.

The best number of subtypes was decided by the consensus

matrix, consensus cumulative distribution function, and the

relative change in area under CDF curve. The centroids of

TCGA immune subtypes and pearson correlation were used

to infer the immune subtypes of two GEO validation cohorts.

Relationship between immune subtypes
and clinicopathological features

To evaluate the relationship between immune subtypes

and clinicopathological features, the distribution of stage,

lauren classification, CEA and CA125 in different immune

subtypes was analysed. The effect of immune subtypes on

overall survival was also validated in training cohort and

validation cohorts. The number of mutation genes and tumor

mutation burden (TMB) were also compared among immune

subtypes.

Immune landscape of STAD

The single sample gene set enrichment analysis (ssGSEA)

was used to caclulate the enrichment score of immune cell

signatures in each sample (Hanzelmann et al., 2013). Different

levels of immune checkpoints (ICPs), immunogenic cell death

(ICD) modulators and immune-related signatures among

immune subtypes were compared.

The distribution and evolution of STAD samples was

evaluated by the Monocle package. When creating the

monocle object, lowerDetectionLimit was set to 0.1 and

expressionFamily was set to negbinomial. size. Genes with low

expression are filtered by detectGenes function. Then the

DDRTree method was used for dimension reduction.

Identification of potential biomarkers for
mRNA vaccine

In order to select candidate genes that can potentially predict

the effect of mRNA vaccine, the weighted correlation network

analysis (WGCNA) (Langfelder and Horvath, 2008) was used to

estimate the relationship between the color modules and immune

subtypes. The analysis was apply on the 3367 immune-related

genes. A gene correlation matrix with a optimal soft thresholding

of power 4 was used to derive the adjacency matrix. Modules

were obtained with the following criterion: A minimum module

size of 30 and a minimum height for merging modules of 0.2.

Results

Identification of tumor antigens of STAD

2286 upregulated protein-coding differentially expressed

genes between STAD and normal tissue were selected for

potential antigens of STAD and distributed on different

chromosomes (Figure 1A). 3056 genes with a high mutation

frequency of altered genome fraction and mutation counts were

screened for further analysis (Figures 1B,C). As shown in Figures

1D,E, TP53 gene and RN7SKP29 gene were the most frequently

mutated genes. Genes with highly mutation count included

ADD3, ACVR2A, and ANKRA2. Synthesizing the above

result, 302 intersection genes of upregulated DEGs and highly

mutated tumor specific genes were extracted.

Kaplan-Meier analysis was used to select prognosis-related

tumor antigens and 2 genes showed significant correlation with

the OS and RFS (Figure 2A). Both of these genes named

RAI14 and NREP are oncogenes (Figures 2B,C and

Supplementary Figure S1A,B). All of them were positively

correlated with macrophages, dendritic cells and CD4+ T cells

while the expression of NREP was associated with CD8+ T cells

(Figure 2D). Thus, these results suggest that the 2 prognosis-

related potential tumor antigens may be recognized and

processed by antigen presenting cells (APCs) and trigger

immuneresponse, and were suit to develop mRNA vaccine

for STAD.

Construction and validation of immune
subtypes

The expression matrix of STAD in TCGA and corresponding

3367 immune genes extracted from published immune gene sets

and articles were used as training cohort to construct the immune

subtypes. K value was tested from 2 to 10 and consensus

clustering was based on 1,000 resampled datasets through the

ConsensusClusterPlus package (Supplementary Figures S1A–C,

S2G). We found that there was no clear defining feature when we
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chose k = 4. In the end, we chose k = 3 for the reason that the

clustering result could be explained in the context of the

biological meaning of STAD. Clustering results were named as

IS1-IS3, where IS3 was associated with better prognosis and

IS2 predicts a poor prognosis through Kaplan-Meier analysis

(Supplementary Figures S1F, S2C). The survival outcome was

consistent with the distribution of pathological type and AJCC

stage in different clusters. Patients with advanced tumors (stage

III/IV) or diffuse pathologic subtype accounted for a high

proportion in the IS2 subtype and patients with early stage

(stage I/II) or intestinal pathologic subtype accounted for a

high proportion in the IS3 subtype (Supplementary Figures

S1D,E). Higher levels of CEA and CA125 can be used for

diagnosis, prognosis and recurrence of gastric cancer, but the

sensitivity and accuracy of both still need to be improved. The

expression of CEA and CA125 was no significant difference in

different immune subgroups, indicating that immune subtype is

superior to the two tumor biomakers in predicting prognosis of

STAD patients (Figures 3A,B).

To verify the stability of subgroups, the centroid method

was used to predict the immune subtypes of GSE66229 and

GSE84437. More than 70% of the samples can be matched to

the corresponding immune subtypes. Due to different data

sources and gene numbers, some samples did not match the

corresponding immune subtypes. Compared with the

survival plot, the difference in overall survival among

immune subtypes was more obvious in the two validation

cohorts (Supplementary Figures S1, S2D). The distribution

trend of AJCC stages and pathological types in the validation

cohorts was similar to that in the training cohort

(Supplementary Figures S1G,H). The above results indicate

that Immune subtypes were closely related to

clinicopathological features, affecting the overall survival

of patients, and has good applicability and extensibility.

Mutation status in different immune
subtypes

Since the mutation status is related to the degree of immune

infiltration in tumor, the mutation status of each immune

subtypes was analyzed and waterfall plot was shown in

Figure 3E. Samples of genes with high mutation frequency

had the higher proportion in IS1 and IS3. The number of

mutant genes and tumor mutation burden in IS1 and

IS3 were higher than those in IS2 (Figures 3C,D). Therefore,

IS1 and IS3 may accept higher effectiveness of mRNA vaccine

compared to IS2.

FIGURE 1
Identification of potential tumor antigens of STAD. (A) Identification of potential tumor-associated antigens of STAD. Chromosomal distribution
of up- and down-regulated genes in STAD as indicated. (B–E) Identification of potential tumor-specific antigens of STAD. Samples overlapping in (B)
altered genome fraction and (C)mutation count groups. Geneswith highest frequency in (D) altered genome fraction and (E)mutation count groups.
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Distinction of immunological cold and hot
tumor

The effectiveness of immune checkpoints (ICPs) depends on

the tumor immunity state. The expression levels of ICPs and

immunogenic cell death (ICD) modulators in different immune

subtypes were calculated. More than 85% ICPs were different

with significant statistical difference in different immune

subtypes. Most ICPs, such as CD200, CD27, CD40, and

CD48, have the same trend, with high expression in IS1 and

IS2 and low expression in IS3 (Figures 4A,B and Supplementary

Figure S2E). The result shows that immune checkpoint inhibitors

may be useless in patients of the IS3. Similarly, more than 75%

ICD modulators showed statistically significant differences

among immune subtypes. Most ICD modulators have low

expression in IS3, but relatively high expression in IS1 and

IS2. Similar results can be obtained in two validation sets

(Figures 4C,D and Supplementary Figure S2F). These results

further suggests that the patients of IS1 and IS2 may have better

effectiveness of ICPs and ICD modulators.

To further identify cold and hot tumors, the enrichment of

28 immune cells in samples were analyzed. The heat map shows

that almost all immune cells are enriched in the IS1. In the

IS2 subtype, most immune cells were significantly enriched

except CD56dim Natural killer cell, Type 17 T Helper cell,

Neutrophil and Activated CD4 T cell. However, the

enrichment of immune cells in IS3 was just opposite to that

in IS2. These results were further verified in two validation

FIGURE 2
Identification of tumor antigens associated with STAD prognosis. (A) Potential tumor antigens with high expression and mutation in STAD, and
significant association with OS and RFS (total 2 candidates). (B,C) Kaplan-Meier curves showing OS of STAD patients stratified on the basis of (B)
RAI14, (C) NREP expression levels. (D) Identification of tumor antigens associated with APCs. Correlation between the expression levels of RAI14,
NREP and infiltration of macrophages, dendritic cells, CD8+T cells and CD4+T cells in STAD tumors.
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cohorts (Figures 5A–D and Supplementary Figures S3A,B).

Therefore, the IS1 and IS2 are immune “hot” tumors, while

IS3 is immune “cold” tumors. To further verify this result, we

compared the relationship between these 3 immune subtypes and

the 6 immune subtypes previously identified by pan-cancer

(Figure 5F) (Thorsson et al., 2018). The results showed that

the IS1 mainly included C1, C2and C3, IS2 mainly included C1,

C2 and C3, and IS3 mainly contained C1, C2 and C4.

Interestingly, C3 is characterized by an inflammatory and

C6 is characterized by lymphocyte depleted. These results not

only suggest that our classification are consistent with pancancer

classification, but also show the reliability of cold and hot

classification.

In addition, we further verified the relationship between

another 56 molecular signatures and immune subtypes, and

identified 38 significantly associated immune-related

signatures with FDR <0.01 as the threshold (Figure 5E). The

results showed that IS1 had the highest scores for lymphocyte

infiltration, IFN-γ and CD8 T cell, IS2 had the highest scores for

TGF-β response, monocytes, naive B cell and CD4 memory

T cell, and IS3 had the highest scores for wound healing and

macrophages. It is suggested that although IS3 is not effective for

FIGURE 3
Association betweenmutation status and different immune subtypes. (A,B) Association between immune subtypes and (A)CEA and (B)CA125 in
STAD IS1-IS3. (C,D) Association between immune subtypes and (C) TMB and (D)mutation number in STAD IS1-IS3. (E) Ten highly mutated genes in
STAD immune subtypes. *p < 0.05 and ****p < 0.0001.
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ICD modulators and ICPs, but it may have a good effect for

mRNA vaccines, which brings a therapeutic dawn for patients

with immune “cold” tumors.

Immune landscape of STAD

In order to explore the relationship between immune

subtypes and the degree of immune cell infiltration,

monocle was used to conduct clustering and pseudotime

analysis based on TCGA data. There was a correlation

between the two main components and the degree of

immune cell infiltration (Figure 6E). It also can be found

that IS1 is distributed diffusely, and IS2 is mainly divided into

branches 1 and 7, while IS3 subtype is differentiated in the

opposite direction to IS2 and mainly distributed in branches

4, 5, and 6 (Figures 6A,B). Survival analysis of these branches

showed that there was no significant difference in survival

between the two branches of IS2, but the trend of overall

survival in branch 1 was better than that in branch 7

(Figure 6D). In the IS3, significant statistical difference

was found in the survival analysis of the three branches,

and the overall survival in branch 6 was better (Figure 6C).

These results suggest that the immune landscape based on

immune subtypes is related to the degree of immune cell

infiltration and affects prognosis, which is beneficial to the

selection of personalized mRNA vaccine.

Identification of potential biomarkers for
mRNA vaccine

For the sake of finding biomakers of mRNA vaccines,

WGCNA was used to look for modules associated with

immune subtypes. The matrix of 3367 immune genes was

analyzed and divided into 11 modules by setting the soft

threshold of 4 and the minimum 30 genes for each module

(Supplementary Figures S3C–E). Different immune subtypes in

different modules have different eigengenes (Figure 6F). We can

find that IS1 is highly correlated with magenta module, IS2 is

highly correlated with pink, red and turquoise modules, and

IS3 is highly correlated with pink, red, turquoise, brown and

magenta moduels according to correlation analysis (Figure 6G).

Univariate cox regression analysis showed that pink, red and

FIGURE 4
Association between immune subtypes and ICPs and ICD modulators. (A,B) Differential expression of ICPs genes among the STAD immune
subtypes in (A) training cohorts and (B)GSE66229 cohorts. (C,D)Differential expression of ICDmodulator genes among the STAD immune subtypes
in (C) training cohorts and (D) GSE66229 cohorts. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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turquoise modules were correlated with prognosis (Figure 7A),

while Kaplan-Meier analysis suggest that only pink and turquoise

modules were associated with overall survival of STAD (Figures

7C,E and Supplementary Figure S3G). Pink and turquoise

modules are highly correlated with principal component 1 of

monocle analysis (Figures 7B,D and Supplementary Figure S3F).

Combined with the aforementioned results, pink and turquoise

modules may be related to the effect of mRNA vaccine, and

14 genes named COL3A1, COL8A1, COL6A3, PDGFRB,

MAP1B, KANK2, MAP1A, AOC3, FERMT2, SPARCL1,

JAM3, FHL1, AKT3, and ANK2 that has the highest

correlation with the two modules may be the potential

biomakers of mRNA vaccine.

Discussion

The first step to explore the application of mRNA vaccines in

gastric cancer is to find suitable antigen and suitable population

for vaccination. mRNA vaccines work in the same way as

traditional vaccines through improving the recognition of

antigen presenting cells and further activating the immune

response. Based on this principle, we use bioinformatics

methods to infer appropriate antigens, which can lay a

foundation for our next step work.

You et al. (2022) pioneered the study on immune subtype

of mRNA vaccination for STAD and identified ADAMTS18,

COL10A1, PPEF1, and STRA6 as potential mRNA vaccine

FIGURE 5
Cellular and molecular characteristics of immune subtypes. (A) Differential enrichment scores of 28 immune cell signatures among STAD
immune subtypes in training cohorts. (B) Differential enrichment scores of 4 prognostically relevant immune cell signatures in training cohorts. (C)
Differential enrichment scores of 28 immune cell signatures among STAD immune subtypes in GSE66229 cohorts. (D)Differential enrichment scores
of 4 prognostically relevant immune cell signatures in GSE66229 cohorts. (E) Differential enrichment scores of 56 immune signatures among
STAD immune subtypes and 38 immune signatures with FDR <0.01. (F) Overlap of STAD immune subtypes with 6 pancancer immune subtypes.
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candidates. In this study, we screened samples from TCGA and

GTEx databases and performed dual validation in

GSE66229 and GSE4437 cohorts to identify a series of

targeted antigens. RAI14 and NREP were innovatively found

to be promising mRNA vaccine candidates. These two antigens

were not only associated with OS and RFS, but also with a

variety of APC, and their upregulation was positively

correlated with macrophage and DC infiltration. Since

mRNA vaccine encoded antigens need to be presented by

macrophages and DC, our results suggested that these two

mRNA vaccine candidates may play a key role in the tumor

biological behavior of STAD. Although these candidate genes

must undergo subsequent functional validation, their potential

for mRNA vaccine development has been supported by

previous reports. For example, several literatures have

reported that RAI14 is highly expressed in gastric cancer

tissues, and its expression level is correlated with the

prognosis of gastric cancer patients. High expression of

RAI14 can be used as an independent predictor of poor

prognosis in STAD patients (He et al., 2018; Xiao et al.,

2020). RAI14 promotes cell growth and invasion, and is

regulated by circNFATC3/Mir-23b-3p axis in STAD.

RAI14 also plays an important role in the recruitment and

regulation of infiltrating immune cells (Yan et al., 2021). Chen

et al. (2018) found that RAI14 knockdown could inhibit the

proliferation, migration and invasion of gastric cancer cells and

promote cell apoptosis by down-regulating the Akt pathway.

NREP is highly expressed in embryo and mouse brain, and can

participate in cell proliferation, migration, differentiation and

other biological functions (Pan et al., 2002; Yao et al., 2015).

NREP plays an important role in the progression of malignant

tumors and may be involved in the activation of cancer-related

fibroblasts and epithelial-mesenchymal transition (EMT), both

of which are mediated by transforming growth factor-β1 (Liu

et al., 2021). In addition, Liu et al. (2021) reported that the

expression of NREP was positively correlated with the

FIGURE 6
Immune landscape of STAD. (A) Immune landscape of STAD. Each point represents a patient and the immune subtypes are color-coded. The
horizontal axis represents the first principal component and the vertical axis represents the second principal component. (B) Immune landscape of
the subsets of STAD immune subtypes. (C) Immune landscape of samples from three branches of IS3 and their prognostic status. (D) Immune
landscape of samples from two branches of IS2 and their prognostic status. Differential enrichment scores of 28 immune cell signatures in the
above subsets. (E) Heat map of two principal components with 28 immune cell signatures. (F) Differential distribution of feature vectors of each
module in STAD subtypes. (G) Module-trait relationships of STAD immune subtypes.
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abundance of M2 macrophages, which are potent

immunosuppressors, suggesting that NREP is overexpressed

in GC and affects the prognosis.

In view of tumor heterogeneity, the results of clinical trials of

mRNA vaccines have shown benefits for only a small proportion

of cancer patients. mRNA vaccines need to be “tailored” to the

FIGURE 7
Identification of immune hub genes of STAD. (A) Forest maps of single factor survival analysis of 11 modules of STAD. (B) Correlation between
pink module feature vector and principal component 1 in immune landscape. (C) Differential prognosis in pink module with high and low mean. (D)
Correlation between turquoise module feature vector and principal component 1 in immune landscape. (E) Differential prognosis in turquoise
module with high and low mean.
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mutated antigen of patient’s tumor tissue. We developed three

immune subtypes of STAD based on immune gene expression

matrix and immune genome to select the appropriate population

for vaccination. These three immune subtypes showed different

molecular, cellular and clinical characteristics. In the training

cohort, patients of IS1 showed a better prognosis than the other

subtypes, while patients of IS2 showed a worse prognosis, which

was generally consistent with the distribution of AJCC stages and

pathological types, suggesting that these immune subtypes can be

used to predict the prognosis of STAD. There was no significant

difference in the expression of serum tumor markers CEA and

CA125 in different immune subtypes, indicating that immune

subtypes have superior predictive accuracy than these two tumor

markers. The mutation status of immune subtype is one of the

key factors for the effectiveness of mRNA vaccine, which is

related to the degree of immune invasion of tumor. We

investigated the molecular and cellular characteristics of the

three immune subtypes, and the results showed that the

number of mutant genes and tumor mutation burden of

IS1 and IS3 were higher than those of IS2, suggesting that

patients of IS1 and IS3 may be more responsive to mRNA

vaccines.

Most ICPs were highly expressed in IS1 and IS2 and low

expressed in IS3, while most ICD modulators were lower

expressed in IS3 but relatively higher expressed in IS1 and

IS2. These results further suggested the patients of IS1 and

IS2 may have better effectiveness of ICPs and ICD

modulators. To further characterize the differences in immune

status among different subtypes, we studied the enrichment of

28 types of immune cells. Immune cells were most extensively

enriched in IS1. In the IS2 subtype, most immune cells were

significantly enriched except CD56dim Natural killer cell, Type

17 T Helper cell, Neutrophil and Activated CD4 T cell. However,

the enrichment of immune cells in IS3 was just opposite to that in

IS2. Therefore, the IS1 and IS2 are immune “hot” tumors, while

IS3 is immune “cold” tumors. The correlation analysis of

56 molecular features with immune subtypes also confirmed

above result. It is suggested that although IS3 is not effective for

ICD modulators and ICPs, but it may have a good therapeutic

effect for mRNA vaccines, which brings a therapeutic dawn for

patients with immune “cold” tumors.

The complex immune landscape of STAD suggests

considerable heterogeneity among individual patients as

well as among the same immune subtypes, and by

narrowing down immune components, therapies based on

personalized mRNA vaccines can be developed. The monocle

was used to conduct clustering and pseudotime analysis based

on TCGA data. There was a correlation between the two main

components and the degree of immune cell infiltration.

IS1 was distributed diffusely, and IS2 was mainly divided

into branches 1 and 7, while IS3 subtype was differentiated

in the opposite direction to IS2 and mainly distributed in

branches 4, 5 and 6. There was no significant difference in

survival between the two branches of IS2, but the trend of

overall survival in branch 1 was better than that in branch 7. In

the IS3, significant statistical difference was found in the

survival analysis of the three branches, and the overall

survival in branch 6 was better. The immune landscape

based on immune subtypes is related to the degree of

immune cell infiltration and affects the prognosis, which

facilitates the selection of personalized mRNA vaccines.

Kaplan-Meier analysis suggest that only pink and turquoise

modules were associated with overall survival of STAD. Pink

and turquoise modules are highly correlated with principal

component 1 of monocle analysis, suggesting that patients

with high levels of expression of these genes may have a better

response to mRNA vaccines. At last, 14 genes named

COL3A1, COL8A1, COL6A3, PDGFRB, MAP1B, KANK2,

MAP1A, AOC3, FERMT2, SPARCL1, JAM3, FHL1, AKT3,

and ANK2 that has the highest correlation with the two

modules may be the potential biomakers of mRNA vaccine.

Conclusion

RAI14 and NREP are potential STAD antigens for

development of mRNA vaccines. Patients of IS1 and IS3 may

be better candidates for vaccination. mRNA vaccines may also be

available for patients with immunologically “cold” tumors. Our

results provide a new rationale for developing anti-STADmRNA

vaccines, predicting patient outcomes, and selecting patients for

vaccination.
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