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The identification of cell types in complex tissues is an important step in

research into cellular heterogeneity in disease. We present a linear fast

semi-supervised clustering (LFSC) algorithm that utilizes reference samples

generated from bulk RNA sequencing data to identify cell types from single-cell

transcriptomes. An anchor graph is constructed to depict the relationship

between reference samples and cells. By applying a connectivity constraint

to the learned graph, LFSC enables the preservation of the underlying cluster

structure. Moreover, the overall complexity of LFSC is linear to the size of the

data, which greatly improves effectiveness and efficiency. By applying LFSC to

real single-cell RNA sequencing datasets, we discovered that it has superior

performance over existing baseline methods in clustering accuracy and

robustness. An application using infiltrating T cells in liver cancer

demonstrates that LFSC can successfully find new cell types, discover

differently expressed genes, and explore new cancer-associated biomarkers.
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1 Introduction

Bulk RNA sequencing (RNA-seq) technologies have been widely used to investigate

gene expression patterns at the tissue level in recent decades (Conesa et al., 2016).

However, they measure average global gene expression, which obscures true signals

between heterogeneous cell types in the tissues. This technical limitation catalyzed the

birth of single-cell RNA sequencing technology (scRNA-seq), which investigates RNA

biology at the single-cell level. The transcriptome processes of humans and animals are

highly heterogeneous; hence, it is more comprehensive and effective to study gene

expression patterns using scRNA-seq (Li and Wang, 2021) in applications such as

tumor heterogeneity (Bartoschek et al., 2018; Zhang et al.,. 2021a), disease diagnosis

(Gate et al., 2020; Zakharov et al., 2020), and therapeutic treatment optimization (Zhang
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et al., 2020). The application of scRNA-seq data involves cell type

identification (Aran et al., 2019; Wei and Zhang 2021), selection

of differentially expressed genes (Sokolowski et al., 2021), cell-

development trajectory construction (Liu et al., 2022), and

cell–cell communication inferencing (Zhang et al., 2021b).

Among these applications, cell type identification is the most

fundamental and essential. Traditional cell type identification

methods consist of two steps: clustering cells using unsupervised

learning algorithms and labeling cells based on specifically expressed

marker genes in each cluster (Butler et al., 2018; Wang et al., 2018).

While practical, these methods depend heavily on clustering

performance and on prior knowledge of marker gene signatures,

and they have high time complexity due to the calculated amounts of

the cells’ similarity measurement stage. Based on labeled scRNA-seq

data, researchers have proposed two types of cell type identification

methods based on supervised learning. The first group of methods

involves training a robust classifier on pre-labeled cells and then

annotating other unlabeled cells with the trained classifier (Shao et al.,

2021; Heydari et al., 2022). Another group ofmethods consists of two

steps: embedding unlabeled cells into the subspace of labeled cells and

then assigning the unlabeled cells according to the nearest neighbor-

labeled cells (Pliner, Shendure, and Trapnell, 2019; Lotfollahi et al.,

2021). Given the limitations to labeled scRNA-seq datasets,

supervised methods cannot be widely used, especially for

discovering rare cell populations (Qi et al., 2020).

Compared with scRNA-seq datasets, many bulk RNA-seq

datasets have been archived in recent decades. Hence, some cell

type identification methods integrating bulk RNA-seq datasets with

known cell types have also been proposed recently. These methods

attempt to use information from bulk RNA-seq data to annotate

single-cell data. Specifically, they often identify cell types by

correlating single-cell transcriptomes with reference datasets of

pure cell types sequenced by RNA-seq, then iteratively improve

the label inferences. SingleR (Aran et al., 2019) and RCA (Li et al.,

2017) are the only two knownmethods of identifying cell types based

on reference bulk RNA-seq data. However, it is difficult to detect

subtle differences between cells using information from an external

reference, since information from one sample in the bulk data comes

from one tissue, while the information from the scRNA-seq data

comes from one cell (Li and Wang, 2021).

To address these issues, we present a linear fast semi-

supervised clustering (LFSC) algorithm that integrates

reference-bulk and single-cell transcriptome data using an

anchor graph to improve the effectiveness and efficiency of

clustering. The overview of LFSC is shown in Figure 1.

• Unlike SingleR and RCA, LFSC generates a dictionary

matrix with m reference samples from bulk RNA-seq

data or labeled scRNA-seq datasets by averaging gene

expression profiles in the same cell type. Then, LFSC

learns the relationship between cells in scRNA-seq data

and the reference samples, generating an anchor graph

with k-connected components, where k denotes the

number of clusters.

• The advantages of LFSC are that 1) its affinity matrix, based

on an anchor graph, preserves the underlying cluster

FIGURE 1
orkflow of the LFSC.
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structure of the data, which also reduces memory costs, and

2) its overall complexity is linear to the size of the data,

which greatly improves effectiveness and efficiency.

• Through benchmark evaluations with 21 real scRNA-seq

datasets and application to infiltrating T cells in liver

cancer, we demonstrate that LFSC is superior to existing

baseline methods.

2 Methods and materials

We consider LFSC to be different from supervised learning,

in which the goal is to minimize one specific loss function, given

the labels of samples. LFSC is also different from unsupervised

learning because it is designed under weak supervision: a small

set of bulk RNA-seq data, called reference samples, can represent

the neighborhood structure of cells in scRNA-seq data. LFSC is

regarded as a semi-supervised method since prior knowledge of

referenced cell types, generated from bulk RNA-seq data, is

combined in the unsupervised clustering process. The details

of related studies and the LFSC method are provided in the

following paragraphs.

2.1 Subspace clustering and anchor graph

Given a set of data X ∈ Rd×n, where n and d denote the

number of samples and the number of features, respectively,

subspace clustering assumes that data samples can be represented

by a linear combination of samples underlying the same

subspace. This means that X � XS, where the linear

combination matrix S ∈ Rn×n can be modeled as the similarity

graph among samples. To find the optimal solution of S, the

estimating process is formulated as

min
S

‖X −XS‖2 + δf(S) s.t. S≥ 0, S1 � 1, (1)

where δ > 0 is a hyperparameter that balances the reconstruction

error (first term) and the regularize function (second term f(·)).
1 denotes a column vector with all elements being one. The time

complexity in solving Eq. 1 is 0 (n3), which is costly in terms of

running time and storage for large-scale data.

Anchor points, a small set of data samples, were selected to

represent the landmarks of the data and preserve the underlying

neighbor structure (see Supplementary Section S7). To reduce the

computational sources, the anchor graphA ∈ Rn×m between anchor

points and other data points was used in subspace clustering (Chen

and Deng, 2011) as the anchor graphA is smaller than the similarity

graph S. The estimating process is reformulated as

min
A

‖X − ZA‖2 + δf(A) s.t. A≥ 0, A1 � 1 , (2)

where Z denotes the dictionary matrix. Typically, the anchor points

are selected by implementing the K-means algorithm on the dataset

(Chen and Deng, 2011), and the centroid points in K-means are

updated by calculating the average signals of samples in the same

cluster. Hence, the average characteristic of the anchor points is

naturally similar to that of the referenced bulk RNA-seq samples,

which measure the average expression levels of specific genes in one

tissue. We believe the anchor graph to be a potential tool for

integrating reference bulk RNA-seq and scRNA-seq data.

2.2 Data preprocessing

In LFSC, the data preprocessing procedure includes two

steps: quality control and normalization. First, data quality

control is utilized to filter the low-expressed genes. If a gene

has less than 5% or more than 95% of non-zero elements across

all cells, it is filtered out. For data normalization, we utilize log-

transform normalization, in which each element (mij) of the

expression profile M is transformed as follows:

�mij � log⎛⎝mij × 10000∑imij
+ 1⎞⎠. (3)

2.3 Selecting highly variable overlap genes

To reduce redundant features, we first identified the set of

genes that were most variable in the expression profile, using the

function FindVariableFeatures in the package Seurat (Butler

et al., 2018). The details of selecting highly variable

overlapping genes are provided in Supplementary Section S8.

After selecting the highly variable genes, we then selected the

genes that overlapped between the remaining genes in scRNA-

seq data and the genes in bulk RNA-seq data.

2.4 Structured anchor graph learning

Constructing an affinity matrix among cells is the key step to

identifying cell types in most computational approaches. In

LFSC, we integrated reference bulk RNA-seq data and

scRNA-seq data into the anchor graph with k-connected

constraint, which not only improves the clustering

performance but also reduces the computational sources.

Structured anchor graph learning consists of two steps:

generating reference samples with bulk RNA-seq data and

constructing a structured anchor graph with reference

samples. We used the scRNA-seq data matrix

X � (x1,/, xi,/xn) ∈ Rm×n, with m highly variable genes

and n cells, and the bulk RNA-seq data matrix

R � (r1,/, rj,/rd) ∈ Rm×d, with m highly variable genes

and d samples. Details of the structured anchor graph

learning are provided in the following paragraphs.
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2.4.1 Generating reference samples from RNA-
seq data

In LFSC, we must generate the reference samples which

are regarded as anchor points in the anchor graph. Typically,

the reference samples are generated from the bulk RNA-seq

data. We calculated Pearson’s correlation coefficients P(xi, rj)
between cell xi and bulk sample rj. We also generated the

remaining sample set R′∈ Rm×d′, the element having the

greatest correlation, with at least one cell compared to

other bulk samples:

R′ � ⎧⎨⎩rj
∣∣∣∣ argmax

rj∈R
P(xi, rj) and∃xi ∈ X

⎫⎬⎭. (4)

With the emergence of the labeled scRNA-seq data, LFSC

also provides the option of generating reference samples

from the scRNA-seq data. We generated one reference

sample for each cell type by measuring the average

expression profile for highly variable genes from cells in

the same cell type.

2.4.2 Constructing the structured anchor graph
with reference samples

Given the scRNA-seq data X � (x1,/, xi,/xn) ∈ Rm×n

and reference sample R′ � (r1′,/, r′j,/rd′
′) ∈ Rm×d′, we

utilized the bipartite graph B � [ 0 A

AT 0
] ∈ R(d′+n)×(d′+n) to

represent the anchor graph A ∈ Rd′×n. The normalized

Laplacian L is defined as

L � I − D
−(1

2)
BD

−(1
2)
, (5)

where D ∈ R(d′+n)×(d′+n) is a diagonal matrix, the ith diagonal

element of which is calculated as dii � ∑d′+n
j�0 bij. Chung and

Graham (1997) have demonstrated that the normalized

Laplacian L associated with non-negative matrix B has the

following property.

Theorem 1. The number of connected components in the

bipartite graph B is equal to the multiplicity k of the

eigenvalue zero of the normalized Laplacian L.

Theorem 1 indicates that if rank(L) � (d′ + n) − k, the

bipartite graph B with d′ reference samples and n cells can be

clustered into k groups. Motivated by Theorem 1, we added a

constraint to the clustering model, which is formulated as

min
A

����X − R′A
����2 + δ‖A‖2, s.t.A≥ 0,A1 � 1,

rank(L) � (d′ + n) − k.
(6)

As the rank constraint is hard to solve, we borrowed the

idea from the related literature (Nie et al., 2019) to relax Eq.

6 as

min
A

����X − R′A
����2 + δ‖A‖2 + βTr(FTLF), s.t.A≥ 0,A1 � 1,

FTF � I, (7)

where F ∈ R(d′+n)×k. In LFSC, the problem (Eq. 7) can be solved

by an alternating optimization method; more precisely, we solved

A and F by fixing one solution and then updating the other one

iteratively (see details in Supplementary Section S1).

2.4.3 Estimating the cluster number k
Before the implementation of LFSC, we automatically

estimated the cluster number k using the R package clustree

(Zappia and Oshlack, 2018) with the default parameters. The

details for estimating the number of clusters are provided in

Supplementary Section S9. Finally, the clustering results were

achieved by performing the K-means algorithm with the

estimated cluster number k. The pseudo-code for LFSC is

summarized in Algorithm 1.

2.4.4 Identifying cell types via labeled
transcriptomics data

In LFSC, we annotated cell types in scRNA-seq by calculating

the Pearson coefficient between cell types from labeled

transcriptomics data and cluster annotations of unknown

scRNA-seq data. Based on the overlapping HVGs, the cell

type of scRNA-seq data is annotated as

rci � mean(xl), s.t.xl ∈ ci;

CT(rci) �
⎧⎪⎨⎪⎩

{CT(rj)∣∣∣∣∣∣ argmax
rj∈R

P(rci, rj)} if P(rci, rj)> 0.6,∃rj ∈ R,

Unknown type, else P(rci, rj)≤ 0.6,∀rj ∈ R;

(8)
CT(xl) � CT(rci).

where C � {c1,/ci,/cK} is denoted as the K clustering results,

and ci and rci are the clustering index and the reference cell of

cluster i, respectively. We defined CT(θ) as the cell type of the
cluster or reference sample θ. The correlation analysis of

overlapping variable genes between reference transcriptomics

data and unlabeled scRNA-seq data was implemented to

distinguish closely related cell types. The pseudo-code for

LFSC is summarized in Algorithm 1.

2.5 Complexity analysis

In LFSC, we utilized an anchor graph to integrate the

reference samples from bulk RNA-seq data and unlabeled

cells from the scRNA-seq data, so that the complexity

would reduce significantly. More precisely, we defined the

number of iterations as t. In the alternating optimization

method, we applied SVD on A∈ Rd′×n(d′≪ n) to calculate

the matrices U (taking O(t(d″3 + d′n))) and W (taking

O(td′n)). Using Supplementary Eq. 4, the problem can be
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efficiently solved in parallel using the MATLAB function

quadprog, costing O(td′3n). In addition, it costs O(t′nk2) in
applying K-means on U to obtain the clustering results, where

t′ denotes the number of iterations in K-means. Hence, the

overall time complexity of the LFSC is linear to the number of

cells n. For space complexity, in addition to commonly used

sources like storing the scRNA-seq data O(mn) and bulk

RNA-seq data O(d′n), we need the storage sources O(d′n)
for A, while that of the original graph A is O(n2). In the

alternating optimization method, the matrices B and D are

stored as the sparse matrix, given their specific structures,

while the space complexities of U, V andW are O(nk), O(d′k)
and O(d′n). Hence, the complete space complexity of LFSC

also reduces significantly.

2.6 Evaluation metrics, test datasets, and
baseline methods

We used the adjusted Rand index (ARI), accuracy (ACC),

normalized mutual information (NMI), purity, and silhouette

coefficient as our evaluation metrics (see details in

Supplementary Section S2). We downloaded 21 public scRNA-

seq datasets generated by four sequencing protocols (see details in

Table 1) as the test datasets. We also selected six state-of-the-art

methods (see details in Table 2 and Supplementary Section S3) as

the compared baseline methods. In addition, we analyzed

infiltrating T cells in liver cancer to examine LFSC’s application

value in finding new cell types, discovering differently expressed

genes, and exploring new cancer-associated biomarkers.

TABLE 1 Summary of the 21 real single-cell RNA-seq datasets.

Dataset Cells Genes Types Protocol Resource Usage Confidence

Treutlin 80 23271 5 SMARTer Human lung epithelium Clustering Silver standard

Yan 90 20214 7 Tang Human preimplantation Clustering and parameter analysis; visualization Gold standard

Ting 114 14405 5 Drop-seq Human circulating tumor Clustering Silver standard

mECS 182 8989 3 HiSeq Mouse embryonic stem cells Clustering Silver standard

Buettner 189 8989 3 Drop-seq Mouse T cells Clustering Silver standard

Goolam 214 41480 5 Smart-seq Mouse embryonic cells Clustering and parameter analysis; visualization Gold standard

Ginhoux 251 11834 3 Smart-seq Mouse conventional dendritic cells Clustering Silver standard

Deng 268 22431 7 Smart-seq Mouse embryo cell Clustering and parameter analysis; visualization Gold standard

Pollen 301 23730 11 Smart-seq Human cerebral cortex Clustering and parameter analysis; visualization Gold standard

Patel 430 5848 5 Smart-seq Human glioblastomas Clustering Silver standard

Usoskin 622 17772 11 Drop-seq Mouse lumbar cells Clustering Silver standard

Kolod 704 13473 3 SMARTer Embryonic stem cells Clustering Silver standard

Seger 1099 25525 9 Smart-seq Pancreatic islet Clustering Silver standard

Tasic 1679 24150 49 SMARTer Mouse cortical cells Clustering Silver standard

Grun 1915 23536 3 CEL-seq Hematopoietic stem cells Clustering Silver standard

Baron 1937 20125 14 InDrop Pancreatic islet Clustering Silver standard

Zeisel 3005 19972 47 STRT-seq Mouse cortex cells Clustering Silver standard

Marques 5053 23556 13 C1 Mouse neuronal cells Clustering Silver standard

Macosko 6418 23288 39 Drop-seq Mouse retina cells Clustering and running time analysis Silver standard

Chen 14437 23284 45 Drop-seq Hypothalamic cells Clustering and running time analysis Silver standard

Campbell 21086 26774 35 Drop-seq Hypothalamic cells Clustering and running time analysis Silver standard

TABLE 2 Summary of the compared baseline methods.

Algorithm Language Theory Link

SingleR R Semi-supervised https://github.com/dviraran/SingleR

RCA R Semi-supervised https://github.com/GIS-SP-Group/RCA

Garnett R Semi-supervised https://github.com/cole-trapnell-lab/garnett

SC3 R Unsupervised https://github.com/hemberg-lab/SC3

Seurat R Unsupervised https://github.com/satijalab/seurat

SIMLR R Unsupervised https://github.com/BatzoglouLabSU/SIMLR
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FIGURE 2
lustering evaluation (ARI, NMI, ACC, and purity) heatmap of LFSC and six baseline methods on 21 real scRNA-seq datasets.
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3 Results

3.1 LFSC outperforms six baseline
methods for clustering single-cell
transcriptomes

To investigate the clustering performance of LFSC, we applied

LFSC and six baseline methods on 21 real scRNA-seq datasets. The

parameter settings of the six baselinemethods and LFSC are provided

in Supplementary Table S1. We also used the ARI, NMI, ACC, and

purity metrics to evaluate the clustering results. For the scRNA-seq

datasets, we generated reference samples by summing up the gene

expression profiles in the same cell types, then averaging them with

the number of cells (see details in Methods). The clustering results of

LFSC and six baselinemethods are presented in Figure 2 and Table 3.

LFSC clearly improved clustering performance for 21 real scRNA-seq

datasets. For example, LFSC obtained the optimal ARI solution for

13 out of 21 datasets, followed by SingleR (11 datasets) and SIMLR

(one dataset). More precisely, LFSC obtained completely correct

labels (ARI value equal to 1) on five datasets, followed by SingleR

(four datasets). For NMI values, LFSC obtained the optimal solutions

on 14 scRNA-seq datasets and the second-best solutions on seven

datasets. For the other two clustering evaluation metrics, LFSC also

had better clustering performance. In addition, LFSC statistically

improved clustering performance on scRNA-seq datasets. As shown

in Table 3, we applied statistically significant comparisons with the

paired Wilcoxon signed-rank test. The symbol ≈ means that there

was no significant difference between LFSC and the compared

method; the symbol − means LFSC was worse than the compared

method, and the symbol + denotes the opposite. The p-value was set

as 0.05. The results demonstrate that LFSC is superior to the six

baseline methods for four clustering evaluation metrics. The average

ARI values in Table 3 show that LSFC (0.844) increased by about

1.5%, 21.9%, 24.3%, 29.8%, 38.6%, and 30.7% compared to SingleR

(0.831), RCA (0.659), Garnett (0.679), SC3 (0.592), Seurat (0.518),

and SIMLR (0.585). For NMI values, LFSC (0.856) was superior to

SingleR (0.838), RCA (0.681), Garnett (0.685), SC3 (0.633), Seurat

(0.570), and SIMLR (0.679). Similar conclusions can be drawn from

the results of ACC and purity values. Furthermore, the semi-

supervised clustering methods performed better than the

unsupervised clustering methods. More precisely, the average ARI

values of the semi-supervised clustering methods (0.753) were

significantly better than those of the unsupervised clustering

methods (0.565). To avoid the basis of comparing with average

measurement, we also calculated the mean rank of four clustering

evaluation metrics on the real scRNA-seq dataset (see Table 3). For

ARI values, the mean rank of LFSC was 5.857, which was better than

other baseline methods (SingleR: 5.524, RCA: 4.905, Garnett: 4.238,

SC3: 3.381, Seurat: 1.667, and SIMLR: 2.429). For NMI values, LFSC

produced the optimal mean rank value (5.476), followed by SingleR

(5.333), RCA (4.476), and Garnett (4.524). For the other two

clustering evaluation metrics, the mean rank values of LFSC were

also better than those of the baseline methods. Based on the

aforementioned discussion, we believe that LFSC significantly

improves clustering.

3.2 Robustness analysis of highly
confident datasets

To investigate the effects of generated reference samples on

clustering performance, we introduced the downsampling

TABLE 3 Clustering results of LFSC and baseline methods on real scRNA-seq datasets.

Metric Ours SingleR RCA Garnett SC3 Seurat SIMLR

ARI Average 0.844 0.831 0.659 0.679 0.592 0.518 0.585

Mean rank 5.857 5.524 4.905 4.238 3.381 1.667 2.429

+/−/≈ N/A 11/4/7 21/0/1 22/0/0 19/2/1 22/0/0 20/1/1

NMI Average 0.856 0.838 0.681 0.685 0.633 0.570 0.679

Mean rank 5.476 5.333 4.476 4.524 4.000 1.857 2.333

+/−/≈ N/A 12/4/6 22/0/0 22/0/0 20/2/0 22/0/0 20/1/1

ACC Average 0.902 0.886 0.683 0.674 0.604 0.591 0.645

Mean rank 5.714 4.810 4.667 4.762 4.048 1.714 2.286

+/−/≈ N/A 10/4/8 22/0/0 22/0/0 20/2/0 22/0/0 20/1/1

Purity Average 0.916 0.902 0.778 0.742 0.669 0.622 0.724

Mean rank 5.571 5.048 4.952 4.714 3.333 2.095 2.286

+/−/≈ N/A 11/4/7 20/0/2 22/0/0 20/2/0 22/0/0 20/1/1
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strategy to generate reference samples with different sampling

ratios (see details in Supplementary Section S4). Since the cell

types of some real scRNA-seq datasets were generated by

computational approaches (Kiselev et al., 2017), the highly

confident scRNA-seq datasets, called gold standard datasets,

were selected as the test datasets, including Yan, Goolam,

Deng, and Pollen (see details in Table 1). The downsampling

ratios were set as 0.05, 0.1, 0.2, 0.4, and 0.6. For different ratios,

we implemented LFSC with randomly generated reference

samples 30 times and calculated four clustering evaluation

metrics. Figure 3 shows how the clustering performance of

LFSC varied with different downsampling ratios. We found

that the clustering performance of LFSC gradually improved

by increasing the ratio from 0.05 to 0.6. This demonstrates that

more selected samples may generate more representative

reference samples. In addition, to investigate the effects of

hyperparameter (alpha: α and beta: β) settings on clustering

performance, we implemented LFSC with different combinations

of hyperparameters on highly confident scRNA-seq datasets.

Alpha (α) was selected as 0.1, 1, 10, 50, and 100. Beta (β) was

selected as 0.0001, 0.001, 0.01, 0.1, 1, 10, 50, and 100. Figure 4

shows how the clustering performance of LFSC varied with

FIGURE 3
iolin plots of clustering evaluations (ARI, NMI, ACC, and purity) of LFSC with different downsampling ratios for four highly confident scRNA-seq
datasets.
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different combinations of α and β. We found that the

performance of LFSC is stable for a large range of α and β

values. In practice, we recommend optimizing α and β by fixing α

and tuning β.

3.3 LFSC speed improves significantly for
large scRNA-seq datasets

Since the number of cells sequenced with advanced

sequencing protocol is growing, it is important to have a

satisfactory running time when analyzing scRNA-seq data. To

demonstrate that LFSC is efficiently implemented in practice, we

compared the running time between LFSC and six baseline

methods on four relatively large real scRNA-seq datasets using

a six-core and 32 GB memory computer. The Macosko, Chen,

Campbell, and Pbmc68K datasets contain 6418, 14437, 21086,

and 68579 cells, respectively. Figure 5 shows that Seurat

(Macosko: 8.491s, Chen: 13.035s, Campbell: 24.946s,

Pbmc68K: 140.576s) was the fastest of the seven methods,

followed by LFSC (Macosko: 18.944s, Chen: 27.017s,

Campbell: 35.792s, Pbmc68K: 181.331s) and SingleR

(Macosko: 26.135s, Chen: 34.714s, Campbell: 38.91s,

Pbmc68K: 275.74s). Furthermore, LFSC was comparable with

RCA (Macosko:153.06s, Chen: 302.94s, Campbell: 451.45s,

Pbmc68K: 1489.14s) and Garnett (Macosko: 27.66s, Chen:

66.98s, Campbell: 72.89s, Pbmc68K: 285.75s). SC3 and SIMLR

cost significantly more time than the other five methods.

Although Seurat is superior in running time to LFSC, SingleR,

RCA, and Garnett, it is the closest method, especially when

Seurat has applied a parallelization operator that is lacking

in LFSC.

FIGURE 4
lustering evaluation (ARI, NMI, ACC, and purity) results of LFSC with different hyperparameters on four highly confident scRNA-seq datasets.
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3.4 The visualization ability of LFSC

We investigated LFSC’s ability to embed cells into the two-

dimensional space using t-distributed stochastic neighbor

embedding (t-SNE). In the experiment, we first chose four real

gold standard scRNA-seq datasets (shown in Table 2). Then, we

selected Seurat and SIMLR as compared baseline methods for

LFSC since they are graph-basedmodels. In particular, SIMLR and

LFSC are variants of spectral clustering, which generates the

affinity and decomposition matrixes in the clustering process.

Thus, we implemented t-SNE on the generated matrixes for

SIMLR and LFSC (see Figure 6). The silhouette coefficient (Sil,

see Supplementary Section S2) is a widely used cluster metric that

compares inter- and intra-distances among data points based on

the clustering partition. Tomeasure the quality of the visualization,

we used the silhouette coefficient to analyze whether cells of the

same types were closer, while those from different cell types were

more separated in the t-SNE space. Figure 6 shows the

visualization plots of LFSC, Seurat, and SIMLR for the four

highly confident scRNA-seq datasets. For the dataset Yan, we

found that LFSC(U) and LFSC(A) produced the best (Sil: 0.9231)

and the second-best (Sil: 0.86) performances, respectively, which

were significantly better than Seurat, SIMLR(S), and SIMLR(F).

Similar conclusions were obtained for the dataset Goolam, where

the Sil values of LFSC(U), LFSC(A), Seurat, SIMLR(S), and

SIMLR(F) were 0.564, 0.4236, 0.2723, 0.2784, and 0.3491. It is

noted that only LFSC identified the correct number of cell types

(five clusters, see Figure 6), while Seurat and SIMLR clustered cells

into six and seven clusters, respectively. In the dataset Deng, LFSC

was not only superior to compared methods in Sil values and

clustering but also had the best performance in visualization since

LFSC separated cells from different cell types and combined cells

from the same cell types. In the dataset Pollen, only LFSC detected

the correct number of clusters (see Figure 6), and the learned

embedding space of LFSC was well separated, while cells in the

same cell type were more compact. In conclusion, the

aforementioned analysis indicates that LFSC has better

visualization ability than do the compared baseline methods.

3.5 Ablation study of LFSC

We completed the ablation study to investigate the importance

of each component in LFSC. In particular, the ablation experiment

was designed as follows. 1) Without HVG selection, all overlap

genes between the scRNA-seq data and the reference

transcriptomics data were selected. 2) Without reference

transcriptomics data, we generated the reference sample by

directly implementing the K-mean algorithm on the scRNA-seq

data. Supplementary Table S2 summarizes the NMI, ARI, ACC,

and purity values for the 21 scRNA-seq datasets. In the first step,

the HVG selection had a positive impact on clustering

performance, which not only reduced redundant features but

also sped up the convergence process. Second, without the

reference transcriptomics data, the clustering performance

significantly deteriorated for the 21 scRNA-seq datasets, which

demonstrates that the reference transcriptomics data are

important for LFSC to improve robustness and efficiency. In

conclusion, the aforementioned analysis indicates that all

components in LFSC were designed effectively and reasonably.

3.6 LFSC detected two new function-
specific subtypes of tumor-infiltrating
lymphocytes

Exploring subtypes of the tumor-infiltrating lymphocytes is a

benefit for the investigation of immunotherapies and associated

clinical responses in cancers. To investigate the exploring ability

in biological analysis, we downloaded a GEO dataset (GSE98638)

containing 5,063 single T cells isolated from peripheral blood,

tumor, and adjacent normal tissues from six hepatocellular

carcinoma patients (Zheng et al., 2017). We first implemented

clustree (Zappia and Oshlack 2018) to explore the correct

number of clusters. In a cluster tree plot, one node represents

a cluster, and a larger node means the cluster has more data

points. Since the tree has no branches and the leaf nodes have

similar sizes (see Supplementary Figure S1), when the number of

clusters equaled 26, the stability and robustness of clustering were

best. Then, we used the Immunological Genome Project

(ImmGen) database (Aran et al., 2019) as the reference bulk

RNA-seq data and applied LFSC with the number of clusters

equal to 26. The heatmap of the Pearson coefficient between the

26 clusters and 11 T-cell subtypes is shown in Figure 7A. Cluster

FIGURE 5
Running time of LFSC and six baseline methods on datasets
Macosko, Chen, Campbell, and Pbmc68K.
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5 and cluster 14 were significantly unassociated with the 11 T-cell

subtypes. We annotated the other 24 clusters with the 11 T-cell

subtypes by maximizing the associated coefficient values (see

Figure 7B). Cluster 5 and cluster 14 were well separated from

other clusters, which indicates that they are different from the six

annotated T-cell subtypes in function or biological process.

To determine the biological differences between cluster 5 and

cluster 14, we applied Seurat to identify the differentially expressed

genes (DEGs) of cluster 5 and cluster 14. The DEG genes were

selected under the criteria 1) absolute log2-fold change larger than

1.5, and 2) adjusted p-value of F test <0.05. There were 48 DEGs

(11 upregulated genes and 37 downregulated genes for cluster 5 (see

Figure 7C) and 28 DEGs (7 upregulated genes and 21 downregulated

genes; see Figure 7D) for cluster 14. Supplementary Figure S2 shows

the t-SNE projection of the tumor-infiltrating lymphocytes to be

colored by DEGs of cluster 5 (RTKN2, IL2RA, SELL, LMNA, TFRC,

andCCR8) and cluster 14 (GZMA,GZMK, PTGDR,TNF,CCR2, and

IL18RAP). Some genes are associated with immunological diseases.

For example, CCR2 and CCR8 are protein-coding genes associated

with diseases including human immunodeficiency virus type 1 and

molluscum contagiosum.GZMA andGZMK are well-knownmarker

genes regarded as T-cell- and natural killer cell-specific serine

proteases. Some studies have demonstrated IL2RA and IL18RAP

to be associated with the same cytokine signaling pathway in the

immune system.

To further demonstrate that cluster 5 and cluster 14 have specific

functions, we completed functional enrichment analysis on theDEGs

with the analysis tool Metascape (Zhou et al., 2019). As seen in

Figure 7F, we found that the most enriched functions for cluster

5 and cluster 14 were enriched for different biological terms. For

FIGURE 6
t-SNE plots of LFSC and baselinemethodswith corresponding silhouette coefficients and clustering results on four highly confident scRNA-seq
datasets.
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FIGURE 7
Single-cell transcriptional profiling of the tumor-infiltrating lymphocytes. (A) Heatmap of Pearson coefficient values between 26 clusters and
11 T-cell subtypes; (B) t-SNE plots of tumor-infiltrating lymphocytes annotated by LFSC using the ImmGen database as the reference; (C) volcano
plot showing differentially expressed genes in cluster 5; (D) volcano plot showing differentially expressed genes in cluster 14; (E) Venn diagram
showing the overlap of DEGs between cluster 5 and cluster 14; (F) heatmap of the enriched term across DEGs on cluster 5 and cluster 14.
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example, cluster 5 enriched for the term GO: 0019835, which is

related to the rupture of cell membranes and the loss of cytoplasm,

and GO: 0002520, which is associated with immune system

development. Although cluster 14 is also enriched in the same

terms, like GO: 0002520, GO:0050865 (regulation of cell

activation), and GO: 0001775 (cell activation), DEGs of cluster

14 were significantly enriched in the biological process of

leukocyte adhesion to vascular endothelial cells (GO:0061756) and

the development of regulatory T lymphocytes (R-HSA-8877330).

This proves that the newly detected cluster 5 and cluster 14 have

different functions in biological processes.

3.7 LFSC detects DEGs associated with
biomarkers of liver cancer

To investigate the clinical research values of selected DEGs

of newly found subtypes (cluster 5 and cluster 9), liver

hepatocellular carcinoma (LIHC) samples from The Cancer

Genome Atlas Program (TCGA) dataset (Tomczak et al.,

2015) were used to test the correlations between selected

genes and patient survival. The analysis details are

provided in Supplementary Section S5. Figure 8 shows the

survival curves for the DEGs of cluster 5 and cluster 14. Three

hundred and seventy LIHC tumor samples were divided into

two groups based on the expression profiles of six gene sets

composed of different combinations of DEGs. Significantly,

the intersection set of the DEGs on cluster 5 and cluster 14 (p =

0.16, paired Wilcoxon test, Figure 8A), the combined set of

these (p = 0.14, paired Wilcoxon test, Figure 8D), and the

DEGs of cluster 14 (p = 0.21, paired Wilcoxon test, Figure 8E)

were statistically unassociated with poor prognosis.

Meanwhile, the DEGs of cluster 5 (p = 0.034, paired

Wilcoxon test, Figure 8B) and cluster-specific DEGs (paired

Wilcoxon test, p < 0.0001, Figure 8C and p = 0.024, Figure 8D)

correlated with good prognosis in TCGA cohort. Thus, our

results provide evidence that the DEGs of newly found clusters

are biomarkers in the tumor microenvironment of LIHC.

FIGURE 8
Results of survival analysis on selected DEGs across TCGA LIHC clinical data. Survival curves on the intersection of DEGs between cluster 5 and
cluster 14 (A); on DEGs of cluster 5 (B); on DEGs belonging to cluster 5 but not to cluster 14 (C); on the combination of DEGs between cluster 5 and
cluster 14 (D); on DEGs of cluster 14 (E); on DEGs belonging to cluster 14 but not to cluster 5 (F).
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Input:

scRNA-seq dataset: X;

Reference dataset: R

Hyperparameters: δ and β

Begin

1. Step 1: Implement quality control and Normalize

data X using (3);

2. Step 2: Identify highly variable overlap genes

with the package Seurat on X and R;

3. Step 3: Estimate the cluster number, k, using the

package clustree on X;

4. Step 4: Generate the reference samples R′ with

reference dataset R using (4);

5. Step 5: Construct the structured anchor graph A

with reference samples R′;
6. Step 5.1: Initialize the matrix F;

7. While convergence condition does not meet do

8. Step 5.2: Update A in Supplementary Eq. S4 using

convex quadratic programming;

9. Step 5.3: Update U in Supplementary Eq. S7 by

Supplementary Lemma S1;

10. end while

11. Step 6: Run K-means on with the cluster number k;

End

Output:

Clustering result Y.

Algorithm 1 Framework of LFSC

4 Conclusion

We presented a linear fast semi-supervised clustering method,

based on bulk and single-cell transcriptomes, that has the following

characteristics: 1) LFSC generates reference samples with bulk-

RNA-seq or labeled single-cell RNA-seq data, which implicitly

provides the label information to the graph construction process;

2) LFSC introduces anchor graph theory to measure the

similarities between unlabeled cells and a small number of

reference samples, which significantly reduces the size of the

graph; and 3) the K-connectivity constraint is added to the cell-

reference anchor graph to preserve the underlying clustering

structure of the data. In general, the proposed mechanisms not

only improve the clustering accuracy of themodel but alsomake its

overall complexity linearly related to data size, and they reduce the

memory overhead of the model.

The experiments on several scRNA-seq datasets demonstrate

the following conclusions: 1) LFSC is superior to state-of-the-art

methods in clustering accuracy and robustness; 2) the visualization

analysis proves that the anchor graph in LFSC can retain the correct

clustering structure of the data, and the learning embedding space

has good separation, which has a better visualization effect

compared with the benchmark methods; and 3) the results of

ablation analysis show that all components of LFSC are effective

and reasonable. In addition, the case study of infiltrating T cells in

liver cancer demonstrated that LFSC shows promising application

potential in discovering new cell types, identifying differentially

expressed genes, and exploring new cancer-related biomarkers.

Data availability statement

The original contributions presented in the study

are included in the article/Supplementary Material, and

further inquiries can be directed to the corresponding author.

Author contributions

QL designed the algorithm and completed the experiments. YL

prepared and edited themanuscript. DWchecked and proofread the

manuscript. JL supervised and guided the research process.

Funding

The study was supported by the National Natural Science

Foundation of China (Grant nos 62072095 and 61771165) and the

National Key R&D Program of China (grant no. 2021YFC2100100).

Acknowledgments

The authors would like to thank the reviewers for their

reading and constructive comments.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors, and the reviewers. Any product

that may be evaluated in this article, or claim that may bemade by its

manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fgene.

2022.1068075/full#supplementary-material

Frontiers in Genetics frontiersin.org14

Liu et al. 10.3389/fgene.2022.1068075

https://www.frontiersin.org/articles/10.3389/fgene.2022.1068075/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.1068075/full#supplementary-material
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1068075


References

Aran, D., Looney, A. P., Liu, L., Wu, E., Fong, V., Hsu, A., et al. (2019). Reference-
based analysis of lung single-cell sequencing reveals a transitional profibrotic
macrophage. Nat. Immunol. 20 (2), 163–172. doi:10.1038/s41590-018-0276-y

Bartoschek, M., Oskolkov, N., Bocci, M., Lovrot, J., Larsson, C., Sommarin, M.,
et al. (2018). Spatially and functionally distinct subclasses of breast cancer-
associated fibroblasts revealed by single cell RNA sequencing. Nat. Commun. 9
(1), 5150. doi:10.1038/s41467-018-07582-3

Butler, A., Hoffman, P., Smibert, P., Papalexi, E., and Satija, R. (2018). Integrating
single-cell transcriptomic data across different conditions, technologies, and
species. Nat. Biotechnol. 36 (5), 411–420. doi:10.1038/nbt.4096

Chen, X., and Deng, C. (2011). Large scale spectral clustering with landmark-
based representation. Twenty-fifth AAAI Conf. Artif. Intell. 45, 1669–1680. doi:10.
1109/TCYB.2014.2358564

Chung, F. R. K., and Graham, F. C. (1997). Spectral graph theory. Rhode Island,
United States: American Mathematical Soc.

Conesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A.,
McPherson, A., et al. (2016). A survey of best practices for RNA-seq data
analysis. Genome Biol. 17, 13. doi:10.1186/s13059-016-0881-8

Gate, D., Saligrama, N., Leventhal, O., Yang, A. C., Unger, M. S., Middeldorp, J.,
et al. (2020). Clonally expanded CD8 T cells patrol the cerebrospinal fluid in
Alzheimer’s disease. Nature 577 (7790), 399–404. doi:10.1038/s41586-019-1895-7

Heydari, A. A., Davalos, O. A., Zhao, L., Hoyer, K. K., and Sindi, S. S. (2022).
Activa: Realistic single-cell RNA-seq generation with automatic cell-type
identification using introspective variational autoencoders. Bioinformatics 38,
2194–2201. doi:10.1093/bioinformatics/btac095

Kiselev, V. Y., Kirschner, K., Schaub, M. T., Andrews, T., Yiu, A., Chandra, T.,
et al. (2017). SC3: Consensus clustering of single-cell RNA-seq data. Nat. Methods
14 (5), 483–486. doi:10.1038/nmeth.4236

Li, H., Courtois, E. T., Sengupta, D., Tan, Y., Chen, K. H., Goh, J. J. L., et al. (2017).
Reference component analysis of single-cell transcriptomes elucidates cellular
heterogeneity in human colorectal tumors. Nat. Genet. 49 (5), 708–718. doi:10.
1038/ng.3818

Li, X., and Wang, C. Y. (2021). From bulk, single-cell to spatial RNA sequencing.
Int. J. Oral Sci. 13 (1), 36. doi:10.1038/s41368-021-00146-0

Liu, J., Yang, M., Zhao, W., and Zhou, X. (2022). Ccpe: Cell cycle pseudotime
estimation for single cell RNA-seq data. Nucleic Acids Res. 50 (2), 704–716. doi:10.
1093/nar/gkab1236

Lotfollahi, M., Naghipourfar, M., Luecken, M. D., Khajavi, M., Buttner, M.,
Wagenstetter, M., et al. (2021). Mapping single-cell data to reference atlases by
transfer learning. Nat. Biotechnol. 40, 121–130. doi:10.1038/s41587-021-01001-7

Nie, F., Wang, C.-L., and Li, X. (2019). “K-Multiple-Means,” in Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, Anchorage, AK, August 4–8, 2019.

Pliner, H. A., Shendure, J., and Trapnell, C. (2019). Supervised classification
enables rapid annotation of cell atlases.Nat. Methods 16 (10), 983–986. doi:10.1038/
s41592-019-0535-3

Qi, R., Ma, A., and Ma, Q. (2020). Clustering and classification methods for
single-cell RNA-sequencing data. Brief. Bioinform. 21 (4), 1196–1208. doi:10.1093/
bib/bbz062

Shao, X., Yang, H., Zhuang, X., Liao, J., Yang, P., Cheng, J., et al. (2021).
scDeepSort: a pre-trained cell-type annotation method for single-cell
transcriptomics using deep learning with a weighted graph neural network.
Nucleic Acids Res. 49, e122. doi:10.1093/nar/gkab775

Sokolowski, D. J., Faykoo-Martinez, M., Erdman, L., Hou, H., Chan, C., Zhu, H.,
et al. (2021). Single-cell mapper (scMappR): Using scRNA-seq to infer the cell-type
specificities of differentially expressed genes.Nar. Genom. Bioinform. 3 (1), lqab011.
doi:10.1093/nargab/lqab011

Tomczak, K., Czerwińska, P., and Wiznerowicz, M. (2015). The cancer Genome
Atlas (TCGA): An immeasurable source of knowledge. Contemp. Oncol. 2015 (1),
68–77. doi:10.5114/wo.2014.47136

Wang, B., Ramazzotti, D., De Sano, L., Zhu, J., Pierson, E., and Batzoglou, S.
(2018). Simlr: A tool for large-scale Genomic Analyses by multi-kernel learning.
Proteomics 18 (2), 1700232. doi:10.1002/pmic.201700232

Wei, Z., and Zhang, S. (2021). Callr: A semi-supervised cell-type annotation
method for single-cell RNA sequencing data. Bioinformatics 37 (1), i51–i58. doi:10.
1093/bioinformatics/btab286

Zakharov, P. N., Hu, H., Wan, X., and Unanue, E. R. (2020). Single-cell RNA
sequencing of murine islets shows high cellular complexity at all stages of
autoimmune diabetes. J. Exp. Med. 217 (6), e20192362. doi:10.1084/jem.20192362

Zappia, L., and Oshlack, A. (2018). Clustering trees: A visualization for evaluating
clusterings at multiple resolutions. Gigascience 7 (7). doi:10.1093/gigascience/giy083

Zhang, J.-Y., Wang, X.-M., Xing, X., Xu, Z., Zhang, C., Song, J.-W., et al. (2020).
Single-cell landscape of immunological responses in patients with COVID-19. Nat.
Immunol. 21 (9), 1107–1118. doi:10.1038/s41590-020-0762-x

Zhang, Y., Liu, T., Hu, X., Wang, M., Wang, J., Zou, B., et al. (2021a). CellCall:
Integrating paired ligand-receptor and transcription factor activities for cell-cell
communication. Nucleic Acids Res. 49, 8520–8534. doi:10.1093/nar/gkab638

Zhang, Y., Wang, D., Peng, M., Tang, L., Ouyang, J., Xiong, F., et al. (2021b).
Single-cell RNA sequencing in cancer research. J. Exp. Clin. Cancer Res. 40 (1),
81–17. doi:10.1186/s13046-021-01874-1

Zheng, C., Zheng, L., Yoo, J. K., Guo, H., Zhang, Y., Guo, X., et al. (2017).
Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing.
Cell 169 (7), 1342–1356. doi:10.1016/j.cell.2017.05.035

Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A. H., Tanaseichuk, O., et al.
(2019). Metascape provides a biologist-oriented resource for the analysis of systems-level
datasets. Nat. Commun. 10 (1), 1523–1610. doi:10.1038/s41467-019-09234-6

Frontiers in Genetics frontiersin.org15

Liu et al. 10.3389/fgene.2022.1068075

https://doi.org/10.1038/s41590-018-0276-y
https://doi.org/10.1038/s41467-018-07582-3
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1109/TCYB.2014.2358564
https://doi.org/10.1109/TCYB.2014.2358564
https://doi.org/10.1186/s13059-016-0881-8
https://doi.org/10.1038/s41586-019-1895-7
https://doi.org/10.1093/bioinformatics/btac095
https://doi.org/10.1038/nmeth.4236
https://doi.org/10.1038/ng.3818
https://doi.org/10.1038/ng.3818
https://doi.org/10.1038/s41368-021-00146-0
https://doi.org/10.1093/nar/gkab1236
https://doi.org/10.1093/nar/gkab1236
https://doi.org/10.1038/s41587-021-01001-7
https://doi.org/10.1038/s41592-019-0535-3
https://doi.org/10.1038/s41592-019-0535-3
https://doi.org/10.1093/bib/bbz062
https://doi.org/10.1093/bib/bbz062
https://doi.org/10.1093/nar/gkab775
https://doi.org/10.1093/nargab/lqab011
https://doi.org/10.5114/wo.2014.47136
https://doi.org/10.1002/pmic.201700232
https://doi.org/10.1093/bioinformatics/btab286
https://doi.org/10.1093/bioinformatics/btab286
https://doi.org/10.1084/jem.20192362
https://doi.org/10.1093/gigascience/giy083
https://doi.org/10.1038/s41590-020-0762-x
https://doi.org/10.1093/nar/gkab638
https://doi.org/10.1186/s13046-021-01874-1
https://doi.org/10.1016/j.cell.2017.05.035
https://doi.org/10.1038/s41467-019-09234-6
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1068075

	LFSC: A linear fast semi-supervised clustering algorithm that integrates reference-bulk and single-cell transcriptomes
	1 Introduction
	2 Methods and materials
	2.1 Subspace clustering and anchor graph
	2.2 Data preprocessing
	2.3 Selecting highly variable overlap genes
	2.4 Structured anchor graph learning
	2.4.1 Generating reference samples from RNA-seq data
	2.4.2 Constructing the structured anchor graph with reference samples
	2.4.3 Estimating the cluster number k
	2.4.4 Identifying cell types via labeled transcriptomics data

	2.5 Complexity analysis
	2.6 Evaluation metrics, test datasets, and baseline methods

	3 Results
	3.1 LFSC outperforms six baseline methods for clustering single-cell transcriptomes
	3.2 Robustness analysis of highly confident datasets
	3.3 LFSC speed improves significantly for large scRNA-seq datasets
	3.4 The visualization ability of LFSC
	3.5 Ablation study of LFSC
	3.6 LFSC detected two new function-specific subtypes of tumor-infiltrating lymphocytes
	3.7 LFSC detects DEGs associated with biomarkers of liver cancer

	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


