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Introduction

Anatomically modern humans originated in Africa and separated from their most likely
recent common ancestor hundreds and thousands of years ago (Bergstrom et al., 2020; Wang
et al., 2021a). They followingly migrated out of Africa around 50 thousand years ago and evolved
in concert with the complicated interplay of gene flow and adaptive selection during the peopling
of Eurasia, Oceania, and America (Bergstrom, et al., 2020; Wang et al., 2021a). Genomic studies
have demonstrated the pervasiveness of population differentiation and genetic admixture between
long-isolated ethnic groups (Bergstrom et al., 2020; Pan et al., 2022). Extensive population
bottleneck, adaptive evolution in changing environments, and introgression from archaic
hominins further shaped the complicated patterns of human genetic heritage. In general,
complex population divergence, migration, and admixture events extensively shaped the
patterns of genetic diversity of ethnolinguistically diverse populations.

There is increasing evidence to suggest that the differences in the susceptibility of many
common and rare diseases are primarily attributed to human populations’ diverse cultural,
environmental, demographic, and genetic histories. The comprehensive understanding of fine-
scale population evolutionary history will gradually change our understanding of the genetic
architecture of diseases (Timpson et al., 2018; Benton et al., 2021; Pan et al., 2022). Thus, there is
an urgent need to expand genetic research to populations with different ancestries. In addition,
population genetic studies based on multiple genome-wide genetic markers (short tandem
repeat, STR; single nucleotide polymorphism, SNP; Insertion/Deletion, InDel; copy number
variation, CNV, and so on) could provide new insights into the detailed process of population
admixture and evolutionary history of ethnolinguistically and geographically diverse
populations. Understanding the fine-scale population structure also helps the better study
design in medical genomics and the comprehensive practice applications in population genetics
and forensic science.

With the rapid development of genotyping technologies, sequencing platforms, and
computational methods, previous studies have provided the basal framework of the genetic
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landscape of worldwide populations from different perspectives (Li
et al., 2008; Lippold et al., 2014). However, most genetic studies
focused on the relationships and fine-scale population structures
were conducted via low-density genetic markers. It is also now
possible to capture and sequence ancient DNA from ancient
samples, which could provide pivotal insights into the formation of
spatiotemporally diverse populations with unprecedented resolution.
Although huge nationwide biobanks for characterizing the genotypes
and phenotypes of millions of people have been established (Barton
et al., 2021; Zhang et al., 2021; Chiu et al., 2022), more geographically,
linguistically, and culturally diverse populations (especially non-
metropolitan populations) are needed to be studied systematically
at different spatio-temporal scales.

A clear understanding of genetic background and diversity of
ethnolinguistically diverse populations and decoding their
demographic history can provide new medical and forensic
application opportunities. Genetic studies have illuminated the
population-specific reference database, effective algorithm and the
developed panel for the targeted forensic applications were the
fundamentals of forensic intelligence inference of external visual
appearance, biogeographical ancestry inference and forensic
investigative genetic genealogy (FIGG) (He et al., 2018). FIGG, one
new and rapidly growing field of forensic genetics since 2018, has
attracted the attention of geneticists focused on complex familial
search (Phillips 2018). Currently, many projects aim to develop
and validate new FIGG panels, construct and complement forensic
FIGG databases, and develop new statistical models to promote the
practice of FIGG (Kling et al., 2021; Tillmar et al., 2021).

To summarize the new advances in FIGG and fine-scale
population structure and illuminate the importance of full-scale
genetic structure and diversity as the basis for the FIGG, we
organized this Research Topic of the “Forensic investigative genetic
genealogy and fine-scale structure of Human Populations”. In detail,
this Research Topic aimed to characterize the genetic background and
demographic history of ethnolinguistically and geographically diverse
populations based on different densities of genetic marker. It would be
helpful in exploring the long-range familial searches and fine-scale
genetic localization within subgroups in other continents. This
Research Topic attracted research focused on the basic knowledge
exploration of the genetic background of one targeted population and
included applied research focused on developing and validating
forensic amplification systems.

Exploration of theoretical
knowledge—Fine-scale genetic
structure and demographic history
reconstruction

Recent studies have demonstrated that population history
reconstruction leveraging high-density genetic markers could uncover
previously unrecognized population structures at a fine scale compared
with forensically relevant loci (Li, et al., 2008; Bergstrom, et al., 2020).
Zhou et al. generated and analyzed genome-wide data of Liaoning Han
people and found that genetic differences existed in geographically
different Sinitic-speaking Han populations, which might result from
other migration and admixture events of Hans during the period of
“Chuang Guandong”. Hou et al. investigated the population history of
LiaoningMongolians based on ~700,000 SNPs and provided new insights

into the admixture history of Mongolic-speaking Mongolians according
to shared allele-based analyses. He et al. explored the demographic history
of Qiang people based on Eurasian modern and ancient reference
populations. This study revealed that the Tibeto-Burman-speaking
Qiang people derived their primary ancestry from Tibetan-related
ancestral populations in North China. Wang et al. performed a
genome-wide association study on 26,806 Chinese individuals. They
identified 21 SNPs associated with widow’s peak, unibrow, double
eyelid, earlobe attachment, and freckles. This study may facilitate a
better understanding of the genetic basis of facial development in
Chinese populations and provide new markers for forensic phenotype
predictions. These studied Han, Mongolian and Qiang people are widely
distributed in North China, and other populations from southern China
and surrounding regions need to be further explored based on the array
or sequencing data, such as Austronesian, Austroasiatic, Hmong-Mien
and Tai-Kadai people. Generally, population genetic studies showed a
strong correlation between Chinese cultural language and geographic
patterns and population structure.

The estimated patterns of genetic diversity in China can help
accurately biogeographic ancestry inference and FIGG. Similar
population stratifications were also identified in Siberian
populations. Currently, available tools could effectively distinguish
populations with different continental origins, but most of these are
not efficient for differentiating people within the same continent.
Gorin et al. selected 5,229 AISNPs and tested various mathematical
models for biogeographic ancestry inference. The results showed that
the accuracy of the prediction of this panel on one of 29 studied ethnic
groups reached 71% and the proposed method could be employed to
predict ancestries from Russian and neighboring populations. Huang
et al. developed a machine learning approach for estimating the
relationships with high error SNP profiles and found that this
approach was more accurate and robust than the individual measures.

Forensic potential
applications—Development and
validation of forensic systems focused
on personal identification and family
research

STR genotyping has been applied in forensic investigations for
nearly 30 years (Hagelberg et al., 1991; Kayser and de Knijff 2011).
Nowadays, several commercial STR kits have been developed based on
the expanded CODIS loci (Oostdik et al., 2014; Wang et al., 2018; Qu
et al., 2019; Batham et al., 2020; Green et al., 2021). However, with the
rapid increase in the number of STR genotypes in forensic databases,
more novel non-CODIS STRs with high genetic polymorphisms are
required to minimize the incidence of adventitious matches. Huang
et al. validated the forensic performance of a novel multiplex
autosomal STR panel (including six CODIS STRs and 20 non-
CODIS STRs). They found that this novel kit could be applied as a
promising tool for forensic human identification and complex
paternity analysis. Than et al. genotyped seven Lao Isan and three
Laotian populations using Verifiler plus PCR Amplification kit. The
allelic frequency results provided the genetic background of
Austroasiatic and Tai-Kadai people from Laos and Thailand.

InDel loci, the second most abundant polymorphism across the
human genome, possess low mutation rates and small amplicon
lengths compared with STRs (Weber et al., 2002; Mills et al.,
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2006), which have been proven to be of value in forensic investigations
(Pereira et al., 2009; Zhang et al., 2018). And InDels showing
significant allele frequency differences among geographically and
linguistically diverse populations can be adopted as ancestry-
informative markers (AIMs) (Sun et al., 2016; Inacio et al., 2017).
Moreover, previous studies showed that multi-InDel loci behaved well
in parentage tests and could be used for forensic applications (Fan
et al., 2016; Sun, et al., 2016; Qu et al., 2020). Liu et al. developed and
validated a six-color fluorescence multiplex panel including
59 autosomal InDels. Subsequently, Tibetan groups from China
have been genotyped using the newly-developed 59-plex InDel
panel. The comprehensive population genetic analyses showed that
this homemade panel could be used as a powerful tool for individual
forensic identification and paternity testing in Chinese Tibetan
groups. Jin et al. developed a Next-Generation Sequencing (NGS)
InDel panel, including 17 multi-InDels on the X chromosome. They
found that the newly-developed panel could be adopted as an effective
tool for individual forensic identification, paternity testing, and
biogeographical ancestry inference.

Genetic surveys based on uniparentally inherited markers have
identified many paternal and maternal founding lineages in regional
populations and their corresponding expansion events (Poznik et al.,
2016; Li et al., 2019). Jia et al. sequenced complete mitochondrial
genomes of 146 Daur individuals in China. The results showed that the
Daur ethnic group has high maternal genetic diversity and may have
experienced recent population expansion. He et al. developed and
validated the AGCU-Y30 Y-STR panel and conducted a Y-STR-based
study to explore the paternal history of the Qiang people. The
validated results showed that the novel Y-STR kit was sensitive and
robust enough for forensic applications. Population genetic analyses
revealed that the Qiang people are closely related to lowland Tibetan-
Yi corridor populations.

Prospects and challenges

Human genetics needed the fundamental foundation supporting
large-scale population genomic projects to characterize the full
landscape of human genetic diversity and population structure,
such as NHLBI TOPMed (Taliun et al., 2021), gnomAD (Collins
et al., 2020) and UK10K (Wang et al., 2021). These projects made
significant advances in European human genetics. Other projects,
including the Chinese 10K_CPGDP (Chinese population genomic
diversity project), GSRD-100KWCH and ChinaMap, were recently
launched to explore the genetic features of under-represented
populations. Characterizing the genetic architecture of
ethnolinguistically and geographically diverse populations will
promote our understanding of population origin, separation,
admixture, adaptation, and gene flow from archaic individuals.

Knowledge of the fine-scale genetic structure and population-
specific genomic database is the base for FIGG. Synthesizing our
growing knowledge of evolutionary history with forensic
investigations will help to achieve the promise of long-range
familial searches and fine-scale genetic localization. For human
population genetics and FIGG, we also had some challenges that
needed to be overcome in the next step:

Firstly, European bias in worldwide human genetic studies and
Han Chinese bias in Chinese cohort research hinder in heath equality
of genetic studies and forensic genetics. More population genomic

studies from under-reported populations need to be conducted to
characterize their uncharacterized genetic polymorphisms and the
genetic spectrum of different genetic markers.

Second, a population-specific genomic database should be
constructed to provide a comprehensive landscape of different
genetic markers and even include structural variations and mobile
elements via the PacBio sequencing plateau.

Third, cooperation of national genomic studies should be formed
to promote data sharing in different institutions.

Forth, population genomic projects should be conducted among
included subjects with deep phenotypes, which would provide values
for exploring the genetic basis for physical traits and medical
phenotypes.

Fifth, regional population-specific genomic datasets, FIGG panels,
algorithms, and forensic databases should be developed and validated.
FIGG has promoted successful inspection of criminal suspects among
American or European populations, as there are publicly available
European/American genomic databases and DNA. Land and
GEDmatch severs. Similar databases from other countries or
regions should be constructed in the future.

Seventh, IBD-based algorithms need the high-density phased
SNPs or whole genome sequencing data. Many forensic samples
were highly degraded or had minute amounts of genetic materials.
Thus, the primary focus is to develop more FIGG panels based on low-
density SNP markers and non-linkage algorithms (allele-sharing
status and allele frequency spectrum).

In short, more ethnolinguistically and geographically diverse
populations are needed to be studied based on different genetic
markers and algorithm models, and population-specific panels
based on different genetic variations and corresponding forensic
databases need to be developed to achieve long-range familial
searches and fine-scale genetic structure reconstruction.
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