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Since the introduction of the first transformer model with a unique self-

attention mechanism, natural language processing (NLP) models have

attained state-of-the-art (SOTA) performance on various tasks. As DNA is

the blueprint of life, it can be viewed as an unusual language, with its

characteristic lexicon and grammar. Therefore, NLP models may provide

insights into the meaning of the sequential structure of DNA. In the current

study, we employed and compared the performance of popular SOTA NLP

models (i.e., XLNET, BERT, and a variant DNABERT trained on the human

genome) to predict and analyze the promoters in freshwater

cyanobacterium Synechocystis sp. PCC 6803 and the fastest growing

cyanobacterium Synechococcus elongatus sp. UTEX 2973. These freshwater

cyanobacteria are promising hosts for phototrophically producing value-added

compounds from CO2. Through a custom pipeline, promoters and non-

promoters from Synechococcus elongatus sp. UTEX 2973 were used to train

themodel. The trainedmodel achieved an AUROC score of 0.97 and F1 score of

0.92. During cross-validation with promoters from Synechocystis sp. PCC

6803, the model achieved an AUROC score of 0.96 and F1 score of 0.91. To

increase accessibility, we developed an integrated platform (TSSNote-

CyaPromBERT) to facilitate large dataset extraction, model training, and

promoter prediction from public dRNA-seq datasets. Furthermore, various

visualization tools have been incorporated to address the “black box” issue

of deep learning and feature analysis. The learning transfer ability of large

language models may help identify and analyze promoter regions for newly

isolated strains with similar lineages.
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Introduction

A classic problem in bioinformatics is the challenge of

predicting promoters (Zhang et al., 2022). Promoter regions

are DNA regions where RNA polymerase binds to initiate the

transcription process, the first step in the central dogma of

molecular biology (Butler and Kadonaga, 2002). Owing to

their essential role in regulating and determining the timing

and expression levels of genes needed for vital functions, the

prediction and in-depth functional analysis of promoters have

been of interest to biologists. Previously, owing to the complexity

of cis-regulation networks and lack of data, attempts at

developing promoter prediction tools were inadequate

(Bhandari et al., 2021). However, recent advancements in

machine learning and deep learning have successfully

leveraged genomic data. To date, many groups have

successfully constructed promoter prediction tools using

traditional machine learning methods, knowledge-based

position matrix weight (Huerta and Collado-Vides, 2003;

Burden et al., 2005; Rangannan and Bansal, 2010; Di Salvo

et al., 2018) through support vector machines, and artificial

neural networks for this logistic regression task (Gordon et al.,

2003; da Silva et al., 2006; Mann et al., 2007; Towsey et al., 2008;

He et al., 2018; Liu et al., 2018; Rahman et al., 2019; Xiao et al.,

2019; Zhang et al., 2019; Li et al., 2021). Convolutional neural

networks (CNN) and recurrent neural network (RNN)-based

architectures (long short-term memory, gated recurrent units)

have recently become the most popular choices for promoter

classification (Nguyen et al., 2016; Le et al., 2019; Oubounyt et al.,

2019; Amin et al., 2020; Zhu et al., 2021). CNN-based models

depend on predetermined kernel size designs to extract and

generalize local features; therefore, they might fail to capture

long-range contexts. To overcome this limitation, some research

groups have integrated RNN-based models to retrieve long-term

dependencies. By design, LTSM computations from RNNs are

processed sequentially and depend on the outputs of the previous

hidden states for the next state to maintain the sentence structure

and context; however, this, in turn, leads to the vanishing

gradient problem. These limitations pose difficulties and may

restrict the scalability and flexibility of constructed models when

applied to other species.

Since its first appearance in 2017, the transformer

architecture, with its unique self-attention mechanism, has

revolutionized the natural language processing (NLP) field

and achieved SOTA performance in various machine learning

tasks (Vaswani et al., 2017). As these transformers perform well,

they have made their way to other branches (e.g., computer

vision) (Wu et al., 2020; Arnab et al., 2021; Zhou et al., 2021) that

were previously dominated by CNNs, and they are now also used

in multimodal learning for content generation (Tsai et al., 2019;

Yu et al., 2019; Dzabraev et al., 2021). Transformer-based models

are versatile and can be incorporated into different architectures

owing to their robustness and flexibility through their learning-

transfer capability. Considering the sequential nature of DNA,

which can be regarded as a natural language with unique

grammar and lexicon, transformer-based models are

particularly well suited for supervised classification tasks.

Therefore, adopting a different approach in the current

study, we employed and compared transformer-based models

for the promoter prediction problem. To date, most of the

currently constructed models have been designed for popular

species with curated regulatory databases such as humans, fruit

flies, mice, Escherichia coli, and yeasts (Oubounyt et al., 2019;

Rahman M et al., 2019; Li et al., 2021). However, there is still

considerable interest in integrating deep-learning techniques for

promoter analysis in other (less popular) species. For example,

cyanobacteria are an ancient and diverse group of photo-

oxygenic prokaryotes with ample potential for the

photosynthetic production of value-added chemical

compounds from the greenhouse gas CO2. Many

cyanobacterial species with a high potential for valorizing CO2

are still being isolated and characterized every year. Some of the

most notable genera were Synechocystis and Synechococcus.

These model organisms can convert CO2 into various useful

products (Luan et al., 2019; Sarnaik et al., 2019; Lin et al., 2020;

Pattharaprachayakul et al., 2020; Qiao et al., 2020; Taylor and

Heap, 2020; Kato and Hasunuma, 2021; Roh et al., 2021; Santos-

Merino et al., 2021). Although they have been characterized and

researched for a few decades, the application of deep learning for

promoter prediction specifically in cyanobacteria is still lacking.

Therefore, in this study, we used the promoters of Synechococcus

elongatus sp. UTEX 2973, the fastest growing cyanobacterium for

model training and testing (Song et al., 2016; Mueller et al., 2017).

We further conducted cross-validation of the promoters of the

model organism Synechocystis sp. PCC 6803 to test whether the

models also work on related species (Ikeuchi and Tabata 2001).

Combined with knowledge-based analysis, in-depth model

characterization may help tackle the “black box” problem of

deep-learning models.

To facilitate the development and incorporation of SOTA

transformer-based promoter prediction tools, we reconstructed a

pipeline (using TSSNote and PromBERT Google Colab

notebooks) to compute and extract the promoters of public

differential RNA-seq (dRNA-seq) datasets from the National

Center for Biotechnology Information Sequence Read Archive

(NCBI SRA) database and used them for model training. dRNA-

seq is an RNA sequencing technique that allows the

determination of TSS at 1 bp resolution by enriching primary
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transcripts (Bischler et al., 2015). In contrast to conventional

differential expression RNA-seq (RNA-seq), dRNA-seq requires

additional treatments and more expensive and complex

procedures, making these datasets rather limited. Transfer

learning is a core advantage of large-parameter language

models. We expect that, with fine-tuning, transformer-based

promoter models can be good approximators for other related

species. To improve the accessibility to researchers with and

without expertise in machine learning, separate modules of the

pipeline for promoter extraction, model training, promoter

prediction, and visualization were ported into the cloud-based

platform Google Colab. We demonstrated that, even without the

advantage of the pre-training phase, transformer-based models,

such as bidirectional encoder representations from transformers

(BERT) and XLNET, are capable of highly accurate promoter

prediction for Synechocystis and Synechococcus species solely

through a context-wise self-attention mechanism (Devlin

et al., 2018; Yang et al., 2019).

Materials and methods

Datasets

Raw dRNA-seq datasets for Synechocystis sp. PCC 6803 and

Synechococcus elongatus sp. UTEX 2973 and for Synechocystis

sp. PCC 6714 were downloaded from the NCBI SRA database,

and genomic DNA sequence assemblies were downloaded from

the NCBI RefSeq database (Table 1).

Independent E. coli promoter datasets for benchmarking

were obtained from https://github.com/chenli-bioinfo/promoter.

Available data and local and Google Colab versions of

TSSNote-CyaPromBERT are available at https://github.com/

hanepira/TSSnote-CyaPromBert.

Constructing promoter extracting module
from dRNA-seq datasets

Because one of the objectives of the current work is to create a

cloud-computing-based pipeline that can be applied without

strong hardware requirements, we implemented algorithms in

a Colab notebook for TSS prediction based on changes in read

coverage, in a similar manner to TSSpredator (Dugar et al., 2013)

but with more flexibility for customizations. This promoter

extracting module (TSSNote) takes SRA ids for TEX (+) and

TEX (-) treatments and fasta from NCBI as inputs and conducts

alignment by HISAT2 and read coverage extraction through

SAMTools. HISAT2 enables soft-clipping alignment, through

which adapters do not interfere with the read alignment.

SAMTools are then used to extract read coverage from the

plus and minus strands for later computations. The read

coverage files from both TEX (+) enrichment and TEX (-)

were used to locate and compute the potential TSSs enriched

by TEX treatment. Because the quality of dRNAseq datasets is

dependent on experimental procedures, after calculating

potential TSSs, users can filter TSSs based on the read

coverage cut-off or coverage change cut-off. BAM files can be

downloaded into local drives for manual observation and

curation using NGS genome browsers. The overall design is

illustrated in Figure 1, and the detailed workflow of the

TSSNote is shown in Figure 2.

Read coverage change at a specific location is calculated by

the following function:

△xi � xi+1 + c

xi + c

Where: xi = coverage depth at position i xi + 1 = coverage depth

at position i + 1 Δxi = change factor from xi to xi + 1 c =

calibration constant to prevent division zero (0.01).

Promoter and non-promoter sequences
extraction

Promoters were extracted directly upstream from the

predicted TSSs. For promoter sequences, ribosomal RNA

depletion in dRNAseq experiments may not be 100%;

therefore, further trimming methods were implemented.

We tested the TSSs identified by TSSNote based on the

wildtype dataset with the TSSs proposed in the original

publication (Tan et al., 2018). Even though the

TABLE 1 Datasets employed in this study.

Species SRA accession number Condition TEX treatment

Synechococcus elongatus sp. UTEX2973 SRR6334749, SRR6334750 Primary transcripts under normal condition TEX (+)

SRR6334747, SRR6334748 Control under normal condition TEX (-)

Synechocystis sp. PCC 6803 SRR1019366, SRR1019365 Primary transcripts under exponential and stationary phase TEX (+)

SRR1019368, SRR1019367 Secondary reads from 10 different conditions TEX (-)

Synechocystis sp. PCC 6714 SRR1019241 Primary reads from stationary phase TEX (+)

SRR1019242 Secondary reads from 10 different conditions TEX (-)
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implementation method was different, many of the predicted

TSSs were consistent. By setting constraints more stringent,

through expression strength and degree of changes, more than

90% of the TSSs identified in the wildtype dataset were also

found in the original proposed TSSs concatenated from

multiple conditions. Therefore, filtered promoter datasets

extracted from strongly expressed and enriched TSSs

should be sufficiently reliable. As deep-learning models

require a large amount of data for accurate generalization,

we believe that the flexibility offered by TSSNote can be

crucial. Furthermore, read counts and fold-changes in read

coverage can provide more information to group and filter

promoters based on promoter strength. It can be used

independently or together with existing tools for better

analysis. In the current work we lowered the constraints to

take into account the potential spurious transcriptional events

and weak promoters of other sigma factor groups which would

be filtered by the method used in the original publication. The

good performance on cross validation and clear pattern

enrichment indicate that the model has successfully learned

key features from the extracted promoters for promoter

recognition task.

The non-promoter sequences were extracted from the “non-

promoter” regions. Specifically, Non-promoter sequences were

FIGURE 1
Overall scheme for constructing and developing TSSNote and CyaPromBERT. TSSNote facilitates downloading raw dRNA-seq datasets from
NCBI SRA database and conducts alignment, sorting, and filtering for extracting promoters and non-promoters. These sequences are later used to
train a BERT model for the task of promoter prediction. Randomly generated DNA sequences with similar size to promoter length are added to
reduce biases, and overfitting is used to improve the model’s robustness. The trained model is capable of promoter prediction, regional
scanning, and visualization at base-pair level.
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FIGURE 2
Detailed flowchart of TSSNote operation to extract TSSs, promoters, and non-promoter sequences.
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sampled from the downstream of TSSs. If the distance between

two neighboring TSSs is larger than 2 times the sequence length,

that interval region is marked and used for sampling non

promoter sequences. We further added 10% randomly

generated sequences to increase noise and reduce overfitting.

The non-promoter sequences then are shuffled, and a portion of

the non-promoter sequences was used at the ratio 1:

1 promoter–non-promoter for model training.

Model training

The TSSs of each species from different datasets was

extracted and concatenated for model construction using

Python wrapper TSSNote, which was written in Python 3.9 as

a user-friendly pipeline to conduct raw data gathering using SRA

toolkits 3.0 (https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?

view=software) and Entrez-direct (Kans 2022), sequence

indexing, read alignment by HISAT2 (Kim et al., 2019),

strand sorting, and read coverage calculation by SAMtools

(Danecek et al., 2021). Promoter sequences were extracted

from the calculated TSSs using the Biopython package (Cock

et al., 2009).

To construct CyaPromBert and evaluate the performance of

different transformer-based models, Pytorch 1.11.0 and Pytorch-

lightning 1.6.4 (Paszke et al., 2019). Transformer-based models

were constructed using base models from huggingface’s

transformer library 4.18.0 (Wolf et al., 2020).

The probability was calculated by the sigmoid function:

S(x) � 1
1 + e − x

The performance of the models was evaluated by precision,

recall, F-1, and AUPRC, AUROC scores.

Precision � tp

tp + fp

Recall � tp

tp + fn

F1 � 2tp
2tp + fp + fn

Where: tp = true positive fp = false positive fn = false negative

The area under the precision-recall curve (AUPRC) is

calculated from the average precision score and AUROC is

the area under the receiver operating characteristics.

Binary cross entropy was used as the loss function.

BCELoss � − 1
N

∑
N

i�1
(yi*log (pi) + (1 − yi)*log (1 − pi))

Attention weight visualization libraries, BERTviz 1.4.0, and

Captum 0.5.0, were implemented to improve visualization and

interpretability (Vig 2019; Kokhlikyan et al., 2020). Both

TSSNote and the models were first developed and trained on a

local workstation equipped with an NVIDIA RTX 3070 before

porting and testing on the Google Colab cloud computing service.

Results and discussion

Selecting the best performing SOTA
transformer-based model for promoter
prediction

The transformer-based architecture has demonstrated

that, with sufficient data, matrix multiplications, linear

layers, and layer normalization, the deep-learning model

can achieve SOTA machine translation tasks without

relying on CNN and RNN (Vaswani et al., 2017). BERT

and XLNET are two of the most popular transformer-

based language models (Devlin et al., 2018; Yang et al.,

2019). Fundamentally, these large-language models are

stacks of encoding modules from the original transformer

model. However, they are pre-trained differently and use

different tokenizers. BERT is an autoencoding-based

model, whereas XLNet employs an autoregressive method

similar to the famous GPT models from OpenAI (Floridi and

Chiriatti 2020). These differences reflect the capability to

capture the semantic context for prediction in masked

language prediction pretraining, and thus they can affect

the performance of the model. However, the corpora, on

which both BERT and XLNet were trained, are far different

from the genomic DNA sequences; therefore, they might not

have pretraining advantages. Thus, we also compared a

different variant of BERT (DNABERT) pretrained on

human genomic DNA at different kmer lengths (from

three to five nucleotides) (Ji et al., 2021). The DNABERT

models outperformed previous CNN-based models for TATA

and non-TATA promoter prediction tasks in eukaryotes. To

improve the resolution, we trained a byte-level byte-pair-

encoding (BPE) tokenizer at a length of one nucleotide (or

kmer 1). The operating mechanism is illustrated in Figure 3

and the performance results are listed in Table 2 and Figure 4.

For this particular promoter prediction task (using binary

cross entropy as the loss function and F1 score as the key

determinants to evaluate model performance), both XLNet-

base and BERT-base using a one kmer length byte-level BPE

tokenizer had the best performance compared to the default

tokenizers or tokenizer at different lengths. Both XLNet+1bp

tokenizer and BERT+1bp tokenizer achieved AUROC scores of

0.97 and 0.977, and F1 scores of 0.92 and 0.93 respectively. These

twomodels exhibited comparable performance. However, during

training and testing, XLNet used more computing resources than

BERT; therefore, we selected the BERT-base + 1bp tokenizer for

further investigation. The corpora in which these two base

models were pretrained did not contain genomic databases.

They should not benefit from the pre-training process for the
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promoter prediction task. The high performance can be

attributed to context awareness (context-based embedding) of

the position and composition of the tokens (nucleotides) through

the self-attention mechanism. We further tested the performance

of the BERT-base + 1bp tokenizer and DNABERT5 + 1bp

tokenizer. The results further show that there are no

differences in performance. These findings also confirmed

that, during training for promoter prediction tasks using

BERT, the choice of tokenizer influenced the performance.

Surprisingly, the DNABERT variants trained in the genomic

context performed worse than the BERT-base + 1bp tokenizer.

Longer kmer lengths might provide a better context and have

more meaningful biological values for interpretation (Ji et al.,

2021); however, the F1 scores of the pretrained DNABERT 3, 4,

and five were lower than those of BERT-base and XLNet with the

1bp tokenizer. One possible explanation for this finding is that

the 1bp tokenizer better captured nuances at the single-

nucleotide level interactions in the training dataset. As the

promoter datasets in the current study were extracted solely

from TSSs and were not grouped in transcriptional factor classes,

less information is required to make decisions. This model may

significantly favor specific nucleotides at certain fixed positions.

Using tokenizers with longer kmer lengths (for the case of

DNABERT) might be better for other genomic applications or

designs that require larger curated datasets with expected long-

range interactions within those genomic sequences. This is

particularly relevant if the model is pre-trained or fine-tuned

by permutation and masked language modeling first on the

genomic data of the target species. We further tested the

influence of promoter length on model performance; however,

increasing the promoter length to 200bp did not change the

performance of any of the tested models (data not shown).

FIGURE 3
The detailed model architecture of PromBERT for promoter prediction. DNA sequences of fixed length are tokenized using a custom 1bp
tokenizer and fed into 144 attentionmodules. Based on the final tensors in the pooling layer, the classifier calculates the probabilities of promoter and
non-promoter using the sigmoid function. Backpropagation was conducted using binary cross entropy loss.

TABLE 2 Performance of popular transformer-based NLP models for promoter prediction.

Model and
tokenizer

AUROC Precision F1 score Support

Promoter Non-promoter Promoter Non-promoter Promoter Non-promoter Promoter Non-
promoter

XLNET 0.926 0.925 0.85 0.84 0.85 0.85 1018 1019

XLNET + 1bp
tokenizer

0.97 0.97 0.92 0.92 0.92 0.92 1018 1019

BERT-base 0.941 0.942 0.84 0.89 0.87 0.87 1001 1036

BERT-base + 1bp
tokenizer

0.977 0.977 0.92 0.95 0.93 0.93 1001 1036

DNABERT3 + kmer 3 0.944 0.944 0.9 0.84 0.86 0.88 1008 1029

DNABERT4 + kmer 4 0.944 0.944 0.88 0.86 0.87 0.87 1028 1009

DNABERT5+ kmer 5 0.956 0.956 0.9 0.89 0.89 0.89 1031 1006
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Evaluating model performance compared
to existing promoter prediction models
using independent datasets from E. coli

To evaluate the robustness of the proposed BERT-base +1bp

tokenizer for promoter prediction task, we conducted model

training using an independent dataset for σ70 promoters for

model benchmarking from a previous study (Zhang et al., 2022).

We compared the performance of our model with two

promoter prediction webservers iPro70-FMWin (Rahman

et al., 2019) and iPromoter-2L2.0 (Liu et al., 2018) which

were reported to have very high accuracy for σ70 promoters.

The results showed that those three models performed equally

well on the benchmarking dataset with F1 scores around 91%.

Our model performed slightly better across promoter and non-

promoter tag (Table 3). Since iPro70-FMWin also provides

probability scores, we compared the AUPRC scores of this

model with our Eco70PromBERT-1bp (Figure 5). Our model

had a better AUPRC score of 0.967 compared to 0.953 from

iPro70-FMWin.

The results illustrated the robustness of BERT-base + 1bp

tokenizer for promoter prediction task in general. Considering

that both iPro70-FMWin and iPromoter-2L2.0 were designed

specifically to extract sequence features with various

customizations for promoter classification to achieve SOTA

performance. The plug-and-play characteristic of large

language models like BERT would be better for scalability and

broader applications.

Interpreting the model’s behavior through
Monte Carlo sampling and attention score
visualization

Interpreting deep-learning (DL) models is another important

aspect of model validation. One of the main issues concerning

deep-learning models is the “black box” problem, where users

might not know how DL models process and compute the

outputs for reverse engineering and understanding. This

problem is particularly difficult for large parameter models

FIGURE 4
Average precision scores of the tested transformer-based models.

TABLE 3 Performance of Eco70PromBERT and popular promoter predictionmodels for E.coli using an independent dataset (σ70 promoters and non-
promoters).

Model and
tokenizer

AUROC Precision F1 score Support

Promoter Non-
promoter

Promoter Non-promoter Promoter Non-promoter Promoter Non-promoter

Eco70PromBERT
(BERT-base + 1bp
tokenizer)

0.92 0.90 0.91 0.91 0.91 0.91 110 108

iPro70-FMWin 0.90 0.90 0.93 0.88 0.90 0.91 110 108

iPromoter-2L2.0 0.91 0.91 0.90 0.92 0.91 0.91 110 108

Frontiers in Genetics frontiersin.org08

Mai et al. 10.3389/fgene.2022.1067562

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1067562


such as NLP models (e.g., BERT). Specifically, the BERT-base

model used in this study consists of 86.8 million trainable

parameters from 144 attention modules (12 layers ×

12 heads). The use of attention scores to visualize token

weights is a commonly used method for improving model

understanding. We employed integrated libraries for

interpretability, namely BERTviz and Captum, to gain more

insight into CyaPromBERT behavior and key features

determining true promoters or non-promoters.

From the BERTviz model view and Captum, it appeared that

a large number of self-attention modules focused on -10 element

and occasionally on -35 element for sequences classified as

promoters (Figure 6 and Figure 7). This is understandable, as

the training dataset consists of all promoters from different sigma

factor groups. In prokaryotes, the promoter regions are AT-rich

and depend on the differences between their local structural

properties and flanking sequences. The AT-rich -10 element

plays a conserved role in DNA unwinding and facilitates

transcription. Therefore, the constructed model could capture

this local interaction context for promoter classification. Not all

attention modules were utilized in the trained model; non-

operational modes were observed in several layers and

attention heads (cross-attention pointing to <s> and </s >
tokens).

To estimate the closeness of the classifier to the real

consensus of the -10 element, we defined a simple Monte

Carlo generator using the constructed CyaPromBERT model

as the discriminator. The pseudo-random generator

generated fixed-length DNA sequences (50 nucleotides)

until an expected number of sequences (500 sequences)

passed the discriminator (cutoff value ≥0.99). Using this

enrichment method, a recognition motif of the

GnTAAAATT region was identified with a strong

emphasis on thymine at the -11 and adenine at the

-10 and -9 positions followed by two thymine bases at

-6 and -5 (Figure 7C), which is similar to the consensus

motif of the extended -10 element GnTATAAT of the

extended -10 element previously reported in E. coli

(Feklistov and Darst 2011). Further stretching of GGG

was similar to that of the discriminator element in E. coli.

Reversed enrichment using Monte Carlo sampling did not

yield any motifs for non-promoter sequences. Promoters

recognized by sigma factor groups have preferred motifs;

however, crosstalk between groups does occur due to

similarity of the transcriptional factors (Figure 7B). Group

1 (SigA), from the model cyanobacterium Synechocystis

sp. PCC 6803 has consensus motifs similar to RpoD from

E. coli (-35 element TTCACA and -10 element TATAAT),

whereas the promoters recognized by sigma factor group 2

(SigB,C,D,E,F) have only a consensus motif of TATAAT for

the -10 element. Group 3 (sigF,G,H,I) has dissimilar motifs

of the -32 element TAGGC and -12 element GGTAA

(Imamura and Asayama 2009). Therefore, the trained

model CyaPromBERT potentially learned and gave better

attention scores to nucleotide matching the enriched motif to

distinguish promoter-like and non-promoter sequences.

FIGURE 5
Model performance based on receiver operating characteristic curves tested on an independent promoter datasets from E. coli. (A) iPro70-
FMWin (B) Eco70PromBERT- (BERT-base + 1bp tokenizer trained on promoter datasets from E. coli).
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Cross-species validation through
Synechocystis sp. PCC 6803 and
Synechocystis sp. PCC 6714 datasets

As stated above, one of the main objectives of the current

work was to use the limited dRNA-seq datasets of some model

organisms that are closely related to the organisms of interest

to construct curated models capable of high-performance

inferencing for species with similar lineages by taking

advantage of the learning transferability of deep-learning

models. Therefore, we further validated the trained

model using promoter and non-promoter datasets prepared

from Synechocystis sp. PCC 6803 using TSSNote. They were

from a different genus than Synechococcus elongatus sp. UTEX

2973. The trained model performed well on promoter

prediction tasks using datasets consisting of

2840 sequences from Synechocystis sp. PCC 6803, with an

AUROC score of 0.961 and F1 score of 0.91 (Table 4). A slight

reduction in performance compared with that of

Synechococcus elongatus sp. UTEX 2973 may be due to

overfitting or differences in genomic preferences between

the two species. Additionally, we trained similarly a

promoter prediction model from Synechocystis sp. PCC

6803 and cross validated it with a closely related species

Synechocystis sp. PCC 6714. The performance was similar

but F1 scores of 0.89 were lower than those from Synechocystis

sp. PCC 6803 (Table 5). However, it should be noted that the

quality of datasets for Synechocystis sp. PCC 6714 was not

high, leading to more noisy data. Regardless, the results still

demonstrated the capability of maintaining good

performance in cross-species promoter prediction from

similar lineages.

FIGURE 6
Visualization tools for model interpretability. (A) Heatmap based on attention scores of nucleotides (tokens) across 12 layers. (B) Heatmap
illustrating cross-attention scores of nucleotides (tokens) in the last three layers. In the example heatmap, the self-attention modules focused on
-10 element and some positions in the -35 element.
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The limitations of the pipeline and the
trained model

Despite the fast construction and relatively high

performance, a few limitations were present in the current

work. First, for TSSNote, the quality and accuracy of

promoter extraction depend on the quality of raw dRNAseq

datasets and their experimental designs. The quality and

performance of the trained model also depend on the quality

of the inputs; therefore, selecting suitable parameters and

preparing good datasets are the most important part of this

pipeline.We tested the pipeline on datasets of the model acetogen

Eubacterium limosum (Song et al., 2018). The pipeline produced

a model with F1 scores of 0.88 and AUROC scores of 0.89.

However, when we tested the pipeline on more dated datasets of

other species, the trained models did not perform well. Second,

FIGURE 7
Motif analysis using attribution weights and reverse enrichment through Monte Carlo sampling. (A) Class attributions visualization of a few
strong promoters in Synechococcus elongatus sp. UTEX 2973 and a non-promoter sequence. (B) Transcription factor groups in Synechocystis sp.
PCC 6803. The relatively conserved region two in group 1 and group 2 retains a motif similar to the consensus -10 element TATAAT. (C) The motif
learned by the trained model discovered by Monte Carlo sampling.
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despite the high performance of the test datasets and cross-

validation, the trained model still suffers from false positives in

the regional scanning mode. Thus, the results should be

interpreted as the most potential locations, and further

analyses for decision-making should be conducted. There are

several possible explanations for this finding. To capture most

promoters of the genera Synechocystis and Synechococcus

through the learned pattern, the model focused solely on the

interrelationship and composition of nucleotides in the

-10 element. Therefore, the model may be confused with AT-

rich promoter-like sequences. Another explanation is that

transcription is a complex biological process, which is

influenced by multiple factors, such as protein–DNA

interactions and protein–protein interactions (DNA-binding

proteins, transcription factors, enhancers, competition of

sigma factors for the holoenzyme RNA polymerase), and the

topographical state of the genome (chromosome folding states).

The tertiary structures of chromosomes can greatly influence

functional DNA-related processes, such as transcription and

DNA replication (Dorman, 2019; Szabo et al., 2019). Such

interactions cannot be fully captured with sequential

information, which is another limitation of the current work.

Regardless, the transformer architecture is a powerful building

block for the construction of multimodal models; therefore,

future incorporation of additional data reflecting cis/trans

interactions and/or other neural networks may improve the

accuracy and reduce false positives to make the model more

deterministic. The pipeline and model in the current work may

be used for constructing a fast and accessible promoter prediction

and screening tool using a deep-learning approach, which can

help reduce the time needed for downstream analyses.

Conclusion

With the rapid evolution and continuous development of

next-generation sequencing techniques, an unprecedented vast

amount of high-quality biological data has become increasingly

accessible to researchers. This ever-expanding source of

genomic data is a valuable, yet underexplored, reservoir of

knowledge that can provide valuable insights into the

mystery of life. Recently, methodological and computational

advancements have enabled systematic and high-throughput

approaches to elucidate the biological meanings of DNA

sequences, in addition to traditional knowledge-based

analysis. The traditional method for promoter identification

involves dRNA-seq or 5′-CAGE experiments. However, despite

the growing number of high-quality RNA-seq datasets, dRNA-

seq experiments are still limited and expensive. In the current

study, we applied and compared the performance of various

TABLE 4 Cross validation the performance of CyaPromBERT trained on Synechococcus elongatus sp. UTEX 2973 for a distantly related species
Synechocystis sp. PCC 6803.

Species AUROC Precision F1 score Support

Promoter Non-promoter Promoter Non-promoter Promoter Non-promoter Promoter Non-promoter

Synechococcus sp.
UTEX 2973

0.98 0.98 0.92 0.95 0.93 0.93 1001 1036

Synechococcus sp.
PCC 6803

0.96 0.96 0.88 0.94 0.91 0.91 1407 1433

TABLE 5 Cross validation the performance of CyaPromBERT trained on Synechocystis sp. PCC 6803 for a closely related species Synechocystis
sp. PCC 6714.

Species AUROC Precision F1 score Support

Promoter Non-promoter Promoter Non-promoter Promoter Non-promoter Promoter Non-promoter

Synechococcus sp.
PCC 6803

0.97 0.97 0.91 0.92 0.91 0.92 364 378

Synechococcus sp.
PCC 6714

0.96 0.96 0.91 0.88 0.89 0.89 330 330
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SOTA transformer-based models for promoter prediction of

Synechococcus elongatus sp. UTEX 2973 and Synechocystis

sp. PCC 6803. The model achieved an AUROC score of 97%

and an F1 score of 92% in the validation dataset of the

promoters extracted from Synechococcus elongatus

sp. UTEX 2973 and had an AUROC score of 96% and

F1 score of 91% when cross-validated using 7000 promoters

from Synechocystis sp. PCC 6803. This finding illustrated

that core promoter features are conserved in related

species, and the dRNA-seq dataset of one model

organism is sufficient to construct a curated promoter

prediction model.

Precise promoter prediction is essential to understand the

regulatory mechanisms of genes and operons. A key advantage

of this study is that it can rapidly identify potential

promoter sequences and regions from genomic data with high

precision. The model is integrated with the visualization libraries

BERTviz and Captum to visualize cross-attention weights, allowing

closer observation of base-pair interactions. To increase accessibility

to other researchers, both themodels and pipeline were ported to the

cloud-computing service Google Colab. The pipeline developed

(TSSNote and PromBERT) in this study can be applied to other

species and lineages to develop fast promoter prediction tools. As

transformer architecture has become increasingly popular for

multimodal learning, the implementation and analysis of BERT

behavior in the context of genomics is another case study for

developing more robust implementations of transformers for

biological application.
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