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Background: Finding reliable diagnostic markers for gastric cancer (GC) is

important. This work uses machine learning (ML) to identify GC diagnostic

genes and investigate their connection with immune cell infiltration.

Methods:Wedownloaded eight GC-related datasets fromGEO, TCGA, andGTEx.

GSE13911, GSE15459, GSE19826, GSE54129, and GSE79973 were used as the

training set, GSE66229 as the validation set A, and TCGA & GTEx as the validation

set B. First, the training set screened differentially expressed genes (DEGs), and

gene ontology (GO), kyoto encyclopedia of genes and genomes (KEGG), disease

Ontology (DO), and gene set enrichment analysis (GSEA) analyseswere performed.

Then, the candidate diagnostic genes were screened by LASSO and SVM-RFE

algorithms, and receiver operating characteristic (ROC) curves evaluated the

diagnostic efficacy. Then, the infiltration characteristics of immune cells in GC

samples were analyzed by CIBERSORT, and correlation analysis was performed.

Finally, mutation and survival analyses were performed for diagnostic genes.

Results: We found 207 up-regulated genes and 349 down-regulated genes

among 556 DEGs. gene ontology analysis significantly enriched 413 functional

annotations, including 310 biological processes, 23 cellular components, and

80 molecular functions. Six of these biological processes are closely related to

immunity. KEGG analysis significantly enriched 11 signaling pathways.

244 diseases were closely related to Ontology analysis. Multiple entries of

the gene set enrichment analysis analysis were closely related to immunity.

Machine learning screened eight candidate diagnostic genes and further

validated them to identify ABCA8, COL4A1, FAP, LY6E, MAMDC2, and

TMEM100 as diagnostic genes. Six diagnostic genes were mutated to some

extent in GC. ABCA8,COL4A1, LY6E,MAMDC2, TMEM100 had prognostic value.
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Conclusion: We screened six diagnostic genes for gastric cancer through

bioinformatic analysis and machine learning, which are intimately related to

immune cell infiltration and have a definite prognostic value.

KEYWORDS

gastric cancer, diagnostic gene, immune cell infiltration, bioinformatics analysis,
machine learning, LASSO, SVM-RFE

1 Introduction

Gastric cancer (GC) is one of the most prevalent digestive

systemmalignancies and the third leading cause of cancer-related

deaths worldwide (Bray et al., 2018). Although surgery and

chemotherapy have improved survival rates for advanced GC,

the overall survival (OS) rate is still < 40%, and more than half of

patients experience postoperative recurrence (Liu et al., 2016;

Jiang et al., 2017). Due to the atypical early symptoms of GC, it is

easy to overlook the fact that many patients are already in an

advanced or even a terminal stage by the time they are diagnosed

(Cao et al., 2021). Therefore, identifying novel and feasible

biomarkers is essential for the early diagnosis and treatment

of GC.

While immunotherapy has made significant breakthroughs

in a variety of solid tumors, it has also provided new strategies

and hope for the comprehensive treatment of GC (Robert et al.,

2015; Zhou et al., 2020; Janjigian et al., 2021; Pietrantonio et al.,

2021; Umeda et al., 2021). Unfortunately, not all GC patients can

benefit from it (Chen and Mellman, 2017). Therefore, there is an

urgent need for research into how to choose GC patients who will

respond well to immunotherapy, predict its effectiveness, and get

“inactive” GC patients to respond to and benefit from it.

The tumor microenvironment (TME) consists of a complex

network of multiple types of stromal cells, immune cells, and

extracellular components that surround tumor cells and are

nourished by the vascular system (Turley et al., 2015). Studies

have shown that the TME has a profound association with the

efficacy of immunotherapy and that the profile of the TME

significantly affects disease progression and regression (Diaz

and Le, 2015; Hegde et al., 2016; Mariathasan et al., 2018; Hegde

and Chen, 2020; Helmink et al., 2020). Therefore, systematically

resolving the phenotypes of different cells in TME, especially

the characteristics of immune cell infiltration, is key to

understanding the genesis and progression of many tumors,

including GC, and improving immunotherapy’s effectiveness.

Based on linear support vector regression, CIBERSORT is an

algorithm for the deconvolution of expression matrices of

human immune cell subtypes. When comparing several

methodologies, deconvolution analysis of expression matrices

of unknown mixtures with similar cell types emerges as the

most effective. The approach generates gene expression profiles

for 22 distinct types of immune cells based on a previously

established reference set (Newman et al., 2015). Using this

method, we now have a solid foundation for investigating TME.

In recent years, machine learning (ML) has been widely used

to solve various complex problems in the medical field (Shehab

et al., 2022). It is capable of mining vast amounts of data and

discovering exciting hidden relationships within them, providing

explanations and defining patterns. It can help improve disease

diagnosis accuracy, reliability, and predictability. With the

continuous development of gene chips and high-throughput

sequencing technologies, bioinformatics data have exploded in

just a few decades. The joint application of bioinformatics

analysis and ML is increasing and shows great potential

(Kononenko, 2001). No study has seen the use of ML to

identify and characterize GC-related diagnostic genes, which

deserves further exploration.

This study analyzed the differentially expressed genes

(DEGs) between GC (tumor) and normal gastric (normal)

tissue samples through GC-related data in public databases

(GEO, TCGA, and GTEx) to explore their biological functions

and signaling pathways. We adopted a combined bioinformatics

analysis andML strategy to screen and validate the targeted genes

associated with GC diagnosis using the LASSO (least absolute

shrinkage and selection operator) and SVM-RFE (support vector

machine recursive feature elimination) algorithms. The

infiltration of each immune cell in GC was then analyzed

using CIBERSORT. Finally, we performed a correlation

analysis between diagnostic genes and immune cell infiltration

characteristics to gain insight into the molecular immune

mechanisms involved in developing GC.

2 Materials and methods

2.1 Data collection and processing

We retrieved and downloaded six GC datasets from the GEO

database: GSE13911, GSE15459, GSE19826, GSE54129,

GSE66229, and GSE79973. Their data are based on the

Affymetrix Human Genome U133 Plus 2.0 Array of

GPL570 platform. The probe matrices were converted to gene

matrices and normalized. GSE13911, GSE15459, GSE19826,

GSE54129, and GSE79973, which contained 371 GC and

77 normal gastric tissue samples, were merged to remove

batch effects (Johnson et al., 2007; Taminau et al., 2012) and

used as the training set (Supplementary Figure S1A–E). The

GSE66229 dataset, which included 300 GC samples and

100 paired normal gastric tissue samples, was used as
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validation set A. We downloaded RNA sequencing data (FPKM)

of GC with mutation data from the TCGA database and

downloaded RNA sequencing data (FPKM) of normal gastric

tissues from the GTEx database. We combined the RNA

sequencing data from the TCGA and GTEx databases to

remove the batch effect as validation set B. In total, 375 GC

samples were collected, including 207 normal gastric tissue

samples.

2.2 Differential expression analysis

The R package “limma” was used to filter the DEGs between

the tumor and normal groups in the training set. The filtering

conditions were set to |logFC| > 1 and FDR < 0.05.

2.3 Functional enrichment analysis

Gene ontology (GO), kyoto encyclopedia of genes and

genomes (KEGG), and disease ontology (DO) analyses were

performed using the R packages “clusterProfiler,”

“org.Hs.eg.db,” “DOSE,” and “enrichplot” to observe the

enrichment of the DEGs in function, pathway, and disease.

Gene set enrichment analysis (GSEA) was performed using

the R package “GSEABase” to observe functional and pathway

differences between the tumor and normal groups; q < 0.05 was

considered statistically significant.

2.4 Screening and validation of diagnostic
genes

The LASSO and SVM-RFE ML algorithms were used to

screen candidate diagnostic genes. LASSO is a compressive

estimation method that creates a more accurate model by

building a penalty function that forces it to compress some

regression coefficients or force the sum of the absolute values

of the coefficients to be less than a fixed value while setting some

coefficients to zero. Thus, it retains the benefit of subset shrinkage

and is a biased estimator when dealing with complex covariance

in data. SVM-RFE is a sequential backward selection algorithm

that uses the support vector machine principle of the maximum

interval. It trains the sample with the model and then ranks each

feature by its score, removes the feature with the lowest score,

trains the model again with the remaining features for the next

iteration, and chooses the required number of features. It is an

embedded-based method that improves learning performance by

using the principle of minimizing structural risk while

minimizing empirical error. The R package “glmnet” for

LASSO and the R package “e1071” for SVM-RFE were used.

The intersection of the results of the two algorithms is the

candidate diagnostic gene. Receiver operating characteristic

(ROC) curves assessed the predictive effect of candidate

diagnostic genes in the training and validation sets. The

differential expression of candidate diagnostic genes between

the tumor and normal groups was also analyzed; p < 0.05 was

considered to be statistically significant.

2.5 Immune cell infiltration analysis

The differences in immune cell infiltration between the

tumor and normal groups were analyzed using the R package

“CIBERSORT” to obtain the infiltration of 22 immune cells in

each training set sample. p < 0.05 was considered statistically

significant. Furthermore, the correlation between diagnostic

genes and immune infiltrating cells was calculated; |R| ≥
0.3 and p < 0.05, considered to be correlated.

2.6 Analysis of diagnostic gene mutations

We investigated the mutation status of the diagnostic genes

using the R package “maftools” and the TCGA database’s GC

mutation data.

2.7 Survival analysis of diagnostic genes

Online survival analysis was performed using the GC data

from the Kaplan Meier Plotter database to select the optimal cut-

off value calculated by the system. We evaluated the effects of

diagnostic genes on the OS, first progression (FP), and post-

progression survival (PPS) of GC patients; p < 0.05 was

considered to be statistically significant.

3 Results

3.1 Screening for DEGs

The procedure followed during this research is shown in

Figure 1. A total of 556 eligible DEGs were screened from the

training set according to the previously described filtering

conditions, with 207 up-regulated and 349 down-regulated in

the tumor group (Supplementary Table S1 and Figures 2A, B).

3.2 Functional enrichment analysis

GO analysis showed that DEGs were significantly enriched

for 413 functional annotations, including 310 biological

processes, 23 cellular components, and 80 molecular functions

(Supplementary Table S2 and Figure 3A). The significantly

enriched biological processes related to immunity included the
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following: the antimicrobial humoral immune response mediated

by antimicrobial peptide, the humoral immune response, the

organ or tissue specific immune response, the mucosal immune

response, the innate immune response in mucosa, and the

mature B cell differentiation involved in immune response.

KEGG analysis indicated that DEGs significantly enriched

11 signaling pathways (Supplementary Table S3 and

Figure 3B). DO analysis revealed that the DEGs were closely

associated with 244 diseases (Supplementary Table S4 and

Figure 3C). The results of the GSEA analysis demonstrated

differences in function and pathways between the tumor and

normal groups, with multiple entries closely associated with

immunity (Supplementary Tables S5, 6 and Figures 3D–G).

3.3 Screening and validation of diagnostic
genes

We identified 43 diagnosis-associated genes using the LASSO

algorithm (Figures 4A, B) and 34 using the SVM-RFE algorithm

FIGURE 1
Flow chart of research design and analysis.

FIGURE 2
DEGs between tumor and normal groups in the training set. (A) Volcano plot of DEGs with difference folds >2, red for up-regulated and green
for down-regulated. (B) Heat map of DEGs, red represents high expression, and blue represents low expression.
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(Figure 4C) from DEGs. The overlapping genes of both

algorithms were ABCA8, COL4A1, COL6A3, FAP, LY6E,

MAMDC2, TMEM100, and TMEM266 as candidate diagnostic

genes (Figure 4D). COL4A1, COL6A3, FAP, and LY6E were up-

regulated in the tumor group in the training set, whereas ABCA8,

MAMDC2, TMEM100, and TMEM266 were down-regulated

(Figures 5A–H). All eight genes showed alterations consistent

with the training set in validation sets A and B. Only COL6A3

showed no statistically significant difference in validation set A

(Supplementary Figures S2A–H and Figures 3A–H). The area

under the curve (AUC) values of ABCA8, COL4A1, COL6A3,

FAP, LY6E, MAMDC2, TMEM100, and TMEM266 in the

training set are 0.783, 0.813, 0.785, 0.828, 0.815, 0.770, 0.772,

and 0.840, respectively, all of which are greater than 0.70,

showing a higher precision predictive value (Figures 6A–H).

The AUC values in validation set A were 0.950, 0.790, 0.552,

0.830, 0.887, 0.967, 0.957, and 0.634, all of which were greater

than 0.70 except for COL6A3 and TMEM266 (Supplementary

Figures S4A–H). Meanwhile, the AUC values in validation set B

were 0.945, 0.895, 0.680, 0.707, 0.943, 0.910, 0.931, and 0.800,

which were greater than 0.70 except for COL6A3 (Supplementary

Figures S5A–H). ABCA8, COL4A1, FAP, LY6E, MAMDC2, and

TMEM100 showed consistent AUC values in the training and

validation sets, and all of them were greater than 0.70, with high

prediction accuracy and reliability and repeatability. Therefore,

we identified them as diagnostic genes.

3.4 Immune cell infiltration analysis

We obtained the proportion of 22 immune cell

infiltrations in each sample of the training set using the

CIBERSORT algorithm (Figure 7A). The correlation heat

map between each immune cell demonstrated

(Supplementary Table S7 and Figure 7B) that Macrophage

M1 was positively correlated with T cell CD4+ memory

activated (R = 0.48, p < 0.05), T cell follicular helper (R =

0.34, p < 0.05), and T cell CD8+ (R = 0.30, p < 0.05). T cell

CD4+ memory activated was positively correlated with T cell

CD8+ (R = 0.37, p < 0.05). Neutrophil was positively correlated

with Mast cell resting (R = 0.34, p < 0.05). T cell CD4+ naive

was positively correlated with B cell naive (R = 0.30, p < 0.05).

FIGURE 3
Enrichment analysis of DEGs. GO (A), KEGG (B), and DO (C) analysis of the enrichment of DEGs for function, pathways, and disease, and GSEA
analysis of differences in function (D,E) and pathways (F,G) between the tumor and normal groups.
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FIGURE 4
LASSO and SVM-RFE screening of candidate diagnostic genes.(A) LASSO screening of candidate diagnostic genes, with logλ on the horizontal
axis and cross-validation error on the vertical axis. The cross-validation error is minimal when 43 genes are selected. (B) Different colored lines
represent different genes screened by LASSO. (C) SVM-RFE screening of candidate diagnostic genes. The horizontal axis represents the change in the
number of genes, and the vertical axis represents the cross-validation error. The cross-validation error was minimized when n = 34. (D) The
Venn diagram displays the intersection of the results of the two algorithms.

FIGURE 5
Expression of candidate diagnostic genes in the training set (A–H) Scatter plots showing the expression of candidate diagnostic genes between
tumor and normal groups in the training set. Red indicates the tumor group and blue indicates the normal group. p < 0.05 indicates significant
difference.
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FIGURE 6
ROC curves in the training set. (A–H) The ROC curves for the eight candidate diagnostic genes in the training set are shown in the figure. The
horizontal coordinate is the false positive rate, presented as 1-specificity, and the vertical coordinate is the true positive rate, presented as sensitivity.

FIGURE 7
Analysis of immune cell infiltration. (A) The graph shows the degree of infiltration of different immune cells between the tumor and normal
groups. (B) Immune cell correlation analysis. The horizontal and vertical axes are the names of immune cells, and the values indicate the correlation
coefficients between immune cells. The red color indicates a positive correlation, and the blue indicates a negative one. (C) Violin plot showing the
difference of immune infiltrating cells between tumor and normal groups. The horizontal axis indicates the name of immune cells, and the
vertical axis indicates the content of immune cells. Blue indicates the normal group, and red indicates the tumor group. p < 0.05 indicates a significant
difference.
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Conversely, T cell CD4+ memory resting was negatively

correlated with T cell CD4+ memory activated (R = −0.50,

p < 0.05), Macrophage M1 (R = −0.45, p < 0.05), T cell CD8+

(R = −0.45, p < 0.05), Macrophage M0 (R = −0.36, p < 0.05),

and T cell follicular helper (R = −0.36, p < 0.05). B cell plasma

had a negative correlation with macrophage M1 (R = −0.38,

p < 0.05), M2 (R = −0.38, p < 0.05), and M0 (R = −0.34, p <
0.05). T cell gamma delta was negatively correlated with NK

cell resting (R = −0.43, p < 0.05). Mast cell activated was

negatively correlated with Mast cell resting (R = −0.41,

p < 0.05).

Further analysis revealed a significant difference in the

proportion of the infiltration of 13 immune cell types between

the tumor and normal groups (Supplementary Table S8 and

Figure 7C). In the tumor group, T cell CD8+, T cell CD4+ naive,

T cell CD4+ memory activated, T cell follicular helper, NK cell

activated, Macrophage M0, Macrophage M1, Macrophage M2,

Myeloid dendritic cell resting, and Neutrophil infiltration were

higher in proportion (p < 0.05). The proportion of B cell plasma,

T cell CD4+ memory resting, and NK cell resting infiltration was

higher in the normal group (p < 0.05). The findings above

revealed substantial differences in the characteristics of

immune cell infiltration between tumor and normal tissues

and a complex interrelationship between the various immune

cells infiltrating in TME.

3.5 Correlation analysis of diagnostic
genes with infiltrating immune cells

Through the correlation analysis of diagnostic genes and

infiltrating immune cells (Supplementary Table S9 and

Supplementary Figures S6A–F), we discovered that ABCA8

was significantly positively correlated with T cell gamma delta

(R = 0.31, p < 0.05), T cell CD4+ memory resting (R = 0.45, p <
0.05), and Mast cell activated (R = 0.54, p < 0.05) and

negatively correlated with Macrophage M0 (R = −0.62, p <
0.05), Macrophage M1 (R = −0.37, p < 0.05), and T cell CD4+

memory activated (R = −0.32, p < 0.05) (Figure 8A). COL4A1

was significantly positively correlated with Macrophage M2

(R = 0.39, p < 0.05) and negatively correlated with B cell

plasma (R = −0.46, p < 0.05) (Figure 8B). FAP was significantly

positively correlated with Neutrophil (R = 0.30, p < 0.05),

Macrophage M0 (R = 0.31, p < 0.05), Macrophage M1 (R =

0.38, p < 0.05), and Macrophage M2 (R = 0.45, p < 0.05)

and negatively correlated with B cell plasma (R = −0.47, p <
0.05) and T cell CD4+ memory resting (R = −0.31, p < 0.05)

(Figure 8C). LY6E was significantly positively correlated

with T cell CD4+ memory activated (R = 0.31, p < 0.05),

Macrophage M0 (R = 0.46, p < 0.05), and Macrophage M1 (R =

0.49, p < 0.05) and negatively correlated with T cell CD4+

memory resting (R = −0.42, p < 0.05) and B cell plasma

FIGURE 8
Correlation analysis of diagnostic genes and immune infiltrating cells. (A–F)Correlation between diagnostic genes and immune infiltrating cells.
Horizontal coordinates indicate correlation coefficients, and vertical coordinates indicate immune cell names. The circle size means the absolute
value of the correlation coefficient, the color indicates the p-value of the correlation test, and the p-value size is indicated by color.
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(R = −0.30, p < 0.05) (Figure 8D). MAMDC2 was

significantly positively correlated with T cell CD4+ memory

resting (R = 0.47, p < 0.05) and Mast cell activated (R = 0.56,

p < 0.05) and negatively correlated with Macrophage M0

(R = −0.63, p < 0.05), T cell CD4+ memory activated

(R = −0.37, p < 0.05), and Macrophage M1 (R = −0.34, p <
0.05) (Figure 8E). TMEM100 was significantly positively

correlated with T cell CD4+ memory resting (R = 0.38, p <
0.05) and Mast cell activated (R = 0.55, p < 0.05) and

negatively correlated with Macrophage M0 (R = −0.56, p <
0.05) and T cell CD4+ memory activated (R = −0.33, p < 0.05)

(Figure 8F). The results above imply an intimate

and comprehensive association between diagnostic genes

and immune infiltrating cells, which interact with each

other to influence the immune infiltration characteristics

of TME.

3.6 Analysis of diagnostic gene mutations

We performed the mutation analysis of diagnostic genes

using GC mutation data from the TCGA database. The results

revealed that, in descending order, the most common mutation

types in the tumor group were Missense_Mutation, Frame_

Shift_Del, Frame_Shift_Ins, Splice_Site, and Non-sense_

Mutation (Figure 9B). The mutation types in the normal

group were Missense_Mutation, Frame_Shift_Del, and Frame_

Shift_Ins (Figure 9C). Six diagnostic genes were mutated in

descending frequency in the tumor group: COL4A1, ABCA8,

MAMDC2, FAP, TMEM100, and LY6E (Figure 9B). Four

diagnostic genes were mutated in descending frequency in the

normal group: COL4A1, ABCA8, MAMDC2, and TMEM100

(Figure 9C). The COL4A1, ABCA8, MAMDC2, FAP,

TMEM100, and LY6E mutation frequencies did not differ

FIGURE 9
Mutation analysis of diagnostic genes (A)Mutations of diagnostic genes between tumor and normal groups. (B)Mutations of diagnostic genes in
the tumor group. (C) Mutations of diagnostic genes in the normal group.
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significantly between the tumor and normal groups (p > 0.05)

(Figure 9A).

3.7 Survival analysis of diagnostic genes

The optimal cut-off values calculated by the system were

selected using the GC data from the Kaplan Meier Plotter

database for online survival analysis. The results indicated that

ABCA8 (Figures 10A–C), COL4A1 (Figures 10D–F), LY6E

(Figures 10J–L), MAMDC2 (Figure 10M–O), and TMEM100

(Figures 10P–R) effectively predicted OS, FP, and PPS (p <
0.05) in GC patients, while FAP could not predict OS, FP,

and PPS (p > 0.05) (Figures 10G–I).

4 Discussion

GC has a high incidence and mortality rate, and the

prognosis is closely related to the timing of diagnosis and

treatment. The 5-year survival rate of early-stage patients is

over 90%, while that for those at an advanced stage is less

than 20% (Liu et al., 2016; Jiang et al., 2017; Bray et al., 2018;

Cao et al., 2021). A timely diagnosis and treatment can increase

the survival rate and reduce mortality. Immunotherapy

breakthroughs have given insights into GC (Robert et al.,

2015; Zhou et al., 2020; Janjigian et al., 2021; Pietrantonio

et al., 2021; Umeda et al., 2021), and immune cell infiltration

characteristics are closely related to treatment outcomes (Diaz Jr

and Le, 2015; Turley et al., 2015; Hegde et al., 2016; Chen and

Mellman, 2017; Mariathasan et al., 2018; Hegde and Chen, 2020;

Helmink et al., 2020). ML, which can extract relevant

information from large amounts of data and uncover

important associations, is increasingly used in the biomedical

field (Kononenko, 2001; Shehab et al., 2022). In this study, we

screened the DEGs of GC by bioinformatics analysis and

performed functional and pathway profiling. Then, eight

candidate diagnostic genes were filtered from the DEGs using

the LASSO and SVM-RFE algorithms, and their diagnostic

efficacy and differential expression were cross-checked in the

training and validation sets. Next, the infiltration of each immune

cell in GC was analyzed, and we assessed the correlation between

diagnostic genes and immune cell infiltration characteristics.

Finally, the diagnostic genes were analyzed for mutation and

survival.

The GO analysis of DEGs significantly enriched six biological

processes related to immunity. The KEGG analysis significantly

enriched 11 signaling pathways related to intercellular

FIGURE 10
Survival analysis of candidate diagnostic genes (A–R) Effect of each diagnostic gene on overall survival (OS), first progression (FP), and post-
progression survival (PPS).

Frontiers in Genetics frontiersin.org10

Xie et al. 10.3389/fgene.2022.1067524

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1067524


communication, tumorigenesis, and metabolism, including

ECM-receptor interaction, chemical carcinogenesis, and

various metabolic processes. The DO analysis significantly

enriched 244 diseases, including GC and other malignancies.

The GSEA analysis between the tumor and normal samples was

also enriched for several immune and tumor-related entries.

Accordingly, our findings imply that DEGs are closely related

to immunity and tumors.

We used 2 ML algorithms to screen the candidate

diagnostic genes of GC from DEGs. LASSO can achieve the

selection of variables while estimating parameters, thus better

solving the problem of multicollinearity in regression analysis

and better explaining the results (Rafique et al., 2021).

Additionally, SVM-RFE is different from other statistical

methods because it does not follow the traditional path from

induction to deduction. Instead, it uses efficient transductive

inference and makes problems such as classification and

regression much easier to solve (Tang et al., 2020). After

taking the intersection of the results of the two algorithms,

we obtained the candidate diagnostic genes. The results of the

cross-test between the training and validation sets revealed that

the differential expression of the candidate diagnostic genes

showed consistent changes, among which the AUC values of

ABCA8, COL4A1, FAP, LY6E, MAMDC2, and TMEM100 in

both the training and validation sets were greater than 0.7,

which had higher diagnostic efficacy and stability. Therefore,

we identified them as diagnostic genes.

The extracellular matrix (ECM) has an abundance of

collagen, which plays an important role in regulating TME

and tumor cell behavior (Järveläinen et al., 2009; Dong et al.,

2014). Collagen IV is the most abundant component of the

ECM basement membrane (Kalluri, 2003). COL4A1 (Collagen

Type IV Alpha 1 Chain), a collagen IV molecule, has two

distinct integrin α1β1 and α2β1 recognition sites (Kühn, 1995)

and is involved in intercellular interactions. Cui X et al. found

that COL4A1 expression was elevated in GC tissues and cells

and that the knockdown of its expression inhibited cell

proliferation, migration, invasion, and EMT in GC. The

specific mechanism was that the downregulation of

COL4A1 suppressed the aggressive phenotype of GC cells

by blocking the Hedgehog signaling pathway (Cui et al.,

2022). Cancer-associated fibroblasts (CAFs) are an

important component of TME and play an important role

in tumor invasion and metastasis (Czekay et al., 2022). FAP

(Fibroblast Activation Protein Alpha) is a specific marker of

CAFs and belongs to the serine protease family of type II

integral membrane glycoproteins (Yang et al., 2016). Wang RF

et al. found that FAP was overexpressed in the CAFs of GC

tissues and that the expression level of FAP in CAFs was

significantly correlated with Lauren’s classification, grade of

differentiation, depth of tumor infiltration, and TNM stage

but not with patient age and gender. When MGC-803 GC cells

were co-cultured with CAFs, the invasive and migratory

ability of the MGC-803 cells was also significantly

increased. In contrast, the invasive and migratory abilities

of the MGC-803 cells decreased considerably after knocking

down FAP in CAFs. Hence, FAP may be an important

regulator of GC invasion and migration (Wang et al.,

2013). LY6E (Lymphocyte Antigen 6 Family Member E)

encodes a GPI-anchored cell surface protein that regulates

T lymphocytes’ proliferation, differentiation, and activation

(Upadhyay, 2019). In Lv et al. (2018)’s study, LY6E expression

was elevated in GC tissues and cells, and it was associated with

histological grading, AJCC staging, and tumor location in GC.

The knockdown of LY6E by targeted siRNA could inhibit the

growth, proliferation, and migration of GC cell. TMEM100

(transmembrane protein 100) encoded products play an

important role in embryonic arterial endothelial cell

differentiation and vascular morphogenesis (Zhuang et al.,

2020). Zhuang J et al. found that TMEM100 expression was

significantly downregulated in GC samples. The

overexpression of TMEM100 inhibited the migration and

invasion of GC cells but did not affect their growth. The

down-regulation of TMEM100 restored the migratory and

invasive ability of GC cells. Moreover, the upregulation of

TMEM100 increased the sensitivity of GC cells to

chemotherapeutic drugs such as 5-fluorouracil and

cisplatin. As a result, the authors reasoned that TMEM100,

a GC inhibitory factor, may be a therapeutic target and

prognostic indicator (Zheng et al., 2022).

ABCA8 (ATP Binding Cassette Subfamily A Member 8) is

a transmembrane transporter responsible for transporting

organic compounds (e.g., cholesterol) and drug efflux

(Sasaki et al., 2018). It belongs to the ATP-binding cassette

(ABC) transporter superfamily. The ABC transporter-

mediated anticancer drug efflux is a common mechanism

of chemoresistance (Trigueros-Motos et al., 2017), and

Yang C et al. discovered that ABCA8 expression was

significantly increased in human pancreatic cancer (PC)

cells after gemcitabine (GEM) treatment and in GEM-

resistant (Gem-R) PC cells. The knockdown of ABCA8

reversed the chemo-resistant phenotype of Gem-R cells,

whereas ABCA8 overexpression significantly decreased the

sensitivity of PC cells to GEM, suggesting an important

role for ABCA8 in regulating chemo-sensitivity (Yang et al.,

2021). The MAM (meprin/A-5 protein/receptor protein-

tyrosine phosphatase mu) structural domain is a conserved

protein structural domain in various cell surface proteins

(Kim et al., 2022). MAMDC2 (MAM Domain Containing

2), a member of the MAM family, encodes a secretory

protein consisting of 686 amino acids and contains a short

N-terminal signal sequence and four contiguous MAM

structural domains (Chin et al., 2005). Lee et al. (2020)

observed that MAMDC2 expression was down-regulated in

breast cancer and that the overexpression of

MAMDC2 significantly inhibited the proliferation of breast
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cancer T-47D cells, which may act by attenuating the MAPK

signaling pathway. Unfortunately, we did not find any

experimental reports of ABCA8 and MAMDC2 associated

with GC. In addition, since our results showed that

COL6A3 (Collagen Type VI Alpha 3 Chain) and TMEM266

(Transmembrane Protein 266) had low AUC values in the

validation set and poor diagnostic efficacy and stability, we

will not elaborate on them here.

Immunotherapy has broken the previous monopoly of surgery,

chemotherapy, and targeted therapy in GC treatment and has

significantly improved the survival of some patients (Coleman

et al., 2017; Kang et al., 2017; Shitara et al., 2018). Still, only

11–25% of GC patients can benefit from it (Chen and Mellman,

2017; Kang et al., 2017; Shitara et al., 2020). Therefore, it is a critical

clinical issue to find biomarkers that can accurately predict the

response to immunotherapy, discover the resistance mechanism of

this therapy, and develop corresponding individualized treatment

plans to avoid the harm and burden caused by the over- and

inappropriate treatment of patients. Currently, the biomarkers used

to predict the efficacy of PD-1/PD-L1 monoclonal antibodies include

immunohistochemical expression levels of PD-L1 (CPS) (Kim et al.,

2018), high microsatellite instability (MSI-H) (Diaz Jr and Le, 2015),

and tumor mutational load (TMB) (Samstein et al., 2019). However,

since these biomarkers all focus on intrinsic tumor characteristics with

significant heterogeneity and neglect the assessment of the TME, the

soil, and the ecosystem on which tumor growth depends, the stability

of their predictive efficacy is limited.

Researchers have focused on the differences between tumor

cells and normal cells in the past but neglected other non-tumor

cells in tumor tissue. With the progress of research, the

importance of TME on tumor development has been

gradually recognized. Tumor cells are not separate entities;

their microenvironment also affects carcinogenesis and

development. Various types of immune cells and

mesenchymal cells infiltrated in TME play an important role

in tumor killing and immune escape (Turley et al., 2015). Wang

JT et al. found that high IL17 mRNA expression and the high

infiltration of IL17-positive cells within the tumor were

associated with good prognosis in GC patients and that

patients with high IL17-positive cell infiltration in GC tissue

had a higher response rate to 5-FU-based postoperative adjuvant

chemotherapy. A comparison of the analysis of TME-infiltrating

immune cells, cytotoxic effector cytokines, and immune

checkpoint molecules in patients from different IL17-

expressing groups revealed that high IL17 mRNA expression

and the high infiltration of IL17-positive cells in GC tissue were

associated with more anti-tumor mast cell and NK cell

infiltration and less pro-tumor M2 macrophage infiltration,

while high IL17 mRNA expression was closely associated with

an increased expression of anti-tumor cytokines, such as

interferon-γ, perforin, granzyme A, and granzyme B. The

results suggest that in the TME of GC patients, tumor-

infiltrating IL17-positive cells promote anti-tumor immune

responses by promoting the infiltration of anti-tumor immune

effector cells and increasing the expression of anti-tumor

immune effector molecules (Wang et al., 2019). Predina J

et al. found that recurrent tumors were similar in size to

primary tumors and that tumor cells were not phenotypically

or functionally altered but were more resistant to drugs. The

reason for this is the difference in immune infiltrating cells in the

TME, with primary tumors having healthy anti-tumor effector

CD8+ T cells. In contrast, recurrent tumors contain many

immunosuppressive tumor-associated macrophages (TAMs)

and Treg cells and the cytokines VEGF, IL-1β, IL-6, IL-10,
and TGF-β, which suppress CD8+ T cells (Predina et al.,

2013). Zeng D et al. investigated the relationship between

immune cell infiltration and prognosis in the TME of GC

patients and found that the infiltration levels of CD8+ T cells

and M1 macrophages were significantly and positively correlated

with prognosis. In contrast, the infiltration levels of

M2 macrophages and resting CD4+ T cells were significantly

correlated with poor prognosis. It was also found that the

immune score established based on TME immune infiltrated

cells greatly improved the accuracy of prognosis determination

and was associated with the efficacy of chemotherapy (Zeng et al.,

2018). Our results also show significant differences in the

infiltrated immune cells between the tumor and normal

groups and, more importantly, an intricate and inextricable

association between the infiltrated immune cells and their

diagnostic genes. Our research also further confirms that the

characteristics of immune cell infiltration in TME are closely

related to the effect of immunotherapy and prognosis.

Although the present study mostly achieved our initial

vision, some shortcomings remain. Due to insufficient

clinically relevant information in some of the GEO datasets

we collected, we could not analyze the screened diagnostic

genes and immune cell infiltration characteristics with

clinicopathological characteristics in depth. In the same

way, inadequate follow-up information prevented us from

exploring and cross-validating immune cell infiltration

characteristics with prognosis. Second, this study was

analyzed exclusively based on public databases, lacking the

validation of our relevant data, and may be subject to some

bias. Lastly, the results are cross-validated and partly backed

up by evidence from experiments, but they are still

bioinformatic analyses that need to be confirmed by more

experiments. This study was only done at the level of

transcripts. GC diagnostic markers and immune cell

infiltration characteristics would be easier to find with a

full multi-omics and multi-dimensional analysis.

5 Conclusion

In summary, we screened eight candidate GC diagnostic genes

using bioinformatics analysis with 2 ML algorithms and finally
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identified six diagnostic genes after cross-validation using AUC

and other indicators. We also analyzed the infiltration of immune

cells in GC and performed a correlation analysis between

diagnostic genes and immune cell infiltration

characteristics. The screened diagnostic genes were closely

related to immune cell infiltration and had a definite prognostic

value.
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SUPPLEMENTARY FIGURE S1
Merging of GEO datasets with the removal of batch effects (A) Before
merging, the intersection of each GEO dataset. (B) The box plot indicates
that the sample distribution of each dataset before removing the batch
effect is different, suggesting a batch effect. (C) After removing the batch
effect, the data distribution tends to be consistent among the data sets,
and themedians are basically located on a horizontal line. (D) The density
plot shows that the sample distribution of each data set before removing
the batch effect is different, suggesting a batch effect. (E) After removing
the batch effect, the data distribution of each data set tends to be
consistent, with a similar mean and variance.

SUPPLEMENTARY FIGURE S2
Expression of candidate diagnostic genes in the validation set A (A–H) Scatter
plots show candidate diagnostic genes’ expression between tumor and
normal groups in the validation set A. Red indicates the tumor group, and
blue indicates the normal group. p < 0.05 shows a significant difference.

SUPPLEMENTARY FIGURE S3
Expression of candidate diagnostic genes in the validation set B (A–H) Scatter
plots show candidate diagnostic genes’ expression between tumor and
normal groups in the validation set B. Red indicates the tumor group, and
blue indicates the normal group. p < 0.05 shows a significant difference.

SUPPLEMENTARY FIGURE S4
ROC curves in the validation set A. (A–H) The ROC curves for the eight
candidate diagnostic genes in the validation set A are shown in the figure. The
horizontal coordinate is the false positive rate, presented as 1-specificity, and
the vertical coordinate is the true positive rate, presented as sensitivity.

SUPPLEMENTARY FIGURE S5
ROC curves in the validation set B. (A–H) The ROC curves for the eight
candidate diagnostic genes in the validation set B are shown in the
figure. The horizontal coordinate is the false positive rate, presented as
1-specificity, and the vertical coordinate is the true positive rate,
presented as sensitivity.

SUPPLEMENTARY FIGURE S6
Correlation of diagnostic genes with infiltrating immune cells (A–F)
Demonstrate correlation between diagnostic genes and infiltrating
immune cells, |R| ≥ 0.3 and p < 0.05, considered to be correlated.
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