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Background: There is a lack of biomarkers for predicting the efficacy of

immunotherapy in triple-negative breast cancer (TNBC). Hence, we

constructed an immune risk score (IRS) model to predict the prognosis of

patients with TNBC and evaluate those who are sensitive to immunotherapy.

Methods: The ribonucleic acid (RNA) sequencing data, mutation data, and

clinical information of TNBC patients were obtained from The Cancer

Genome Atlas database. Data of immune-related genes were obtained from

the Import and InnateDB databases. The IRS model was constructed using

univariate, least absolute shrinkage and selection operator, andmultivariate Cox

regression analyses, and the predictive ability of the prognostic model was

evaluated. Further external validation was performed using the Gene Expression

Omnibus (GEO) databases GSE58812 and GSE135565. Data on the clinical

characteristics, immune landscape, and immune checkpoint inhibitors used

in different risk groups were analyzed. Finally, the drug sensitivity of the patients

in the high- and low-risk groups was predicted.

Results: The prognostic risk score model comprised six genes: HSPA6, LCN1,

ARTN, IL36G, BCL2A1, and CASP12. The area under the curve values at 1 year,

3 years, and 5 years were 0.835, 0.852, and 0.843, respectively, indicating that

the model has a good potential for predicting the long-term survival of TNBC

patients, which is consistent with the results of the GEO cohort. Compared with

the high-risk group, the low-risk group had a better prognosis; more abundant

immune-activated cell infiltrates, such as CD8+ T cells and CD4 memory-

activated T cells, and a higher enrichment of immune-related signaling

pathways, such as the cytokine receptor interaction, nucleotide

oligomerization domain-like receptor signal pathway, T-cell receptor signal

pathway, and B-cell receptor signaling pathway, were observed. In addition, the

immune checkpoint encoding genes, such as CD274, CTLA4, PDCD1, and

PDCD1LG2 were highly expressed in the low-risk group, which showed that

this group was more likely to benefit from immunotherapy.

Conclusion: A new IRS gene feature was established to predict the patients’

prognosis and guide immunotherapy. Moreover, it was revealed that several

potential therapeutic drugs can be used in high-risk patients who are

unresponsive to immunotherapy.
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Introduction

Among female cancers, breast cancer (BC) ranks first in

terms of incidence and mortality, seriously threatening women’s

lives and health and causing a huge social burden. In 2020,

19.29 million new cancer cases were reported worldwide, and the

number of new BC cases increased rapidly to 2.26 million,

officially replacing lung cancer (2.2 million) as the most

commonly diagnosed cancer worldwide for the first time and

accounting for 11.7% of all new cancer cases (Siegel et al., 2020).

Triple-negative breast cancer (TNBC) accounts for 10–20.8% of

all pathological types of BC (Li et al., 2017) and is described as BC

with no expression of estrogen receptors (ERs), progesterone

receptors (PRs), and human epidermal growth factor receptor-2

(HER-2) on immunohistochemical examination of cancer

tissues. TNBC has a high recurrence rate, a higher risk of

metastasis, and is difficult to treat. Compared with other types

of BC, TNBC has a poor prognosis and short survival time (Won

and Spruck, 2020). Currently, there is no clear or effective

treatment for TNBC. While BC treatment has entered the era

of molecular typing, and some subtypes have been identified as

effective therapeutic targets, the therapeutic targets for TNBC

still remain unclear. Chemotherapy is the mainstay of treatment,

but only 20% patients respond well to chemotherapy (Waks and

Winer, 2019). Therefore, there is an urgent need to identify

effective measures for treating TNBC.

Previous clinical studies of a variety of solid tumors have

confirmed that immunotherapy can effectively prolong the

survival of patients, and this treatment method is expected to

provide more treatment options for TNBC patients. Among the

subtypes of BC, TNBC has an unclear physical behavior and is

difficult to diagnose and treat. The IMpassion130 study brings

BC diagnosis and treatment into the era of immunotherapy.

TNBC has become the most commonly investigated malignant

tumor in immunotherapy studies (Adams et al., 2019).

Compared with other subtypes of BC, some features of TNBC

may make it more responsive to immunotherapy (Cortes et al.,

2020). First, it has been shown that high tumor infiltrating

lymphocytes (TILs) patients with levels of immune checkpoint

inhibitors (ICIs) had a better prognosis, while patients with

TNBC had more TILs. Second, programmed cell death ligand

1 (PD-L1) is highly expressed in the tumor and immune cells of

patients with TNBC, which provides a direct target for ICIs and is

closely related to the efficacy of anti-programmed death-1 (PD-1)

therapy (Buisseret et al., 2017). In addition, TNBC has more non-

synonymous mutations that generate tumor-specific

neoantigens, thereby activating the antitumor immune

response of neoantigen-specific T cells. TNBC has become

one of the research hotspots in the field of immunotherapy

owing to its high mutation rate, high T-cell infiltration, and

high expression of PD-L1. In addition, the interactions between

tumor cells, stromal and immune microenvironment played a

key role in the response to therapies. These heterogeneity in

microenvironment andmechanism in TNBC progression are still

poorly understood. Although TNBC shows a higher response to

ICIs compared with hormone receptor-positive and HER-2

positive BC, the efficacy of ICIs remains unsatisfactory

(Keenan and Tolaney, 2020). To screen patients who are most

likely to benefit from monotherapy with ICIs and to develop

combination therapies to overcome ICI resistance, specific

biomarkers for predicting the efficacy of immunotherapy and

immune status for TNBC should be identified.

High-throughput data analysis has assumed an increasingly

important role in the clinical management of cancer patients, and

the need to identify an increasing number of complex biomarkers

has led to the introduction of next-generation sequencing (NGS)

technologies in clinical practice (Hussen et al., 2022). RNA-

sequencing based on NGS has provided new therapeutic

modalities for TNBC by identifying cancer-driving variants

and molecular subtypes of TNBC (Hu et al., 2021).

Bioinformatic methods can effectively and rapidly resolve the

biological complexity of TNBC by integrating large amounts of

genomic data. In this study, through the analysis of TNBC

genomic data, we identified TNBC immune-related genes,

constructed and verified a prognostic model, further discussed

the immune landscape of TNBC, and analyzed the drug

sensitivity of prognostic targets. Our study aimed to identify

the immune-related prognostic markers for TNBC at the

molecular and clinical levels, which will facilitate the accurate

treatment of TNBC.

Materials and methods

Data acquisition and differential gene
selection

Part of the RNA sequencing data and mutation data and

clinical information of TNBC were obtained from The Cancer

Genome Atlas (TCGA) database (https://cancergenome.nih.gov/),

including 114 tumor samples and 113 normal samples. The

GSE58812 and GSE135565 datasets were downloaded from the

Gene Expression Omnibus (GEO) database, where

GSE58812 contained 107 TNBC samples and

GSE135565 contained 84 TNBC samples (https://www.ncbi.nlm.

nih.gov/geo/). The de-batching effect was harmonized and

eliminated using combat in R software. Differentially expressed

genes (DEGs) were identified between normal and TNBC tissues
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using the limma R package and visualized as heatmaps using the R

software. The |log fold change (FC)| ≥ 2and p value of <0.05 were

used as screening criteria. All immune-related genes (IRGs) in the

ImmPort and InnateDB databases were merged, and the

differentially expressed IRGs were extracted from the intersection

of immune genes and all DEGs using the online website Venny 2.1.

0 [Venny 1.0 (csic.es)]. Gene annotation enrichment analysis of

DEGs was performed using the clusterProfiler R package (Yu et al.,

2012), including the Kyoto Encyclopedia of Genes and Genomes

(KEGG) (Kanehisa and Goto, 2000) and Gene Ontology (GO)

analysis (Gene Ontology, 2008). The GO analysis results were

divided into three parts: biological process (BP), cellular

component (CC), and molecular function (MF). The GO and

KEGG terms with a p value of <0.05 were considered significant,

and Metascape was used to visualize the results (Zhou et al., 2019).

Construction of the immune signature

The prognosis-related genes were identified using the

univariate Cox regression method, while the immune-related

prognostic features were generated using stepwise least absolute

shrinkage and selection operator (LASSO) regression analysis,

multivariate Cox proportional hazards models, and the survival

package in the R software. The LASSO regression analysis is a

regularization and dimensionality reduction method that can be

used for biomarker screening in combination with Cox models

for survival analysis. A multivariate Cox proportional hazards

regression model was used to address the multivariate issues

affecting patient’s survival time. Briefly, all seven IRGs

significantly associated with prognosis were considered in the

LASSO analysis as influencing factors. After incorporating this in

the multivariate Cox proportional hazards model, six significant

IRGs were retained in multiple calculations. The risk score was

calculated using the following formula: Immune Risk Score =

(expression value of gene1×Coefgene1) + (expression value of

gene2×Coefgene2) +. . .+ (expression value of

geneN×CoefgeneN).

Verification of the immune signature

Patients in the TCGA cohort were divided into low-risk and

high-risk groups according to their median risk score value, and

their survival was analyzed using the Kaplan–Meier method and

log-rank test (Lanczky and Gyorffy, 2021). The specificity and

sensitivity of the risk score for predicting the 1-, 3- and 5-year

survival were determined by performing a receiver operating

characteristic (ROC) analysis using the Survival ROC R package

to estimate the area under curve (AUC) of the predictive model.

Finally, the clinical data and scores were combined to perform

univariate and multivariate independent prognostic analyses.

Principal component analysis (PCA) and t-distributed

stochastic neighbor embedding (t-SNE) were used to verify

the grouping ability of the model.

Association between the immune-related
prediction model and TNBC immune
landscape

The levels of infiltrating immune cells and stromal cells were

calculated using the CIBERSORT algorithm (Newman et al.,

2015). The single-sample gene set enrichment analysis and

ESTIMATE algorithm were used for calculating the immune

andmatrix enrichment scores to determine the predictive models

for the relationship between immune effectors. Potential

biological functions relevant to the prediction model were

enriched using the gene set enrichment analysis (GSEA)

method and gene variation analysis and annotated using the

GO databases. In the analysis, p value of <0.05 was considered

significantly enriched.

Immune-related prediction models for
predicting the therapeutic benefits

The drug susceptibility data were downloaded from the

Genomics of Drug Sensitivity of Cancer website (www.

cancerrxgene.org). We investigated the predictive power of the

models for evaluating the response of patients to immunotherapy

and chemotherapy/targeted therapy drugs. The 50% inhibitory

concentration (IC50) values of 138 drugs were extrapolated using

the PRROPHIC algorithm and were normally converted. The

potential response of patients to immunotherapy was inferred by

the correlation between the risk model and ICIs and the expression of

immune checkpoint genes in the high- and low-risk groups (p< 0.05).

Protein interaction network and gene
expression analysis

The predicted gene–protein interaction networks (https://

strin g-db.org/cgi/input.pl) were retrieved from the online

STING database, and Cytoscape software version 3.9.1 was

used for visualization.

Results

Immunocorrelated gene model
construction

A total of 290 different genes (p < 0.05, |log (FC)|≥2) were
identified in normal and TNBC samples, and the heat map

accurately reflected the difference between normal and tumor
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samples (Figure 1A). The p value of <0.05 was used as the

critical value for GO functional enrichment analysis and

KEGG pathway enrichment analysis. Results of the GO

analysis of the molecular function of different genes, which

included the inflammatory response, positive regulation of

immune response, humoral immune response, and

chemotaxis regulation, and the KEGG analysis revealed that

the different genes were mainly concentrated in the IL-17

signaling pathway, indicating a strong correlation with

inflammatory response (Figure 1B). Univariate regression

analysis was performed to identify 11 prognostic-related

genes (p < 0.01), including 8 tumor-promoting genes

(hazard ratio (HR) > 1; heat shock protein family A

member 6 (HSPA6), lipocalin-1 (LCN1), interleukin

1 alpha (IL-1α), artemin (ARTN), colony stimulating factor

3, interleukin 36 gamma (IL36G), syndecan 1, and caspase 12

(CASP12) (Figure 1C). LASSO Cox regression analysis yielded

the identification of seven immunorelated genes (Figures

1D,E). Six genes (HSPA6, LCN1, ARTN, IL36G, BCL2A1,

and CASP12) were identified using a multivariate Cox

regression analysis to establish a prognostic risk model

(Supplementary Table S1). The model was an independent

prognostic factor in the univariate and multivariate regression

analyses (Figures 1F,G). A protein–protein interaction

network was built for these six genes, of which matrix

metalloproteinase-9 was the common node of IL36G and

BCL2A1 (Figure 1H). The risk score for each sample was

calculated based on six gene expression levels and the

corresponding regression coefficients using the following

formula: immune risk score (IRS) = (HSPA6 expression

value × 0.00491) + (LCN1 expression value × 0.77534) +

(ARTN expression value × 0.04608) + (IL36G expression

value × 0.17411) + (BCL2A1 expression value × −0.04174)

+ (CASP12 expression value × 1.45956). The patients were

divided into high- and low-risk groups according to their

median risk score.

Validate prognostic risk model

Using the ROC curve and the Kaplan–Meier curve to

verify the prognostic value of the model, the overall survival

(OS) of the high-risk group was significantly lower than that

of the low-risk group (p = 0.003) (Figure 2A); the AUC

values used to predict the 1-year, 3-year, and 5-year

operating curves were 0.835, 0.852, and 0.843

(Figure 2B), respectively. An increase in the risk score

was associated with an increased patient mortality

(Figure 2C). In addition, PCA and t-SNE analyses showed

that the high- and low-risk groups were well distinguished

(Figure 2D, Figure 2E). We further verified the dataset in the

GEO database, and the OS of the low-risk group was

significantly higher than that of the high-risk group (p =

7.465e−03) (Figure 2F). The predicted AUC values for the 1-

year, 3-year, and 5-year operating curves were 0.799, 0.668,

and 0.715, respectively (Figure 2G).

FIGURE 1
Identifying differential genes and building models. (A) Differential genes from TNBC and normal samples. (B) Pathway analysis of differential
gene enrichment. (C) Eleven prognostic-related genes (p < 0.05) based on the univariate regression analysis. (D,E) Least absolute shrinkage and
selection operator Cox regression analysis used to construct a model. (F) Univariate regression analysis to assess the model independence. (G)
Multivariate regression analysis to assess the model independence. (H) Protein interplay network.
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FIGURE 2
Validation of prognostic risk scoring model. (A) Survival analysis between high- and low-risk groups in The Cancer Genome Atlas database. (B)
The 1-year, 3-year, and 5-year ROC curve values in the TCGA database. (C) Survival status of patients with TNBC (high-risk group: right of dotted line;
low-risk group: left of dotted line); survival status scatter plots (The state of death: red dots; The state of survival: green dots). (D,E) Principal
component analysis vs t-distributed stochastic neighbor embedding analysis to verify the grouping effectiveness of the risk scores. (F) Survival
analysis of the Gene Expression Omnibus (GEO) database. (G) ROC curve in the GEO database.

FIGURE 3
Immune landscape description of the high- and low-risk groups. (A) Six-gene expression in the high- and low-risk groups. (B) Six-gene
expression and immune cell correlation analysis. (C) Immunocellular infiltration comparison of high- and low-risk groups. (D) Comparison of
immune behavior in the high- and low-risk groups. (E) Pathway enrichment analysis by GSVA between the high-risk and low-risk groups. (F) Gene
Ontology (GO) analysis of the high-risk group based on the gene set enrichment analysis (GSEA) results. (G) GO analysis of the low-risk group
based on the GSEA results. (H) stromal, immune, and ESTIMATE scores in the high- and low-risk groups.
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Immune landscape of high- and low-risk
groups

The expression levels of HSPA6, LCN1, ARTN, CASP12, and

IL36G were higher in the high-risk group, whereas that of

BCL2A1 was higher in the low-risk group (Figure 3A). ARTN

is positively correlated with the M0 macrophages and negatively

correlated with CD8+ T cells and gamma delta T cells. BCL2A1 is

positively correlated with regulatory T cell (Treg) and CD4+

memory T-cell activation. The IL36G levels were negatively

correlated with the proportions of resting mast cells. The

expression of LCN1 was positively correlated with the

activation of M0 macrophages (Figure 3B). The expression

levels of CD8+ T cells and activated CD4+ memory T cells were

higher in the low-risk group, while that of the M2 macrophages

was higher in the high-risk group (Figure 3C). The cytolytic

activity, human leukocyte antigen expression, inflammation-

promoting effects, major histocompatibility complex class I

(MHC-I) protein expression, T cell co-stimulation, and type I

interferon (IFN) response were relatively higher in the low-risk

group (Figure 3D). The KEGG pathway enrichment analysis

revealed that the cytokine–receptor interaction, primary

immunodeficiency, nucleotide oligomerization domain (NOD)-

like receptor signaling pathway, B-cell receptor signaling pathway,

and T-cell receptor signaling were highly enhanced in the low-risk

group (Figure 3E). The biological processes, such as epidermis

development and cornified envelopes, were significantly enriched

in the high-risk group (Figure 3F). The alpha-beta T-cell

activation, αβ T-cell differentiation, antigen processing, and

presentation were significantly enhanced in the low-risk group

(Figure 3G). The immune and ESTIMATE scores were relatively

high in the low-risk group (Figure 3H).

Clinical features of the high- and low-risk
groups

CD274 was positively correlated with the expression of

HSPA6 and BCL2A1. cytotoxic T-lymphocyte-associated

antigen 4 (CTLA4) and PDCD1 were positively correlated

with BCL2A1 and CASP12. PDCD1LG2 was positively

correlated with the expression of HSPA6 and BCL2A1

(Figure 4A). The expression levels of the immune checkpoint

genes CD274, CTLA4, PDCD1, and PDCD1LG2 were

significantly high in the low-risk group. That is, the risk score

was negatively correlated with the expression of CD274 (R =

−0.46, p = 2.7e−09), CTLA4 (R = −0.46, p = 1.7e−09), PDCD1 (R

= −0.49, p = 7.4e−11), and PDCD1LG2 (R = −0.43, p = 2.4e−08),

respectively (Figure 4B).

Drug sensitivity analysis

In addition to predicting the patients who are responsive to

immunotherapy, we also conducted a drug susceptibility analysis

to identify the alternative therapeutic agents for the less-sensitive

treatment groups. The low-risk group was sensitive to

extracellular signal-regulated kinase (ERK) inhibitors (FR-

180204, p = 8.6e-09, R = 0.44), epidermal growth factor

receptor (EGFR)-tyrosine kinase inhibitors (gefitinib, p = 1.1e-

06, R = 0.4), endothelin A receptor antagonist (zibotentan, p =

2.5e-08, R = 0.43), TGN inhibitors (STF-62247, p = 9.8e-12, R =

0.51), and Npk76-ii-72-1 (p = 5e−09, R = 0.45) (Figures 5A–E).

The high-risk group was sensitive to the selective eIF2α
dephosphorylation inhibitor, salubrinal (p = 1e−06, R = 0.41)

(Figure 5F).

FIGURE 4
Expression of immune checkpoints in the high- and low-risk groups. (A) Correlation analysis between the six genes and immune checkpoints.
(B) Analysis of the high- and low-risk groups with immune checkpoints CD274, CTLA4, PDCD1, and PDCD1LG2.
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Disscussion

The clinical success of immunotherapies, such as ICIs, has led

to the upgradation of traditional tumor treatment strategies.

Targeting the immune checkpoints, including the PD-1/PD-

L1 axis and CTLA4, can effectively enhance the function of

immune cells in order to kill the tumor cells (Desbois et al., 2020).

TNBC as a relatively strong immunogenic subtype of BC is more

likely to benefit from immunotherapy (Wang et al., 2021).

However, the related immune risks have not been fully

clarified, and a large number of patients cannot benefit

effectively from immunotherapy. Therefore, further

identification of this group is of utmost importance. The

identification of immune-related gene targets, in-depth

understanding of TILs, and analysis of the role of TME in

immunotherapy will provide more possibilities for the

development of new immunotherapy strategies for TNBC.

We identified the characteristic DEGs from the TNBC and

normal breast tissue samples and analyzed their related

enrichment pathways. A total of 290 DEGs were enriched in

signaling receptor activator activity, inflammatory response,

positive regulation of protein phosphorylation, humoral

immune response, and other immune-related pathways. This

finding indirectly confirmed that TNBC may have higher

immunogenicity and a higher probability of benefiting from

immunotherapy. Subsequently, the IRS model (HSPA6, LCN1,

ARTN, IL36G, BCL2A1, and CASP12) was constructed to

predict the immune risk in TNBC patients, which was

calculated based on the results of the univariate cox, LASSO,

and multivariate cox regression analysis, with the median values

used to divide the patients into the high- and low-risk groups. IRS

not only showed a good prognostic assessment in the TCGA

cohort (AUC at 1 year, 3 years, and 5 years remained >0.83) but
also showed moderate prognostic stratification power in other

independent validation cohorts, confirming the validity of IRS in

describing the prognostic and immune characteristics of TNBC.

To further verify the robustness of the model, PCA and t-SNE

dimensionality reduction analyses were also performed, except

FIGURE 5
Drug sensitivity analysis of the high- and low-risk groups. (A) FR-180204. (B) Gefitinib. (C) Zibotentan. (D) STF-62247. (E) Npk76-ii-72-1. (F)
Salubrinal.
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for AUC, which could better judge the clustering effectiveness of

the model. Results showed that IRS can better separate the TNBC

samples and has good clustering efficiency. Thus, the model

provides a potential complementary tool for the clinical

immunotyping of TNBC.

In the high IRS group, the expression levels of HSPA6, LCN1,

ARTN, CASP12, and IL36G were upregulated, whereas that of

BCL2A1 showed the opposite trend. HSPA6, LCN1, ARTN,

CASP12, and IL36G were mostly negatively correlated with

immune activation-related cells but were positively correlated

with M0 macrophages. BCL2A1 was positively correlated with

CD4memory-activated T cells, CD 8 + T cells, and Tregs but was

negatively correlated with M2 macrophages. HSPA6 is

dispensable for withaferin A-mediated apoptosis/autophagy or

inhibition of BC migration (Hahm et al., 2021), its mechanism of

action in TNBC is unknown, and other regulatory mechanisms

may affect the immune response. LCN1 is overexpressed in BC

and associated with poor survival (Zhang et al., 2020). ARTN, a

member of the glial cell line-derived neurotrophic ligand family,

exerts oncogenic effects on a wide range of solid tumors,

including tumor growth, metastasis, and angiogenesis. It can

function as a cancer stem cell and transfer factor in BC, and its

high expression is often associated with acquired drug resistance

among BC patients, residual disease after chemotherapy, relapse,

and poor prognosis (Airaksinen and Saarma, 2002; Banerjee

et al., 2011; Banerjee et al., 2012; Ding et al., 2014). CASP12,

an inflammatory caspase, is closely related to the regulation of

inflammatory signaling and plays an important role in apoptosis

(Garcia de la Cadena and Massieu, 2016). In cancer pathology,

the inflammatory microenvironment and oncogenic mutations

often induce chronic inflammation, and CASP12 induction is

associated with cancer cell invasion after pre-inflammatory

stimulation (Elinav et al., 2013; Chow et al., 2021). The

expression levels of IL36G were related to inflammation and

were induced by IFN-γ and TNF-α (Ha et al., 2022). The

BCL2A1 expression was negatively correlated with IRS.

BCL2A1 is a member of the BCL-2 family of anti-apoptotic

proteins that confer resistance to anticancer drug therapy (Hiraki

et al., 2018).

From the above analysis of the correlation between genes and

cells and the analysis of immune cell infiltration, IRS not only

effectively indicates tumor progression and prognosis but also

more powerfully distinguishes the immune risk of TNBC

patients. Individuals with low IRS have a better CD8+ T-cell

and CD4 memory-activated T-cell infiltration status. In most

immunotherapeutic settings, CD8+ T cells are major players in

eradicating cancer cells. They can recognize tumor-associated

antigens, and mediate their cytotoxic effects through the MHC-I

molecules (Lorenzo-Herrero et al., 2019). CD4+ T cells play an

important role in initiating tumor specific CD 8 + T cells and the

secondary expansion and memory of CD8+ T cells (Janssen et al.,

2003). Increased CD4 and CD8 T cell infiltrated in the

microenvironment might associated with better survival

outcomes. In addition, M2 macrophages are abundantly

enriched in populations with high immune risk. M2-type

macrophages express Th2 cytokines, such as IL-4, IL-13, and

immune complexes, which inhibit the impact of inflammatory

factors, most of which play a role in hindering the inflammatory

response and tissue repair (Duan et al., 2021). The infiltration

state of immune cells and the biological behavior of cells can be

well differentiated. In the low-risk group, the immune responses

such as antigen-presenting cell co-suppression and co-

stimulation, cytolytic activity, inflammation-promoting effects,

and co-stimulation of T cells were significantly upregulated in the

low IRS group. To a certain extent, more abundant immune-

activating cell infiltration and more complex immune responses

also indicate immune-stimulatory responses and

immunotherapy benefits.

To avoid the biased influence of a single factor, and analyze

its immune cells and immune behavior as a whole, the potential

pathway mechanism was explored. KEGG pathway enrichment

analysis showed that the cytokine–receptor interaction, NOD-

like receptor signaling pathway, T-cell receptor signaling

pathway, and B-cell receptor signaling pathway were

significantly enriched in the low-risk groups. GSEA analysis

also demonstrated similar results; the αβ T-cell activation, αβ
T-cell differentiation, antigen processing, and presentation

effects were more observed in the low-risk group, while

embryonic development and other pathways were commonly

observed in the high-risk group. These findings implied that the

high-risk group might have some stem cell-related properties

that were more conducive to the progression of aggressive

tumors.

In addition to the analysis at the cellular andmolecular levels,

in order to better meet the clinical needs, we further analyzed the

clinical guidance effect of the 6-gene signature. Most immune

checkpoint-related genes have a strong correlation with IRS

genes. Moreover, TNBC is more likely to respond to

immunotherapy compared with other BC subtypes; with the

current immunopharmaceutical therapy, TNBC patients with

PD-1 and CTLA4 upregulation are more likely to respond to ICIs

(Zhao et al., 2021). Therefore, a correlation analysis of the

expression of immune checkpoints between the high and low

IRS groups was conducted, and results showed that CD274,

CTLA4, PDCD1, and PDCD1LG2 were highly expressed in

the low-risk group, which was negatively correlated with the

risk score. Therefore, TNBC patients with low IRS were more

likely to express immune checkpoint genes to obtain better

immunotherapy responses and guide clinical treatment.

Considering that not all patients are suitable for

immunotherapy, we have provided other drug-sensitive

strategies for different subgroups. Our model inferred that an

EGFR inhibitor (gefitinib) is also a promising therapeutic target,

especially in the low-risk group. Interestingly, A DNA

microarray analysis performed by Nielsen et al. showed an

overexpression of EGFR in 60% of TNBC samples (Nielsen
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et al., 2004). In addition, the low-risk group was sensitive to ERK

inhibitors (FR-180204), NPK76-II-72-1, TGN inhibitors (STF-

62247), and endothelin A receptor antagonists (zibotentan). The

high-risk group may be more sensitive to the selective eIF2α
dephosphorylation inhibitor, salubrinal.

Although this study provides some evidence on the

prognosis, immunophenotyping, and benefits of

immunotherapy in TNBC patients, it has some limitations.

The inherent limitations of the data from the database are

unavoidable; hence, to better reduce the bias caused by this

factor, we enrolled samples from different independent cohorts

for rigorous validation. In addition, the incomplete

clinicopathological information obtained from the database

may affect the efficiency of IRS as an independent

prognostic factor in the multivariate Cox regression analysis.

Hence, future studies should include more clinical samples and

laboratory data to better understand the molecular mechanism

of the IRS panel, to predict the prognosis and immune subtypes

of TNBC, and to verify its real utility in the clinical setting,

which will facilitate the development of immune treatment

strategy for TNBC.

Conclusion

In conclusion, a novel IRS gene signature was established to

predict the prognosis of TNBC and was validated in TCGA and

GEO cohorts. This signature is a potential tool for TNBC survival

prediction and immunotherapy guidance. Based on the baseline

samples, the IRS gene signature identified patients with a likely

high immune infiltrate status who had favorable prognosis and

further identified the intercellular biological behaviors and

enriched pathways. Patients in the low-risk group had higher

immunogenicity and benefited from immunotherapy. This

finding may provide more strategies, fresher perspectives, and

better directions for personalized diagnosis and treatment of

TNBC in the future.
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Glossary

ARTN artemin

AUC area under curve

BCL2A1 B-cell lymphoma 2 related protein A1

BP biological process

CASP12 caspase 12

CC cellular component

CTLA4 cytotoxic T-lymphocyte-associated antigen 4

DEGs differentially expressed genes

EGFR epidermal growth factor receptor

ERs estrogen receptors

ERK extracellular signal-regulated kinase

GEO Gene Expression Omnibus

GO Gene Ontology

GSEA gene set enrichment analysis

HER-2 human epidermal growth factor receptor-2

HR hazard ratio

HSPA6 heat shock protein family A member 6

IC50 50% inhibitory concentration

ICIs immune checkpoint inhibitors

IFN interferon

IL-1α interleukin 1 alpha

IL36G interleukin 36 gamma

IRGs immune-related genes

IRS immune risk score

KEGG Kyoto Encyclopedia of Genes and Genomes

LASSO least absolute shrinkage and selection operator

LCN1 lipocalin-1

log(FC) log fold change

MF molecular function

MHC-I major histocompatibility complex class I

NGS next-generation sequencing

NOD nucleotide oligomerization domain

OS overall survival

PCA Principal component analysis

PD-1 programmed death-1

PD-L1 programmed cell death ligand 1

PRs progesterone receptors

RNA ribonucleic acid

ROC receiver operating characteristic

TCGA The Cancer Genome Atlas

TILs tumor infiltrating lymphocytes

TNBC triple-negative breast cancer

Treg regulatory T cell

t-SNE t-distributed stochastic neighbor embedding
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