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Background: Prostate cancer (PC) is a fatally aggressive urogenital cancer killing

millions of men, globally. Thus, this study aims to identify key miRNAs, target

genes, and drug targets associated with prostate cancer metastasis.

Methods: The miRNA and mRNA expression datasets of 148 prostate tissue

biopsies (39 tumours and 109 normal tissues), were analysed by differential

gene expression analysis, protein interactome mapping, biological pathway

analysis, miRNA-mRNA networking, drug target analysis, and survival curve

analysis.

Results: The dysregulated expression of 53 miRNAs and their 250 target genes

involved in Hedgehog, ErbB, and cAMP signalling pathways connected to cell

growth, migration, and proliferation of prostate cancer cells was detected. The

subsequent miRNA-mRNA network and expression status analysis have helped

us in narrowing down their number to 3 hub miRNAs (hsa-miR-455-3p, hsa-

miR-548c-3p, and hsa-miR-582-5p) and 9 hub genes (NFIB, DICER1, GSK3B,

DCAF7, FGFR1OP, ABHD2, NACC2, NR3C1, and FGF2). Further investigations

with different systems biology methods have prioritized NR3C1, ABHD2, and

GSK3B as potential genes involved in prostate cancer metastasis owing to their

high mutation load and expression status. Interestingly, down regulation of

NR3C1 seems to improve the prostate cancer patient survival rate beyond

150 months. TheNR3C1, ABHD2, andGSK3B genes are predicted to be targeted

by hsa-miR-582-5p, besides some antibodies, PROTACs and inhibitory

molecules.
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Conclusion: This study identified key miRNAs (miR-548c-3p and miR-582-5p)

and target genes (NR3C1, ABHD2, and GSK3B) as potential biomarkers for

metastatic prostate cancers from large-scale gene expression data using

systems biology approaches.
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1 Introduction

Prostate cancer is a urogenital cancer that accounts for

15% of all cancers in men globally (Group, UCSW, 2014; Van

Gool and Pearson, 2014). PC is initially asymptomatic (Ratner,

2021), but painful urination, blood in the urine, or pelvic

discomfort symptoms commonly arise as the disease

progresses over the months and years (Screening and

Board, 2002). The known risk factors for PC include

increasing age, African-American ethnicity, fat rich diet,

positive family history, and obesity (Bostwick et al., 2004).

Early clinical testing and an accurate diagnosis of PC are

critical in determining treatment options (Greenlee et al.,

2001). The most common biomarker used to detect PC is

prostate-specific antigen (PSA) test in the blood. However, it

fails to distinguish indolent or aggressive cancer stages

(Cancer, IAFRO, 2003). Besides this, increased age or an

enlarged or inflamed prostate are the other factors that can

also elevate serum PSA leading to misdiagnosis or unnecessary

and costly treatment. This warrants the need to identify robust

biomarkers that are not only specific and sensitive but also

improve the overall accurate diagnosis and prognosis of

prostate cancer.

Prostate cancer is estimated to have 58% heritability,

highest among all major cancers (Lachance et al., 2018).

Family-based linkage studies have identified a series of

genes responsible for hereditary PC such as HPC1 (Carter

et al., 1992; Cooney et al., 1997; Berry et al., 2000a), PCAP

(Neuhausen et al., 1999; Berry et al., 2000a; Xu et al., 2001),

HPCX (Schleutker et al., 2000), CAPB (Berry et al., 2000a; Xu

et al., 2001), HPC20 (Berry et al., 2000b), HOXB13 (Breyer

et al., 2012; Xu et al., 2013) etc. Over the last decades, Genome

wide associated studies (GWAS) have identified

about 160 common risk loci in PC, suggesting a polygenic

model of PC (Farashi et al., 2019). Most of these risk loci

genes are involved in the cell cycle or DNA repair (ATM,

TERT, MYC, and MDM2), inflammatory response (IL8RB),

and metabolism (JAZF1 and HNFB). However, under-

representation of ethnic diversity necessitates us to

look for universally applicable genetic susceptibility

biomarkers for PC. Moreover, the molecular basis of PC

could not be fully explained by candidate genetic variants

alone, but through the global gene expression alterations.

Some studies have confirmed the potential contribution

of dysregulated gene expression changes in either

blood (Wang et al., 1979; Papsidero et al., 1980; Kuriyama

et al., 1981) or prostate biopsies (Ragde et al., 1988), and few

were correlated with the survival rate of PC patients

(Greenlee et al., 2001). These genes were mainly involved

in diverse cellular functions like protein kinase binding,

enzyme binding, cell activation and proliferation, Wnt

regulation mechanisms, wound healing, apoptosis, etc.

(Verras and Sun, 2006; Kypta and Waxman, 2012).

However, the specific molecular regulators which control

the gene expression changes have not been well

characterized.

Gene expression is controlled at both post transcription

and translation levels. MicroRNAs (miRNAs) are 18–22 bp

long, and known to regulate more than 50% of protein-coding

genes at post transcriptional level (Bartel, 2009). Few miRNAs

have been identified as potential diagnostic biomarkers of

tumour development and metastasis (Nikitina et al., 2012;

Ilic et al., 2013). PC associated microRNAs in serum have the

potential to successfully distinguish cancer and healthy

controls. The aggressive PC is known to show over-

expression of oncogenic miRNAs; miR-21, miR-125b, miR-

221, and miR-222 (Sun et al., 2009). The miR-21 is over-

expressed in PC and contribute to tumour growth (Nikitina

et al., 2012) by knocking down PTEN and other tumour

suppressor genes (Meng et al., 2007). The miR-200 family

is regarded as key regulatory molecule in PC due to their down

regulated expression tumor suppressive function

and regulatory role in initiation and migration of prostate

tumors (Feng et al., 2014). Furthermore, these 5 miRNAs

when combined with routine PSA test were shown to

improve the PC diagnosis (Siegel et al., 2020).

However, influence of miRNAs on differentially

expressed genes in prostate tissues is not explored in detail

till now.

Owing to the sparse data, this study aimed to expand our

current understanding of PC pathogenesis by exploring

miRNA-mRNA interactions in prostate gland tissues. By

involving a series of comprehensive bioinformatics

approaches, this study has identified several gene-network

clusters involved in cell communication, inflammation,

proliferation, and differentiation processes which, are

dysregulated in prostate cancers. Our findings provide a

novel insight into understanding the mechanisms of PC,
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besides uncovering genetic markers with potential for disease

diagnosis and therapeutic modulation.

2 Methodology

The workflow of current work is presented in Figure 1.

2.1 Collection of prostate cancer mRNA
and microRNA expression datasets

The NCBI-GEO and EMBL-EBI Array express databases

were initially searched for PC gene expression datasets using

keywords like “Prostate Cancer, mRNA, and miRNA.” From the

output, one mRNA expression dataset, i.e., GSE6919, and one

miRNA expression dataset, i.e., GSE21036, have been selected

based on type and number of samples, data quality and

expression array method used. The first dataset (GSE6919)

consists of the gene expression data of 106 tissue samples

(including 25 metastatic prostate tumours and 81 normal

prostate tissues) generated on GPL8300 platform (Affymetrix

human genome U95 version 2 array). The second dataset,

GSE21036, consists of the expression data of miRNAs of

42 Samples (including 14 metastatic prostate tumours and

28 normal prostate tissues) generated on the

GPL8227 platform (Agilent-019118 Human miRNA

Microarray 2.0 G4470B (miRNA ID version).

2.2 Detection of differentially expressed
genes and microRNAs in prostate cancer
tissues

We performed differential expression analysis of miRNA and

RNA profiles to find the prostate cancer specific dysregulations.

We utilized GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/)

webtool of NCBI to detect differentially expressed genes (DEGs)

and differentially expressed miRNAs (DEMs) in the test datasets.

The GEO2R webtool conducts comparative analysis on

microarray expression data sets utilizing the GEOquery and

limma R packages available in Bioconductor software. The

genes or miRNAs showing 1.5-fold changes (FC) at adj.

p-values of <0.01 were identified. The expression pattern of

these miRNAs and mRNAs were graphically represented in

the form of volcano and median mean difference plots.

2.3 Identification of potential target genes
for DEMs

In the initial phase, miRNA IDs of the DEMs were used to

search for their potential target genes in MiRDB webserver

(http://mirdb.org/mirdb/mining.html). The target genes

showing <70 prediction scores and miRNAs

with >2000 predicted targets in the genome were excluded

from the output data. Then, keeping the miRDB data as

reference, the inverse correlation analysis between miRNA-

FIGURE 1
Infographics of PC mRNA-miRNA analysis.
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mRNA expression statuses was performed to screen the miRNA-

target gene pairs. The mathematical formula adopted for inverse-

correlation of miRNA-mRNA levels is given below (Bima et al.,

2022).

r � n(∑xy) −∑x∑y
√[n p (∑x2 – (∑x)2)] p [n p (∑y2 – (∑y)2)]

In the formula, “n” represents the correlation coefficient, “X”

represents DEGs and “Y” represents DEMs.

2.4 GO annotation of microRNA target
genes

The miRNA target genes identified from the inverse correlation

analysis were further explored with KEGG (Kyoto Encyclopaedia of

Genes and Genomes, http://www.genome.jp/kegg/) pathway

analysis using ClueGO v2.5., a cytoscape plug-in. KEGG links

the genes to functional pathways, with a p-value of <0.05 as an

enrichment cut-off measure (Kanehisa and Goto, 2000). ClueGO

facilitates the visualization of functionally related genes as a clustered

network and overview chart. The statistical test used for the

enrichment was based on two-sided hypergeometric option with

a Bonferroni step down p-value correction and functional leading

group term based on their Kappa score (≥ 0.3).

2.5 Construction of microRNA-target
gene transcriptome network

The prostate cancer genes and miRNA functional

interactome network was constructed using miRNET

webserver (http://www.mirnet.ca). The miRbase ID and

Entrez/Ensembl gene ID were given as input options for

miRNAs and DEGs, respectively. The output of this tool is

a transcription network along with different network

parameters like centrality, betweenness, shortest path etc.

The constructed network was visualized through Cytoscape

3.7.1 software. From the network hubs - genes and miRNAs-

were selected based on their highest centrality scores (Thul

and Lindskog, 2018). Furthermore, the hypergeometric

algorithm (option available in functional explorer plugin)

was used to identify all KEGG pathways in which the hub

genes were involved.

2.6 Functional assessment of microRNA
target genes

In this step, the hub genes identified from miRNA-target

gene pairs were further explored to identify their transcription

factor (TF) motifs, and also to assess their drug tractability,

expression status and mutational load.

2.6.1 Construction of microRNA-Target gene-
transcription factor network

The miRNA-target gene pairs from the network analysis

were further explored in iRegulon plugin of Cytoscape to enrich

their TF motifs (Janky et al., 2014). The motif prediction

parameters were as follows, minimum orthologous gene

identity of ≥0.05, the maximal false discovery rate (FDR) on

motif similarity of ≤0.001, and normalized enrichment score

(NES) of >3. Finally, the miRNA–mRNA-TF regulatory network

was constructed utilizing Cytoscape 3.7.1.

2.6.2 Therapeutic potential of hub genes
The hub genes from miRNA-target gene network were

explored in open target platform (http://www.targetvalidation.

org). The input option for this tool is query gene ID and the output

includes phenotype association characteristics (p = <0.05),
predicted tractability (small molecule inhibitors and antibodies)

and known drug information (target diseases, mode of action,

clinical trials etc.) about the query gene.

2.6.3 Mutational load of hub genes in prostate
cancers

All the query hub genes of miRNA-target network were

explored in cBioPortal (http://www.cbioportal.org/) to assess

their mutational load in prostate cancer tissues. Upon

providing the gene ID and cancer type as an input data,

oncoprint option available in this webserver visualises the

genetic alterations of the queried genes in the form of

heatmaps with z-score values. Additionally, the mutation

pattern of hub gene pairs in prostate cancers is calculated

with Log2 Odds Ratio (OR).

2.6.4 Expression analysis of hub genes in
prostate cancers

The expression status of query hub genes in normal and

cancer tissues, and their disease-free survival curve correlation

analysis was performed in GEPIA2 (http://gepia2.cancer-pku.

cn/) webserver. The genes showing |log2 fold change|

with ≥1 were considered as significant at the p-value of <0.01.
Disease-free correlation of hub gene expression status between PC

and normal tissues was determined using a log rank test with

p < 0.05.

2.6.5 Immunohistochemistry analysis
The expression status of hub genes across cell lines and

tissues was estimated with Human protein atlas (https://www.

proteinatlas.org/) database. This database intake the query gene

or protein name and provides the immunocytochemistry/

immunofluorescence (ICC-IF) information about the

candidate protein’s subcellular location and expression

(protein-transcripts per million, pTPM). pTPM, is a

normalization method used for comparing the gene

expression levels in the same tissue. We also analysed the
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FIGURE 2
Distribution of differentially expressed genes and miRNAs. Volcano plots of (A) GSE6919 and (B) GSE21036 datasets showing the transcript
expression profiles mRNA and miRNA respectively, of metastatic prostate cancer and normal prostate tissues. Red and blue dots correspond to the
up and down regulated genes, respectively, showing more than 1.5-fold expression difference (p < 0.05). (C)Wesker Box plot of inverse co-related
miRNA and their target DEGs (D). DEGs and miRNA target gene filtration method.
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immunohistochemistry data to enquire the tissue expression

status of the query gene. Here the intensity of primary

antibody staining between normal and tumour tissues was

classified as negative, weak, moderate, or strong based on the

detector grain settings used for image acquisition in combination

with the visual appearance of the image.

3 Results

3.1 Identification of differentially
expressed target genes and microRNAs

The analysis of GSE6919 dataset has identified the expression

of 9,153 genes corresponding to 12,558 probes. A total of

709 genes were found to be differentially expressed (log2 ≥
1.5 folds), between metastatic prostate tissues compared to

normal prostate tissues. Of these DEGs, 290 (40.90%) were

upregulated and 419 (59.10%) were down regulated (p <
0.05). Simultaneously, a total of 373 miRNAs corresponding

to 373 probes were detected from the analysis of

GES21036 dataset. Metastatic prostate tumours have

demonstrated the dysregulated expression (log2 ≥ 1.5 folds) of

65 miRNAs, including 28 upregulated and 37 downregulated

when compared to normal prostate tissues (p < 0.05) (Figures

2A,B). The details of top 4 genes and miRNAs are listed in

Table 1.

3.2 Mapping of microRNA target genes

The miRDB webserver predicted that, 53 miRNAs (of the

65 differentially expressed miRNAs) modulate the expression

of 27,541 target genes at a cut off score of <70. Of these

27,541 target genes, 525 were overlapping with 709 DEGs

detected in prostate metastatic tissues. The inverse

correlation analysis of miRNA and DEG pair expression

statuses have further narrowed down the total number of

target genes to 250. Of this list, 125 downregulated genes were

targeted by 22 upregulated miRNAs. The remaining

125 upregulated genes were modulated by

31 downregulated miRNAs. The top miRNA-target gene

pairs identified in prostate cancer tissues is listed in

Table 2; Figures 2C,D.

3.3 Pathway enrichment of microRNA
target genes

The main KEGG pathways enriched for 250 targets genes

(125 up and 125 downregulated genes, each) of 53 miRNAs at the

p-value threshold of <0.05 are listed in Table 3. The

downregulated genes were enriched in prostate cancer, cAMP

signalling, signalling pathways regulating pluripotency of stem

cells, Th1 and Th2 cell differentiation, and cGMP-PKG signalling

pathways. The upregulated genes were enriched in Hedgehog

signalling, ErbB signalling, and T-cell receptor signalling

pathways.

3.4 MicroRNA-target gene interaction
network analysis

Molecular networks highlight the physical contacts among

protein partners. They are critical in most basic molecular

mechanisms involved in cellular function but are often

perturbed in disease states. The miRNA-mRNA network of

250 target genes and 53 miRNAs consisted of 9,931 nodes

and 34,474 edges (Figure 3A). Considering the network

parameters at >150 centrality and betweenness

of >254320.9 as filtration criteria, we identified hub genes, of

which 32 are target genes and 6 miRNAs (hsa-miR-455-3p, hsa-

TABLE 1 The top four differentially expressed target genes and miRNAs.

Datasets ID Adj P.Val1 T2 B3 LogFC4 Gene symbol

GSE6919 34342_s_at 4.69E-18 11.231099 34.51877 4.8071724 SPP1

1577_at 1.06E-40 23.506291 90.06834 3.8885371 AR

32052_at 1.82E-23 13.81756 47.67757 3.6298491 HBB

767_at 1.87E-47 −28.217604 106.65766 −6.2250421 MYH11

GSE21036 hsa-miR-548c-3p 1.67E-10 9.1171 16.9256 2.74741 hsa-miR-548c-3p

hsa-miR-486-5p 3.50E-08 7.3722 11.0341 2.66815 hsa-miR-486-5p

hsa-miR-133b 5.86E-19 −16.2568 37.2489 −5.38092 hsa-miR-133b

hsa-miR-1 3.46E-21 −19.189 43.8432 −6.10077 hsa-miR-1

1Adjusted p-value; 2t-moderated t-statistic; 3B-statistic or log-odds that the gene is differentially expressed; 4Log2-fold change between two experimental conditions.
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miR-671-5p, hsa-miR-548c-3p, hsa-miR-125a-3p, hsa-miR-338-

3p, and hsa-miR-582-5p) (Figure 3B).

The functional enrichment of these hub miRNA-target gene

pairs has confirmed the strong interaction existing between them.

Of the 32 target hub genes, 4 were mapped to cell signalling

pathways includingACVR1 andACVR2B in TGF-beta signalling,

CDKN1A and GSK3B in ErbB signalling (adj.P val = 0.016) and

CDKN1A and GSK3B genes in Prostate cancer pathways (adj. P

val = 0.076). CDKN1A and GSK3B were mapped to Cell cycle

pathways as well (adj. P val = 0.02). ACVR1 andACVR2B are also

playing a role in Cytokine-cytokine receptor interaction pathway

(adj.P val = 0.062) (Supplementary Table S1). Out of the

6 miRNAs, only 3 (hsa-miR-455-3p, hsa-miR-548c-3p, and

hsa-miR-582-5p) were found to target 9/32 (28.1%) genes,

while the remaining 3 (hsa-miR-671-5p, hsa-miR-125a-3p,

and hsa-miR-338-3p) do not have any targets in the hub

genes. So, those three were eliminated from further analysis.

The down-regulated hsa-miR-455-3p modulates NFIB gene

(upregulated), and hsa-miR-582-5p targets DICER1, GSK3B,

DCAF7, FGFR1OP, and ABHD2 genes (upregulated), while

upregulated hsa-miR-548c-3p targets NACC2, NR3C1 and

FGF2 genes (downregulated).

TABLE 2 The top miRNA-target gene pairs of prostate cancer tissues.

# miRNA Target gene Target score Log Fc.
miRNA1

Log Fc.
DEGs

Up-Reg miRNA 1 hsa-miR-1225-5p ZNF516 78 1.59574 −2.4506688

2 hsa-miR-648 MEIS2 90 1.62921 −2.6731721

CXCL12 80 1.62921 −1.5779949

3 hsa-miR-602 PFN1 74 1.82483 −1.7949682

C16orf45 76 1.82483 −1.660665

Down-Reg miRNA 1 hsa-miR-133b CAPN15 96 −5.38092 1.5478958

2 hsa-miR-99a GSK3B 70 −2.5216 1.5973438

3 hsa-miR-338-3p LDHA 75 −1.61592 1.511398

CAMTA1 80 −1.61592 1.7192758

UBFD1 82 −1.61592 1.9780685

1Log Fc-log fold changes.

TABLE 3 KEGG pathways enriched for miRNA target genes of prostate cancer tissues.

DEG
dysregulation

KEGG
ID

Term\Pathway Bonferroni
p-value

%
Associated
Genes

Target genes
of miRNAs

Upregulated DEGs KEGG:
04,340

Hedgehog signalling pathway 0.03 5.36 CSNK1G2, GRK3, GSK3B

KEGG:
04,012

ErbB signalling pathway 0.03 4.71 CBLB, CRKL, GSK3B, PAK2

KEGG:
04,660

T-cell receptor signalling pathway 0.01 4.81 CBLB, GSK3B, NFATC1, PAK2, PPP3CA

Downregulated DEGs KEGG:
05,215

Prostate cancer 0.04 4.12 FGFR2, IGF1, KLK3, ZEB1

KEGG:
04,550

Signalling pathways regulating
pluripotency of stem cells

0.02 4.20 BMPR1A, FGF2, FGFR2, FZD7, ID4, IGF1

KEGG:
04,658

Th1 and Th2 cell differentiation 0.05 4.35 FOS, GATA3, PPP3CB, STAT6

KEGG:
04,022

cGMP-PKG signalling pathway 0.00 5.99 ATP1A2, ATP1B1, ATP2A2, ATP2B4, EDNRA,
KCNMB1, MYLK, PDE5A, PLCB1, PPP3CB

KEGG:
04,024

cAMP signalling pathway 0.00 4.17 ATP1A2, ATP1B1, ATP2A2, ATP2B4, BDNF,
EDNRA, FOS, PDE4B, PDE4D
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3.5 Systems biology validation of prostate
cancer hub genes

We performed the functional validation of the 9 hub genes

(with inverse regulated miRNAs mentioned above) in the

prostate cancers, using different systems biology approaches.

3.5.1 Identification of TF and microRNA target
gene network regulators

The enrichment findings of TF motifs for nine hub target

genes and six miRNAs have predicted that the transcription

factors like RARA, CRX, ZNF524, APEX2, and MYBL1

interacts with 6 hub genes, like ABHD2, DICER1, GSK3B,

FIGURE 3
The miRNA-Protein interaction network of prostate cancer tissues. (A) The overall network of miRNAs and genes. (B)miRNA (Square)and their
target hub genes (circle)with degree of centrality (>150). (C) Regulatory networks of the miRNAs, target genes and transcription factors. Green
octagons represent TFs. Purple circles represent target genes regulated by transcription factors and key miRNAs (blue circles).
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NACC2, NFIB, and NR3C1 (with network enrichment score

of >3.5) (Table 4). Although, the miRNAs were not

directly connected to TF motifs, but three miRNAs were

predicted to regulate the network of TF-target gene

network. For example, hsa-mir-548c-3p interacts with

NACC2 and NR3C1, hsa-mir-455-3p interacts with NFIB,

and hsa-mir-582-5p interacts with ABHD2 and DICER1

(Figure 3C).

TABLE 4 The network analysis findings of transcriptional factors, and their motifs with miRNA-target genes.

miRNA Motif ID AUS1 NES2 Transcription factor Target genes

hsa-miR-455-3p taipale-ACCCTTGAACCC-ZNF524-full 0.434978 5.45039 ZNF524 ABHD2, NACC2, NFIB, DICER1, NR3C1

hdpi-RARA 0.379007 4.61005 RARA GSK3B, NR3C1, NACC2, NFIB

hdpi-APEX2 0.341139 4.04151 APEX2 GSK3B, NFIB, ABHD2, NACC2, NR3C1

hsa-miR-548c-3p yetfasco-1433.1 0.361236 4.34324 MYBL1 DICER1, ABHD2, GSK3B, NR3C1, NACC2

transfac_public-M00004 0.307922 3.54279 MYBL1 NACC2, NR3C1, DCAF7

has-miR-582-5p tfdimers-MD00087 0.337652 3.98915 CRX NR3C1, ABHD2, DICER1

transfac_public-M00004 0.307922 3.54279 MYBL1 NACC2, NR3C1, DCAF7

1Area Under the cumulative recovery curve, 2Normalized Enrichment Score.

TABLE 5 Open Target Platform output for disease association, known drugs, action and clinical trial, tractability of 9 hub genes.

Gene Geno-
pheno
association

Known drugs Action Clinical
trial
phase

Tractability predictions

Small
molecule
clinical
precedence

Antibody
clinical
precedence

Protac Other modalities
(enzyme, peptide,
oligonucleotide
etc.)

ABHD2 15 — — — — + + + —

FGF2 296 Muparfostat Inhibitor >1 +3 + + +3 +

DCAF7 16 — — — — — + + —

GSK3B 199 Lithium Carbonate Inhibitor >1 +3 + + +3 —

Ly-2090314 Inhibitor >1
9-Ing-41 Inhibitor 1

NACC2 13 — — — — — + + —

NFIB 148 — — — — — + + —

DICER1 306 — — — — — + + —

NR3C1 265 Dexamethasone Agonist >1 +3 — +3 —

Prednisolone Agonist >1
Prednisone Agonist >0
Hydrocortisone Agonist >1
Cyproterone acetate Antagonist >2
Methylprednisolone Agonist >2
Mifepristone Antagonist >1
Relacorilant Antagonist 1

FGFR1OP
(CEP43)

75 — — — — + —
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3.5.2 Molecular tractability potential of hub
genes

The nine hub genes (9/32; 28%) selected from the topological

analysis demonstrated the genotype-phenotype association score

of >0.002 in the Open Target Validation Platform analysis.

Tractability information for all 9 queried genes was available,

with FGF2, GSK3B, and NR3C1 genes were tractable by small

molecules, ABHD2, FGF2, and GSK3B genes were tractable by

antibody molecules, ABHD2, FGF2, NR3C1, and GSK3B genes

were targeted by Proteolysis Targeting Chimeras (PROTACs),

while only FGF2 gene was tractable also by enzyme molecules

(Table 5). Of note, the FGF2 acts as a molecular target for

Muprafostat oligosaccharide agent, which is currently in phase

2 trial in prostate cancer. The GSK3B is targeted by lithium

carbonate inhibitor which currently completed phase 1 trial in

prostate cancer. The NR3C1 is targeted by several small molecule

agonists like Dexamethasone, Prednisolone, and Prednisone

which have currently completed phase 4 clinical trials

(Supplementary Table S2).

3.5.3 Determination of mutation load of hub
genes

The cBioPortal for Cancer Genomics analysis has confirmed

that all the hub genes carry different types of alterations,

FIGURE 4
Mutation load of hub genes. (A) Distribution and frequency of genetic alternations in PC hub genes. (B) The “lollipop” plot generated by the
Mutation Mapper tool of cBioPortal shows the open box of the nine hub genes, as well as the frequency, position, and the domain of mutations in the
chromosome.
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including in frameshift, missense, splice, and truncating

mutations, structural variants, amplifications, and deep

deletions (Figure 4A). Of all the genes, NACC2 gene

alterations were reported in 105/4990 (2.1%) prostate cancer

samples. The other genes showing molecular alterations in

prostate cancer samples from highest to lowest are as follows;

FGF2 (94/4990; 1.9%), NFIB (86/4990; 1.7%), CEP43 (62/4990;

1.2%), GSK3B (99/8961; 1.1%), DICER1 (101/8961; 1.1%),

NR3C1 (53/4990; 1.1%) and ABHD2 (28/4,990; 0.6%)

(Supplementary Table S3). Interestingly, in 5/9 genes (55.5%),

i.e., ABHD2, DICER1, GSK3B, NR3C1, and NFIBmutations were

localized to functional domains of their corresponding proteins,

which suggest them to be highly critical genes for prostate

cancers (Figure 4B). The mutations in NFIB gene are also co-

occur with NACC2, DCAF7 and FGF2 genes (OR is three; p <
0.001) (Table 6).

3.5.4 Confirmation of expression status of hub
genes in prostate cancer tissues

The GEPIA results of all the 9 hub genes, have showed that

expression levels of ABHD2, DCAF7, and GSK3B were

upregulated, FGF2, NACC2, and NR3C1 were downregulated

in prostate adenocarcinomas (PRAD) than the normal prostate

tissues by more than 1.5 folds (p < 0.01), reinforcing our

TABLE 6 Co-occurrence analysis of hub genes of prostate cancers*.

A B Neither A not B B not A Both Log2 odds
ratio

p-value q-Value Tendency

NACC2 NFIB 4,303 92 71 15 >3 <0.001 <0.001 Co-
occurrence

DCAF7 NACC2 4,335 39 97 10 >3 <0.001 <0.001 Co-
occurrence

NFIB DICER1 4,342 76 53 10 >3 <0.001 <0.001 Co-
occurrence

ABHD2 CEP43 4,395 22 58 6 >3 <0.001 <0.001 Co-
occurrence

DCAF7 CEP43 4,375 42 57 7 >3 <0.001 <0.001 Co-
occurrence

NFIB CEP43 4,339 78 56 8 2.99 <0.001 <0.001 Co-
occurrence

ABHD2 DCAF7 4,408 24 45 4 >3 <0.001 0.001 Co-
occurrence

FGF2 DICER1 4,331 87 56 7 2.638 <0.001 0.001 Co-
occurrence

FGF2 NFIB 4,309 86 78 8 2.361 <0.001 0.002 Co-
occurrence

DICER1 NR3C1 4,372 58 46 5 >3 <0.001 0.002 Co-
occurrence

NACC2 CEP43 4,317 100 57 7 2.406 <0.001 0.002 Co-
occurrence

NACC2 NR3C1 4,329 101 45 6 2.515 0.001 0.004 Co-
occurrence

GSK3B DICER1 8,756 101 95 6 2.453 0.001 0.004 Co-
occurrence

ABHD2 NFIB 4,371 24 82 4 >3 0.002 0.005 Co-
occurrence

DICER1 CEP43 4,358 59 60 4 2.3 0.012 0.029 Co-
occurrence

DCAF7 NFIB 4,350 45 82 4 2.237 0.014 0.029 Co-
occurrence

ABHD2 GSK3B 4,374 25 79 3 2.732 0.014 0.029 Co-
occurrence

NFIB NR3C1 4,348 82 47 4 2.174 0.016 0.032 Co-
occurrence

DCAF7 NR3C1 4,384 46 48 3 2.574 0.018 0.034 Co-
occurrence

*Generated in cBioportal.
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understanding that these genes have important role in

carcinogenesis (Figure 5). On the other hand, DICER1 and

FGFR1OP showed contradictory results to GEPIA analysis

and the NFIB was non-significant.

3.5.5 The prognostic value of hub genes in
prostate cancer patients

Kaplan-Meier survival curves showed that none of the 9 hub

genes had any positive impact on improving overall survival of

prostate cancer patients. However, the expression levels NFIB

and NR3C1 were indicated to be of predictive for disease-free

survival (Figure 6A). The high expression level of NFIB could

indicate poor survival rate in more than 50% of prostate cancer

patients (p < 0.05). On the other hand, low expression level of

NR3C1 could extend the disease-free survival rate in 45% of

prostate cancer patients beyond 150 months (p < 0.05). In

comparison, there were no obvious associations between the

expression levels of ABHD2, FGF2, DCAF7, GSK3B, NACC2,

DICER1, and FGFR1OP genes and survival rate in prostate

cancer patients.

3.5.6 Immunocytochemistry/
immunofluorescence analysis

The protein expression of 6 hub genes in prostate cancer tissues

are presented in Figure 6B. The results showed that ABHD2,

DCAF7, and GSK3B were upregulated in cancer tissues

compared with normal prostate tissues with high or medium

intensity. However, the expression of DICER1, FGF2, NACC2,

NFIB, FGFR1OP, and NR3C1 in PC tissues shown low intensity.

The HPA indirect immunofluorescence analysis provides the

FIGURE 5
RNA Expression levels in PC in comparison to normal tissues from GEPIA2. The box plot representation for ABHD2, FGF2, DCAF7, GSK3B,
NACC2, and NFIB. The signature score is calculated by mean value of log2 (TPM +1). The |Log2FC| cut-off of the expression of proposed biomarker
was 1. The significant cut-off p-value of the expression of proposed biomarker was 0.01. The red box indicates the tumor samples while grey colour
indicates the normal tissues. Each dot represents one sample data in the category.
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subcellular localization of hub genes in different cell

compartments in different human cancer cell lines. Our

results showed that majority hub genes DCAF7, FGF2,

GSK3B, NACC2, and NFIB were highly expressed and

(nTPM >19) localised mainly in the nuclei of the cancer

cells. While ABHD2, and DICER1 genes are mainly

expressed (>18 nTPM) in the cytosol. Interestingly, the

expression of NR3C1 is seen in both nuclear and cytosolic

compartments (Supplementary Table S4; Figure 7). Our

findings provide spatial information on protein expression

patterns of hub genes and define the subcellular localization to

cellular organelles and structures at a single cell level. In

FIGURE 6
(A) The Kaplan-Meier survival curves as prognostic values (disease survival in days) of the hub genes (NACC2 Logrank p= 0.41; NFIB Logrank p =
0.041;ABDH2 Logrank p = 0.49; DCAF7 Logrank p = 0.22; GSK3B Logrank p = 0.87; FGF2 Logrank p = 0.32) of prostate cancer. The correlation of
survival status of patients with different prostate cancer subtypes. (B) Immunohistochemistry of hub genes in prostate cancers and in normal prostate
tissues (image extracted from https://www.proteinatlas.org/).
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summary, our results indicated that protein expression levels

of 9 hub genes are dysregulated in prostate cancers compared

to normal prostate tissues.

3.6 Concordance analysis

Edward Venn diagram in Figure 8 represent a concordance

analysis of nine hub genes and five miRNA using different

paradigm system biology methods. In the six functional

prediction tools, the genes ABDH2, NR3C1, and GSK3B are

significantly enriched. Interestingly, TF-miRNA analysis

revealed an indirect connection between hsa-miR-582-5 and

hsa-miR-548c-3p and TF. These miRNAs have the potential

to regulate ABDH2, NR3C1, and GSK3B.

4 Discussion

Prostate cancer has a high clinical heterogeneity, ranging

from fairly indolent to a fatally aggressive form (Litwin and Tan,

2017). This necessitates the need to search for novel prostate

tumour biomarkers that can improve the molecular diagnosis

and clinical outcomes. Several investigations have identified

unique molecular subtypes of primary prostate tumors as well

as important genetic changes that contribute to metastasis (Chen

et al., 2021) (Zhao et al., 2021) (De Schaetzen Van Brienen et al.,

2021). But these studies differ from each other in sample type,

study design, statistical measures, and systems biology methods

used. Moreover, the data on the role of miRNAs in regulating

gene expression changes in prostate cancer tissues is sparce

(Doghish et al., 2021) (Gordanpour et al., 2012) (Watahiki

et al., 2011). Therefore, this new study design combined the

publicly available expression datasets from different prostate

tissues and across different microarray platforms to precisely

map the interactions of key genes and miRNA involved in

prostate tumorigenesis.

By normalization of expression data and comparison to

normal prostate tissues, we detected 250 differentially

expressed genes (125 up- and 125 downregulated genes) in

the prostate cancer tissues. Pathway enrichment of these key

upregulated genes highlight their involvement in Hedgehog

signalling and ErbB signalling pathways. The Hedgehog (Hh)

signalling network plays an important role in metastatic human

prostate tumours that expressed Hh ligands and Hh-target genes

at higher levels (Karhadkar et al., 2004). Moreover, chemical

inhibitors of Hh signalling have been demonstrated to suppress

the growth of PC cell lines (Sanchez et al., 2005). ErbB-2

oncogene contributes to PC progression by regulating

numerous signalling pathways, including AKT, ERK1/2 and

STATs, by positively influencing cell survival, migration, and

proliferation of cancer cells (Miller et al., 2019).

The downregulated genes were enriched in key prostate cancer

pathway (KEGG:05,215), which regulates growth factor receptor

FIGURE 7
Immunofluorescence staining. The expression of prostate cancer hub genes in different cellular locations. (image extracted from https://www.
proteinatlas.org/).
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mediated cytokine-cytokine interactions (Lee and Rhee, 2017).

These growth factor receptors indirectly activate the RAS-MAPK

signalling that regulates gene expression, cellular growth, and

survival of prostate cancer cells (Rodríguez-Berriguete et al.,

2012). Increased cell proliferation and resistance to apoptosis

may be caused by abnormal MAPK signaling pathway (Dasgupta

et al., 2020). cAMP serves as a intermediary messenger molecule in

several signaling pathways such as cell growth and differentiation

(Kim et al., 2005). In the context of PC, cAMP levels modulate the

activity of androgen receptor (AR) signalling, which could negatively

impact normal prostate development and function (Yan et al., 2016).

We also identified miRNA alterations targeting genes which are

regulating the transition of normal prostate to aggressive cancerous

cells. The hub gene is a gene with the highest degree of connectivity

(at top 10%) in the key module and identifying the hub genes is

shown to improve the molecular dissection of human diseases like

obesity (Sabir et al., 2019), autoimmune diseases (Banaganapalli

et al., 2020), myocardial infarctions (Mujalli et al., 2020), and cancers

(Sahly et al., 2021). So, by constructing the miRNA-mRNA

functional network of 250 target genes and 53 miRNAs, we

mapped 32 hub target genes and six hub miRNAs showing high

degree of network centrality parameter (>150).

The inverse correlation analysis of expression statuses of these

target gene-miRNA pairs has narrowed down the total hub genes to

9 (NFIB, DICER1, GSK3B, DCAF7, FGFR1OP, ABHD2, NACC2,

NR3C1, and FGF2) and hub miRNAs to 6 (hsa-miR-455-3p, hsa-

miR-548c-3p, hsa-miR-582-5p, hsa-miR-671-5p, hsa-miR-125a-3p

and hsa-miR-338-3p). Among the hub miRNAs exclusively

deregulated in PC, only 3 miRNAs (hsa-miR-455-3p, hsa-miR-

548c-3p and hsa-miR-582-5p) were found to target 9 hub genes. The

pathway analysis of these hub genes and miRNAs showed their

involvement in different pathways connected to cell division or

differentiation in response to extracellular signals, and a variety of

cellular processes including gene expression, regulation of growth

proteins, cell proliferation, oncogenic transformation, cell migration,

and membrane trafficking in cancers (Kim et al., 2005). Thus, our

findings broadly agree with previous studies, which highlighted

differential regulation of key genes and miRNAs involved in the

transformation of normal prostate tissue to prostate cancers

(Gordanpour et al., 2012) (Chen et al., 2021) (Zhao et al., 2021)

(De Schaetzen Van Brienen et al., 2021).

Both miRNAs and TFs regulate the gene expression at post-

transcriptional and post-translation levels, respectively. Interestingly,

miRNAs and TFs can regulate each other and also co-regulate a

common target gene by forming a feed-forward loop (FFL) unit,

which further forms gene regulatory networks (Qin et al., 2020). In

this study, three miRNAs were predicted to co-regulate the network

of TF-target gene network. For example, hsa-mir-548c-3p is shown

to coregulate the interaction of NACC2 and NR3C1 with TF-

ZNF524; hsa-mir-455-3p co-regulates the interaction of NFIB

with TF-ZNF524, and hsa-mir-582-5p coregulate the interaction

of ABHD2 and DICER1 with TF-ZNF524 and TF-CRX.

The comprehensive systems biology validation of 9 hub genes

has revealed that downregulated miRNA like hsa-miR-582-5p is

correlated with the elevated the expression of ABHD2 and GSK3B

genes in prostate cancer tissues, and upregulated miRNA like hsa-

miR-548c-3p correlates with the lower expression of NR3C1

(glucocorticoid receptor) gene. The hsa-miR-582-5p inhibits

metastasis of prostate cancer by repressing multiple components

of TGF-β signalling, resulting in the inactivation of TGF-β signalling
(Gordanpour et al., 2012) (Huang et al., 2019). Of note, miR-548c-

3p acts as regulator in many cancers by significantly affecting both

ErbB andHippo signalling pathways (Feng et al., 2019). Hence, both

miRNAs can be potential biomarkers formetastatic prostate cancers.

Open target analysis findings have predicted that, Proteolysis

Targeting Chimeras (PROTACs) can target all ABHD2, GSK3B,

and NR3C1 genes. Additionally, ABHD2 is targeted by antibody

molecules, and GSK3B is targeted by lithium carbonate inhibitor

which has currently completed phase 1 trial in prostate cancer.

NR3C1 agonists like prednisone and dexamethasone are already

under usage in lymphoid cancers and can be explored as potential

repurposed drug for prostate cancers.

TheGSK3B, a central component of PI3K/Akt survival pathway,

determines the cancer cell survival through its effects on apoptosis.

Expression status of GSK3B is positively correlated with tumor

FIGURE 8
Edwards’ Venn diagram demonstrating overlapping of hub
genes across six system biology analysis methods. The bar graph
represents the number of genes in each prediction tool.
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progression in multiple human malignancies (Li et al., 2015).

Immunohistochemistry analysis of 499 PC surgical specimens

showed higher levels of cytoplasmic (not nuclear) of GSK3B

protein, in addition to its correlation with aggressive

clinicopathological parameters such as late clinical stage, lymph

node metastasis, extracapsular extension, and a high Gleason score,

as well as a 2-fold reduction in recurrence-free survival with up to

12-years follow-up (Li et al., 2009). Since it is an androgen-regulated

gene that is associated with the development of prostate cancer and

its ability to resist chemotherapy, ABHD2 is a promising new target

for prostate cancer screening and treatment. Gleason score,

pathological node stage, low cancer-specific survival rates, and

resistance to docetaxel-based chemotherapy have been linked to

ABHD2 levels in prostate cancer specimens by

immunohistochemical analysis. (Obinata et al., 2016). The

NR3C1encodes a nuclear hormone receptor, acting as a

transcription factor and modulate the gene expression across

different tissues (Gu et al., 2017). Lower NR3C1 expression levels

were found in cancer cells compared to normal tissues of breast

(Mamoor, 2021). For lymphoid cancers, acute lymphoblastic

leukemia, chronic lymphocytic leukemia and multiple myeloma,

NR3C1 activation has been proven to be an effective treatment

strategy. There are, however, several lines of evidence suggesting that

GR activation has a strong effect on cancer cell behaviours such as

invasion, apoptosis resistance and growth (Prekovic et al., 2021).

Thus, it is imperative to use therapeutic interventions, whether

agonists or antagonists to control the prostate carcinogenesis by

regulating the expression of concerned candidate genes.

This study would like to sincerely clarify some limitations.

First, we studied the role of miRNA and target expressions in

metastatic prostate cancers. Thus, we do not generalise our

findings neither blood samples nor primary tumors of prostate

cancer patients. Second, we took microarray data of prostate

tissue biopsies. Thus, mapping the key miRNAs or genes in

body fluids like blood, urine and prostatic fluid is important to

develop non-invasive biomarkers for prostate carcinogenesis.

Third, the key hub genes and hub miRNAs identified in this

study, need to be further validated by targeted approaches like

real-time PCR, functional biology assays and on larger

number of patient samples.

In conclusion, this study identified the inversely correlated

dysregulation of 9 target genes (NFIB, DICER1, GSK3B, DCAF7,

FGFR1OP, ABHD2, NACC2, NR3C1, and FGF2) and three key

miRNAs (hsa-miR-455-3p, hsa-miR-548c-3p and hsa-miR-582-5p).

This study supports the robustness of computational concepts, like

protein interactome mapping, functional enrichment of biological

pathways and construction of miRNA-mRNA and transcription

factor gene networks in identifying prostate cancer biomarkers

from large-scale gene expression data. Tissue based prostate cancer

markers can be correlated with cancer development, which might

offer early clinical interventions and therapy. This study also provides

the initial evidence for the future knowledge driven functional studies

of these miRNAs and their gene targets in prostate cancer.

Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/Supplementary Material.

Author contributions

Conceptualization, TA, NS, and BB; Methodology, TS, FM,

and BB; Software, FM and BB; Formal analysis, TS, KN, FM,WA,

NA, and BB; Investigation, TS and KN; Writing—original draft

preparation, TS, KN, FM, WA, RE, NA, HA, AM, and BB;

Writing—review and editing, KN, TS, NA, BB, MA, and RE;

Visualization, FM and BB; Supervision, BB and RE; Project

administration, TS; Funding acquisition, TS.

Acknowledgments

The authors extend their appreciation to the Deputyship for

Research and Innovation, Ministry of Education in Saudi Arabia for

funding this research work through the project number IFPRC-132-

290-2020 andKingAbdulazizUniversity, DSR, Jeddah, Saudi Arabia.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fgene.

2022.1066118/full#supplementary-material

Frontiers in Genetics frontiersin.org16

Shinawi et al. 10.3389/fgene.2022.1066118

https://www.frontiersin.org/articles/10.3389/fgene.2022.1066118/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.1066118/full#supplementary-material
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1066118


References

Banaganapalli, B., Mansour, H., Mohammed, A., Alharthi, A. M., Aljuaid, N. M.,
Nasser, K. K., et al. (2020). Exploring celiac disease candidate pathways by global
gene expression profiling and gene network cluster analysis. Sci. Rep. 10, 16290.
doi:10.1038/s41598-020-73288-6

Bartel, D. P. (2009). MicroRNAs: Target recognition and regulatory functions.
Cell. 136, 215–233. doi:10.1016/j.cell.2009.01.002

Berry, R., Schaid, D. J., Smith, J. R., French, A. J., Schroeder, J. J., Mcdonnell, S. K.,
et al. (2000a). Linkage analyses at the chromosome 1 loci 1q24-25 (HPC1), 1q42. 2-
43 (PCAP), and 1p36 (CAPB) in families with hereditary prostate cancer. Am.
J. Hum. Genet. 66, 539–546. doi:10.1086/302771

Berry, R., Schroeder, J. J., French, A. J., Mcdonnell, S. K., Peterson, B. J.,
Cunningham, J. M., et al. (2000b). Evidence for a prostate cancer–susceptibility
locus on chromosome 20. Am. J. Hum. Genet. 67, 82–91. doi:10.1086/302994

Bima, A. I., Elsamanoudy, A. Z., Alamri, A. S., Felimban, R., Felemban, M.,
Alghamdi, K. S., et al. (2022). Integrative global co-expression analysis identifies key
microRNA-target gene networks as key blood biomarkers for obesity.MinervaMed.
113, 532–541. doi:10.23736/S0026-4806.21.07478-4

Bostwick, D. G., Burke, H. B., Djakiew, D., Euling, S., Ho, S.-M., Landolph, J., et al.
(2004). Human prostate cancer risk factors. Cancer 101, 2371–2490. doi:10.1002/
cncr.20408

Breyer, J. P., Avritt, T. G., Mcreynolds, K. M., Dupont, W. D., and Smith, J. R.
(2012). Confirmation of the HOXB13 G84E germline mutation in familial prostate
cancer. Cancer Epidemiol. Biomarkers Prev. 21, 1348–1353. doi:10.1158/1055-9965.
EPI-12-0495

Cancer, IAFRO (2003). World cancer report: World health organization. Lyon,
France: IARC Press.

Carter, B. S., Beaty, T. H., Steinberg, G. D., Childs, B., and Walsh, P. C. (1992).
Mendelian inheritance of familial prostate cancer. Proc. Natl. Acad. Sci. U. S. A. 89,
3367–3371. doi:10.1073/pnas.89.8.3367

Chen, Z. J., Guan, H., Wang, S., Xu, B., and Chen, M. (2021). Genes and signaling
pathways related to the biochemical recurrence of prostate cancer: An analysis
based on the GEO database. Zhonghua Nan Ke Xue 27, 17–25.

Cooney, K. A., Huang, L., Sandler, H. M., Lange, E., Lange, K., Miesfeldt, S., et al.
(1997). Prostate cancer susceptibility locus on chromosome 1q: A confirmatory
study. J. Natl. Cancer Inst. 89, 955–959. doi:10.1093/jnci/89.13.955

Dasgupta, P., Kulkarni, P., Bhat, N. S., Majid, S., Shiina, M., Shahryari, V., et al.
(2020). Activation of the Erk/MAPK signaling pathway is a driver for cadmium
induced prostate cancer. Toxicol. Appl. Pharmacol. 401, 115102. doi:10.1016/j.taap.
2020.115102

De Schaetzen Van Brienen, L., Miclotte, G., Larmuseau, M., Van Den Eynden, J.,
and Marchal, K. (2021). Network-based analysis to identify drivers of metastatic
prostate cancer using GoNetic. Cancers 13, 5291. doi:10.3390/cancers13215291

Doghish, A. S., Ismail, A., El-Mahdy, H. A., Elkady, M. A., Elrebehy, M. A., and
Sallam, A. M. (2021). A review of the biological role of miRNAs in prostate cancer
suppression and progression. Int. J. Biol. Macromol. 197, 141–156. doi:10.1016/j.
ijbiomac.2021.12.141

Farashi, S., Kryza, T., Clements, J., and Batra, J. (2019). Post-GWAS in prostate
cancer: From genetic association to biological contribution. Nat. Rev. Cancer 19,
46–59. doi:10.1038/s41568-018-0087-3

Feng, C., Li, Y., Lin, Y., Cao, X., Li, D., Zhang, H., et al. (2019). CircRNA-
associated ceRNA network reveals ErbB and Hippo signaling pathways in
hypopharyngeal cancer. Int. J. Mol. Med. 43, 127–142. doi:10.3892/ijmm.2018.3942

Feng, X., Wang, Z., Fillmore, R., and Xi, Y. (2014). MiR-200, a new star miRNA in
human cancer. Cancer Lett. 344, 166–173. doi:10.1016/j.canlet.2013.11.004

Gordanpour, A., Nam, R., Sugar, L., and Seth, A. (2012). MicroRNAs in prostate
cancer: From biomarkers to molecularly-based therapeutics. Prostate Cancer
Prostatic Dis. 15, 314–319. doi:10.1038/pcan.2012.3

Greenlee, R. T., Hill-Harmon, M. B., Murray, T., and Thun, M. (2001). Cancer
statistics, 2001. Ca. Cancer J. Clin. 51, 15–36. doi:10.3322/canjclin.51.1.15

Group, UCSW. (2014). United States cancer statistics: 1999-2011 incidence and
mortality web-based report. Atlanta (GA): Department of Health and Human
Services, Centers for Disease Control and Prevention and National Cancer
Institute. cited 2014 Dec 24".).

Gu, Y., Deng, B., Kong, J., Yan, C., Huang, T., Yang, J., et al. (2017). Functional
polymorphisms in NR3C1 are associated with gastric cancer risk in Chinese
population. Oncotarget 8, 105312–105319. doi:10.18632/oncotarget.22172

Huang, S., Zou, C., Tang, Y., Wa, Q., Peng, X., Chen, X., et al. (2019). miR-582-3p
and miR-582-5p suppress prostate cancer metastasis to bone by repressing TGF-β
signaling. Mol. Ther. Nucleic Acids 16, 91–104. doi:10.1016/j.omtn.2019.01.004

Ilic, D., Neuberger, M. M., Djulbegovic, M., and Dahm, P. (2013). Screening for
prostate cancer. Cochrane Database Syst. Rev. 2013. doi:10.1002/14651858.
cd004720.pub3

Janky, R., Verfaillie, A., Imrichová, H., Van De Sande, B., Standaert, L.,
Christiaens, V., et al. (2014). iRegulon: from a gene list to a gene regulatory
network using large motif and track collections. PLoS Comput. Biol. 10, e1003731.
doi:10.1371/journal.pcbi.1003731

Kanehisa, M., and Goto, S. (2000). Kegg: Kyoto encyclopedia of genes and
genomes. Nucleic Acids Res. 28, 27–30. doi:10.1093/nar/28.1.27

Karhadkar, S. S., Bova, G. S., Abdallah, N., Dhara, S., Gardner, D., Maitra, A., et al.
(2004). Hedgehog signalling in prostate regeneration, neoplasia and metastasis.
Nature 431, 707–712. doi:10.1038/nature02962

Kim, J., Jia, L., Stallcup, M. R., and Coetzee, G. A. (2005). The role of protein
kinase A pathway and cAMP responsive element-binding protein in androgen
receptor-mediated transcription at the prostate-specific antigen locus. J. Mol.
Endocrinol. 34, 107–118. doi:10.1677/jme.1.01701

Kuriyama, M., Wang, M. C., Lee, C.-L., Papsidero, L. D., Killian, C. S., Inaji, H.,
et al. (1981). Use of human prostate-specific antigen in monitoring prostate cancer.
Cancer Res. 41, 3874–3876.

Kypta, R. M., and Waxman, J. (2012). Wnt/β-catenin signalling in prostate
cancer. Nat. Rev. Urol. 9, 418–428. doi:10.1038/nrurol.2012.116

Lachance, J., Berens, A. J., Hansen, M. E., Teng, A. K., Tishkoff, S. A., and
Rebbeck, T. R. (2018). Genetic hitchhiking and population bottlenecks contribute to
prostate cancer disparities in men of African descent. Cancer Res. 78, 2432–2443.
doi:10.1158/0008-5472.CAN-17-1550

Lee, M., and Rhee, I. (2017). Cytokine signaling in tumor progression. Immune
Netw. 17, 214–227. doi:10.4110/in.2017.17.4.214

Li, B., Thrasher, J. B., and Terranova, P. (2015). Glycogen synthase kinase-3: A
potential preventive target for prostate cancer management. Urol. Oncol. 33,
456–463. doi:10.1016/j.urolonc.2015.05.006

Li, R., Erdamar, S., Dai, H., Sayeeduddin, M., Frolov, A., Wheeler, T. M., et al.
(2009). Cytoplasmic accumulation of glycogen synthase kinase-3beta is associated
with aggressive clinicopathological features in human prostate cancer. Anticancer
Res. 29, 2077–2081.

Litwin, M. S., and Tan, H. J. (2017). The diagnosis and treatment of prostate
cancer: A review. Jama 317, 2532–2542. doi:10.1001/jama.2017.7248

Mamoor, S. (2021). Differential expression of nuclear receptor subfamily 3 group C
member 1 in cancers of the breast. Virginia, United States: Center for Open Science.

Meng, F., Henson, R., Wehbe–Janek, H., Ghoshal, K., Jacob, S. T., and Patel, T.
(2007). MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in
human hepatocellular cancer. Gastroenterology 133, 647–658. doi:10.1053/j.gastro.
2007.05.022

Miller, D. R., Ingersoll, M. A., and Lin, M. F. (2019). ErbB-2 signaling in advanced
prostate cancer progression and potential therapy. Endocr. Relat. Cancer 26,
R195–R209. doi:10.1530/ERC-19-0009

Mujalli, A., Banaganapalli, B., Alrayes, N. M., Shaik, N. A., Elango, R., and Al-
Aama, J. Y. (2020). Myocardial infarction biomarker discovery with integrated gene
expression, pathways and biological networks analysis. Genomics 112, 5072–5085.
doi:10.1016/j.ygeno.2020.09.004

Neuhausen, S. L., Farnham, A. M., Kort, E., Tavtigian, S. V., Skolnick, M. H., and
Cannon-Albright, L. A. (1999). Prostate cancer susceptibility locus HPC1 in Utah
high-risk pedigrees. Hum. Mol. Genet. 8, 2437–2442. doi:10.1093/hmg/8.13.2437

Nikitina, E., Urazova, L., and Stegny, V. (2012). MicroRNAs and human cancer.
Exp. Oncol. 34, 2–8.

Obinata, D., Takada, S., Takayama, K., Urano, T., Ito, A., Ashikari, D., et al.
(2016). Abhydrolase domain containing 2, an androgen target gene, promotes
prostate cancer cell proliferation and migration. Eur. J. Cancer 57, 39–49. doi:10.
1016/j.ejca.2016.01.002

Papsidero, L. D., Wang, M. C., Valenzuela, L. A., Murphy, G. P., and Chu, T. M.
(1980). A prostate antigen in sera of prostatic cancer patients. Cancer Res. 40,
2428–2432.

Prekovic, S., Schuurman, K., Mayayo-Peralta, I., Manjón, A. G., Buijs, M., Yavuz,
S., et al. (2021). Glucocorticoid receptor triggers a reversible drug-tolerant
dormancy state with acquired therapeutic vulnerabilities in lung cancer. Nat.
Commun. 12, 4360. doi:10.1038/s41467-021-24537-3

Qin, G., Mallik, S., Mitra, R., Li, A., Jia, P., Eischen, C. M., et al. (2020). MicroRNA
and transcription factor co-regulatory networks and subtype classification of
seminoma and non-seminoma in testicular germ cell tumors. Sci. Rep. 10, 852.
doi:10.1038/s41598-020-57834-w

Frontiers in Genetics frontiersin.org17

Shinawi et al. 10.3389/fgene.2022.1066118

https://doi.org/10.1038/s41598-020-73288-6
https://doi.org/10.1016/j.cell.2009.01.002
https://doi.org/10.1086/302771
https://doi.org/10.1086/302994
https://doi.org/10.23736/S0026-4806.21.07478-4
https://doi.org/10.1002/cncr.20408
https://doi.org/10.1002/cncr.20408
https://doi.org/10.1158/1055-9965.EPI-12-0495
https://doi.org/10.1158/1055-9965.EPI-12-0495
https://doi.org/10.1073/pnas.89.8.3367
https://doi.org/10.1093/jnci/89.13.955
https://doi.org/10.1016/j.taap.2020.115102
https://doi.org/10.1016/j.taap.2020.115102
https://doi.org/10.3390/cancers13215291
https://doi.org/10.1016/j.ijbiomac.2021.12.141
https://doi.org/10.1016/j.ijbiomac.2021.12.141
https://doi.org/10.1038/s41568-018-0087-3
https://doi.org/10.3892/ijmm.2018.3942
https://doi.org/10.1016/j.canlet.2013.11.004
https://doi.org/10.1038/pcan.2012.3
https://doi.org/10.3322/canjclin.51.1.15
https://doi.org/10.18632/oncotarget.22172
https://doi.org/10.1016/j.omtn.2019.01.004
https://doi.org/10.1002/14651858.cd004720.pub3
https://doi.org/10.1002/14651858.cd004720.pub3
https://doi.org/10.1371/journal.pcbi.1003731
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1038/nature02962
https://doi.org/10.1677/jme.1.01701
https://doi.org/10.1038/nrurol.2012.116
https://doi.org/10.1158/0008-5472.CAN-17-1550
https://doi.org/10.4110/in.2017.17.4.214
https://doi.org/10.1016/j.urolonc.2015.05.006
https://doi.org/10.1001/jama.2017.7248
https://doi.org/10.1053/j.gastro.2007.05.022
https://doi.org/10.1053/j.gastro.2007.05.022
https://doi.org/10.1530/ERC-19-0009
https://doi.org/10.1016/j.ygeno.2020.09.004
https://doi.org/10.1093/hmg/8.13.2437
https://doi.org/10.1016/j.ejca.2016.01.002
https://doi.org/10.1016/j.ejca.2016.01.002
https://doi.org/10.1038/s41467-021-24537-3
https://doi.org/10.1038/s41598-020-57834-w
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1066118


Ragde, H., Aldape, H. C., and Bagley, C.M., Jr (1988). Ultrasound-guided prostate
biopsy Biopty gun superior to aspiration. Urology 32, 503–506. doi:10.1016/s0090-
4295(98)90029-2

Ratner, S. (2021).Prostate cancer treatment (PDQ®): Treatment-health
professional information [NCI].

Rodríguez-Berriguete, G., Fraile, B., Martínez-Onsurbe, P., Olmedilla, G.,
Paniagua, R., and Royuela, M. (2012). MAP kinases and prostate cancer.
J. Signal Transduct. 2012, 169170. doi:10.1155/2012/169170

Sabir, J. S. M., El Omri, A., Shaik, N. A., Banaganapalli, B., Al-Shaeri, M. A.,
Alkenani, N. A., et al. (2019). Identification of key regulatory genes connected to
NF-κB family of proteins in visceral adipose tissues using gene expression and
weighted protein interaction network. PLoS One 14, e0214337. doi:10.1371/journal.
pone.0214337

Sahly, N. N., Banaganapalli, B., Sahly, A. N., Aligiraigri, A. H., Nasser, K. K.,
Shinawi, T., et al. (2021). Molecular differential analysis of uterine leiomyomas and
leiomyosarcomas through weighted gene network and pathway tracing approaches.
Syst. Biol. Reprod. Med. 67, 209–220. doi:10.1080/19396368.2021.1876179

Sanchez, P., Clement, V., and Ruiz I Altaba, A. (2005). Therapeutic targeting of
the Hedgehog-GLI pathway in prostate cancer. Cancer Res. 65, 2990–2992. doi:10.
1158/0008-5472.CAN-05-0439

Schleutker, J., Matikainen, M., Smith, J., Koivisto, P., Baffoe-Bonnie, A., Kainu, T.,
et al. (2000). A genetic epidemiological study of hereditary prostate cancer (HPC) in
Finland: Frequent HPCX linkage in families with late-onset disease. Clin. Cancer
Res. 6, 4810–4815.

Screening, P. D. Q., and Board, P. E. (2002). Prostate cancer screening (PDQ®):
Health Professional Version. In: PDQ Cancer Information Summaries [Internet].
Bethesda (MD): National Cancer Institute (US); 2002. Available at: https://www.
ncbi.nlm.nih.gov/books/NBK65945.

Siegel, R. L., Miller, K. D., and Jemal, A. (2020). Cancer statistics, 2020. Ca. Cancer
J. Clin. 70, 7–30. doi:10.3322/caac.21590

Sun, T., Wang, Q., Balk, S., Brown, M., Lee, G.-S. M., and Kantoff, P. (2009).
The role of microRNA-221 and microRNA-222 in androgen-independent
prostate cancer cell lines. Cancer Res. 69, 3356–3363. doi:10.1158/0008-5472.
CAN-08-4112

Thul, P. J., and Lindskog, C. (2018). The human protein atlas: A spatial map of the
human proteome. Protein Sci. 27, 233–244. doi:10.1002/pro.3307

Van Gool, K., and Pearson, M. (2014). Health, austerity and economic crisis:
Assessing the short-term impact in OECD countries. Paris, France: OECD.

Verras, M., and Sun, Z. (2006). Roles and regulation of Wnt signaling and β-
catenin in prostate cancer. Cancer Lett. 237, 22–32. doi:10.1016/j.canlet.2005.
06.004

Wang, M., Valenzuela, L., Murphy, G., and Chu, T. (1979). Purification of a
human prostate specific antigen. Invest. Urol. 17, 159–163.

Watahiki, A., Wang, Y., Morris, J., Dennis, K., O’dwyer, H. M., Gleave, M., et al.
(2011). MicroRNAs associated with metastatic prostate cancer. PloS one 6, e24950.
doi:10.1371/journal.pone.0024950

Xu, J., Lange, E. M., Lu, L., Zheng, S. L., Wang, Z., Thibodeau, S. N., et al. (2013).
HOXB13 is a susceptibility gene for prostate cancer: Results from the international
consortium for prostate cancer genetics (ICPCG). Hum. Genet. 132, 5–14. doi:10.
1007/s00439-012-1229-4

Xu, J., Zheng, S. L., Chang, B.-L., Smith, J. R., Carpten, J. D., Stine, O. C., et al.
(2001). Linkage of prostate cancer susceptibility loci to chromosome 1.Hum. Genet.
108, 335–345. doi:10.1007/s004390100488

Yan, K., Gao, L. N., Cui, Y. L., Zhang, Y., and Zhou, X. (2016). The cyclic AMP
signaling pathway: Exploring targets for successful drug discovery (Review). Mol.
Med. Rep. 13, 3715–3723. doi:10.3892/mmr.2016.5005

Zhao, H. B., Xu, G. B., Yang, W. Q., Li, X. Z., Chen, S. X., Gan, Y., et al. (2021).
Bioinformatics-based identification of the key genes associated with prostate cancer.
Zhonghua Nan Ke Xue 27, 489–498.

Frontiers in Genetics frontiersin.org18

Shinawi et al. 10.3389/fgene.2022.1066118

https://doi.org/10.1016/s0090-4295(98)90029-2
https://doi.org/10.1016/s0090-4295(98)90029-2
https://doi.org/10.1155/2012/169170
https://doi.org/10.1371/journal.pone.0214337
https://doi.org/10.1371/journal.pone.0214337
https://doi.org/10.1080/19396368.2021.1876179
https://doi.org/10.1158/0008-5472.CAN-05-0439
https://doi.org/10.1158/0008-5472.CAN-05-0439
https://www.ncbi.nlm.nih.gov/books/NBK65945
https://www.ncbi.nlm.nih.gov/books/NBK65945
https://doi.org/10.3322/caac.21590
https://doi.org/10.1158/0008-5472.CAN-08-4112
https://doi.org/10.1158/0008-5472.CAN-08-4112
https://doi.org/10.1002/pro.3307
https://doi.org/10.1016/j.canlet.2005.06.004
https://doi.org/10.1016/j.canlet.2005.06.004
https://doi.org/10.1371/journal.pone.0024950
https://doi.org/10.1007/s00439-012-1229-4
https://doi.org/10.1007/s00439-012-1229-4
https://doi.org/10.1007/s004390100488
https://doi.org/10.3892/mmr.2016.5005
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1066118

	A comparative mRNA- and miRNA transcriptomics reveals novel molecular signatures associated with metastatic prostate cancers
	1 Introduction
	2 Methodology
	2.1 Collection of prostate cancer mRNA and microRNA expression datasets
	2.2 Detection of differentially expressed genes and microRNAs in prostate cancer tissues
	2.3 Identification of potential target genes for DEMs
	2.4 GO annotation of microRNA target genes
	2.5 Construction of microRNA-target gene transcriptome network
	2.6 Functional assessment of microRNA target genes
	2.6.1 Construction of microRNA-Target gene-transcription factor network
	2.6.2 Therapeutic potential of hub genes
	2.6.3 Mutational load of hub genes in prostate cancers
	2.6.4 Expression analysis of hub genes in prostate cancers
	2.6.5 Immunohistochemistry analysis


	3 Results
	3.1 Identification of differentially expressed target genes and microRNAs
	3.2 Mapping of microRNA target genes
	3.3 Pathway enrichment of microRNA target genes
	3.4 MicroRNA-target gene interaction network analysis
	3.5 Systems biology validation of prostate cancer hub genes
	3.5.1 Identification of TF and microRNA target gene network regulators
	3.5.2 Molecular tractability potential of hub genes
	3.5.3 Determination of mutation load of hub genes
	3.5.4 Confirmation of expression status of hub genes in prostate cancer tissues
	3.5.5 The prognostic value of hub genes in prostate cancer patients
	3.5.6 Immunocytochemistry/immunofluorescence analysis

	3.6 Concordance analysis

	4 Discussion
	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


