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Background: Hepatocellular carcinoma (HCC) is a main cause of malignancy-

related death all over the world with a poor prognosis. The current research is

focused on developing novel prognostic and diagnostic models of

Hepatocellular carcinoma from the perspective of hepatitis B virus (HBV)-

related genes, and predicting its prognostic characteristics and potential

reliable biomarkers for Hepatocellular carcinoma diagnosis.

Methods: As per the information related to Hepatocellular carcinoma expression

profile and the clinical data in multiple public databases, we utilized limma for

assessing the differentially expressed genes (DEGs) in HBV vs non- hepatitis B virus

groups, and the gene set was enriched, analyzed and annotated by WebGestaltR

package. Then, STRINGwas employed to investigate the protein interactions. A risk

model for evaluating Hepatocellular carcinoma prognosis was built with Lasso Cox

regression analysis. The effect patients receiving immunotherapy was predicted

using Tumor Immune Dysfunction and Exclusion (TIDE). Additionally, pRRophetic

was used to investigate the drug sensitivity. Lastly, the Support Vector Machine

(SVM) approach was utilized for building the diagnostic model.

Results: The Hepatocellular Carcinoma Molecular Atlas 18 (HCCDB18) data set

was utilized for the identification of 1344 HBV-related differentially expressed

genes, mainly associated with cell division activities. Five functional modules

were established and then we built a prognostic model in accordance with the

protein-protein interaction (PPI) network. Five HBV-related genes affecting

prognosis were identified for constructing a prognostic model. Then, the

samples were assigned into RS-high and -low groups as per their relevant

prognostic risk score (RS). High-risk group showed worse prognosis, higher

mutation rate of TP53, lower sensitivity to immunotherapy but higher response

to chemotherapeutic drugs than low-risk group. Finally, the hepatitis B virus

diagnostic model of Hepatocellular carcinoma was established.

Conclusion: In conclusion, the prognostic and diagnostic models of hepatitis B

virus gene-related Hepatocellular carcinoma were constructed. ABCB6, IPO7,

TIMM9, FZD7, and ACAT1, the five HBV-related genes that affect the prognosis,

can work as reliable biomarkers for the diagnosis of Hepatocellular carcinoma,

giving a new insight for improving the prognosis, diagnosis, and treatment

outcomes of HBV-type Hepatocellular carcinoma.
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Introduction

Incidence of hepatocellular carcinoma (HCC) is the sixth

highest among some other frequently known cancers, with

mortality ranking the fourth highest. HCC makes up 80–90%

of the global primary liver cancer (Bray et al., 2018). The majority

of patients diagnosed with HCC have local progression or distant

metastasis because of a lack of identifiable symptoms at the early

stages (Ranganathan et al., 2020). Despite significant

advancements in medical and surgical procedures (Forner

et al., 2018), 5-year survival rate of HCC is only about 18%

(Villanueva, 2019), with a poor prognosis (Hartke et al., 2017;

Jiang et al., 2017; Nishida and Kudo, 2017). Hence, finding new

therapeutic targets for HCC treatment has crucial significance.

Moreover, when evaluating the survival prognosis of individuals,

it is also necessary to coordinate the clinical-pathological

characteristics of the genome.

Primary risk factors of inducing HCC are Hepatitis B (HBV)

and C (HCV), followed by exposure to aflatoxin B1, alcohol, and

obesity (de Martel et al., 2015; Bray et al., 2018). Integration of

HBV DNA into hepatocytes for persistent viral infection, which

could result in chronic hepatitis B infection, ultimately causing

HCC. Evidence has shown that HBV proteins directly affect

multiple cellular biological processes, and that some of the

proteins could stimulate malignant transformation of

hepatocytes (Ayub et al., 2013). Chronic hepatitis B-related

HCC makes up for more than 80% of all HCC cases

(Villanueva, 2019). Despite the progress made in the early

diagnosis, prevention, and standard treatment interventions

(such as surgery, radiotherapy, chemotherapy, or tailored

treatment strategies) in the past decade, total 5-year overall

survival of HCC is unfavorable, which may be resulted from

its aggressive behaviors as well as the histopathological and

molecular heterogeneity of molecular characterization and

targeted treatment strategies. Moreover, most HCC patients

are diagnosed at a more advanced stage of the disease, which

often leads to a worse prognosis. Therefore, to better construct a

prognosis and diagnostic model of HBV-induced HCC still has

crucial significance for a timely diagnosis of HCC.

In the current research, data of patients with HBV-related

HCC from the Cancer Genome Atlas (TCGA), HCCDB18, and

GSE14520 were collected for the identification of DEGs between

non-HBV-infected and HBV-infected people. We highlighted

the biological role and identified interacted modules of

differentially expressed genes (DEGs). Finally, a prognostic

and diagnostic model was developed using the HBV gene in

HCC and validated for its reliability and effectiveness. In

conclusion, this report offered a potential indicator for

TABLE 1 The clinical information of three datasets.

Clinical features TCGA-LIHC HCCDB18 GSE14520

OS

0 235 168 136

1 130 35 85

T Stage

T1 180 33

T2 91 96

T3 78 59

T4 13 15

TX 3

N Stage

N0 248

N1 4

NX 113

M Stage

M0 263

M1 3

MX 99

Stage

Ⅰ 170 93

Ⅱ 84 77

III 83 49

Ⅳ 4

X 24 2

Grade

G1 55

G2 175

G3 118

G4 12

GX 5

Gender

Male 246 153 191

Female 119 50 30

Age

≤60 173 43 181

>60 192 160 40

HBV

YES 22 53

NO 159 29

Unknown 184 121
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assessing the molecular mechanism of HCC progression and

development and helped study the effect of immunotherapy in

detail, providing new insight for timely diagnosis, prognosis

prediction, and immunotherapy of HCC.

Methods

Data collection and pretreatment

Sangerbox platform (http://vip.sangerbox.com/) supported

the current research analyses (Shen et al., 2022). We took the

latest clinical follow-up, expression data, and mutation data of

HCC patients’ tissues from the TCGA (http://cancergenome.nih.

gov/abouttcga) in 30 April 2022 (Tomczak et al., 2015). After

excluding the samples having no data on clinical follow-up,

survival time, and status, the RNA-sequencing (RNA-Seq)

data contained 365 samples after preliminary identification.

Next, the data Ensembl ID was transformed into gene symbol,

with the median expression value of a gene corresponding to

numerous gene symbols being taken.

The TCGA mutect2 software’s mutation data set were

obtained. 2564 genes, those with a mutation frequency of

more than three were chosen. The genes with substantial

high-frequency mutations were chosen using the Fisher test

from each subtype, and the threshold for selection was p < 0.05.

HCCDB18 data was collected online from the website (http://

lifeome.net/database/hccdb/home.html) on 30 April 2022.

Similarly, we eliminated the samples without data on

expression profile, survival time, status, clinical follow-up.

After identification, 203 samples in total were selected for this

study.

Gene Expression Omnibus (GEO) database (https://www.

ncbi.nlm.nih.gov/geo/) gave us the GSE14520 data, and the HCC

patients’ chip data set with survival time was chosen. The

download time was 30 April 2022. The data set excluded the

samples having no data on clinical follow-up, survival time, and

status. After identification, it finally contained 221 samples.

Then, the median expression of multiple Gene symbols was

considered after transforming the Ensembl in the data into a

Gene symbol. See Table1 for the clinical statistical information

sample after the pretreatment of the three groups of data.

DEGs and functional enrichment analysis

The DEGs were analyzed using limma (Ritchie et al., 2015)

and filtered using the criteria of |Fold Change (FC)| > 1.2 and p <
0.05. Using the ‘WEB-based Gene Set Analysis Toolkit

(WebGestaltR)’ R package, we carried out the Gene Set

Enrichment Analysis (GSEA) on different gene sets (Liao

et al., 2019). In order to study the pathways of numerous

biological activities in different groups, the GSEA for pathway

analysis was conducted. Here, all candidate gene sets in the

Hallmark database (Liberzon et al., 2015) were subjected to gene

set enrichment analysis, with false Discovery Rate (FDR) <
0.05 being considered as a significant enrichment. In addition,

the ‘Gene Set Variation Analysis (GSVA)’ R package was

introduced for performing single sample GSEA (ssGSEA) on

the gene expression profile of HCC samples in the TCGA cohorts

(Hänzelmann et al., 2013). Each sample’s score for various

functions was equal to its matching ssGSEA score for each

function.

Creating a protein-protein interaction
network

The Search Tool for the Retrieval of Interaction Gene/

Proteins (STRING) (https://string-db.org/) database was

employed to search for protein-protein interaction (PPI)

among predicted and known proteins. STRING is a database

with the largest number of species and interaction information

data, including 2031 species, 13.8 million protein interactions,

and 9.6 million proteins. Studying the interaction network

between proteins helps in finding the core regulatory genes.

After building the PPI network, the Cytoscape was used for

visualization (Su et al., 2014).

Construction of a risk model

The TCGA data set was categorized into two groups

according to the ratio of Train: Test = 1:1. The differences of

clinical features between train and test sets were examined by

Fisher’s exact test. Then the genes in the train data set were

subjected to the univariate Cox regression analysis. The least

absolute shrinkage and selection operator (Lasso) is a

compression estimation [15] that creates a penalty function to

shape an advanced model through compressing coefficients and

setting some coefficients to zero. This study used the ‘glmnet’ R

package (Friedman et al., 2010) for performing the Lasso Cox

regression. In addition, the stepwise multivariate regression

analysis was used. The stepwise regression employed the

Akaike information criterion (AIC). The stepAIC approach in

the Modern Applied Statistics with S (MASS) package (Zhang,

2016) begins with a complicated model and successively

eliminates a variable to decrease the AIC, with a smaller value

indicating a better model, which highlights a high fitting of the

model with fewer parameters.

The risk-related prognostic risk score (RS) of each sample

was calculated with the following formula: RS = Σβi × Expi, Expi

is the expression level of gene characteristics, and βi represents
the Lasso Cox regression coefficient of the corresponding gene.

RS-high and -low groups of patients were divided under the

median value of the threshold. Prognosis analysis and significant
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difference was determined by Kaplan-Meier (KM) method and

the Log-rank test, respectively. In addition, we employed the

‘timeROC’ R package (Blanche et al., 2013) for performing

receiver operating characteristic (ROC) analysis on RS

prognosis classification.

Prediction of immunotherapy effect

The Tumor Immune Dysfunction and Exclusion (TIDE)

algorithm (http://tide.dfci.harvard.edu/) (Jiang et al., 2018)

verified the efficacy of immune microenvironment score

(IMS) on predicting clinical response of HCC patients to

immune checkpoint inhibitors (ICIs). TIDE algorithm uses

gene expression profiles to estimate the reactivity of immune

checkpoint blockade (ICB) based on 3 cell types that limit T cell

infiltration in tumors, specifically, myeloid-derived suppressor

cells (MDSCs), the M2 subtype of tumor-associated

macrophages (TAM), two varied tumor immune escape

strategies, including tumor-infiltrating cytotoxic T lymphocyte

(CTL) dysfunction score and CTL immunosuppressive factor

rejection score and tumor-associated fibroblasts (TAF). Higher

TIDE score pointed to a greater immune escape probability,

suggesting less benefits of HCC with such a status from taking

immunotherapy. Subclass mapping method (Roh et al., 2017)

was used to compare the similarity of the expression profiles

between the test group and the immunotherapy group for

estimating the sensitivity of the test group to immunotherapy.

Drug sensitivity analysis

For estimating the RS of predicting molecular drug response,

the half-maximal inhibitory concentration (IC50) of drugs was

FIGURE 1
The results of functional enrichment analysis of HCCDB18. (A) BP annotation map of DEGs between HBV and non-HBV patients; (B) CC
annotation map of DEGs between HBV and non-HBV patients; (C) MF annotation map of DEGs between HBV infected and non-HBV infected
patients; (D) KEGG annotation map of DEGs between HBV and non-HBV patients.
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evaluated by using the “pRRophetic” R package (Geeleher et al.,

2014) in accordance with the expression profile in different

data sets.

Results

Identification and functional analysis of
the genes associated with HBV-
related HCC

In order to identify the DEGs in HBV-related HCC, we

analyzed the variations between HBV and non-HBV patients in

the HCCDB18 data set. Finally, 1344 DEGs were obtained, with

1168 of them upregulated and 176 genes downregulated in HBV

patients. Then, these 1344 DEGs were assessed by the KEGG

pathway and GO functional enrichment. 577 items with

considerable differences in Biological Process (BP) were

annotated for GO function of DEGs (Figure 1A, p < 0.05),

including the processes of regulation of mitotic cell cycle

phase, mitotic nuclear division, nuclear division, transition,

mediation of cell cycle phase transition, and other items

related to cell division. 144 items with significant difference in

Cellular Component (CC) were annotated (Figure 1B, p < 0.05),

including centromeric region, condensed chromosome,

kinetochore, centromeric region, chromosome, and other

chromosome-related items. We annotated 125 items with

major differences in Molecular Function (MF) (Figure 1C, p <
0.05), including helicase activity, single-stranded DNA-

dependent ATPase activity, catalytic activity, DNA-dependent

ATPase activity, acting on DNA, and other ATPase enzymes. For

the enrichment of the KEGG pathway of DEGs, 32 items were

FIGURE 2
PPI networkmodule results. (A)Cluster one network PPI analysis; (B)Cluster two network PPI analysis; (C)Cluster three network PPI analysis; (D)
Cluster 10 network PPI analysis; (E) Cluster 11 network PPI analysis.
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significantly annotated (Figure 1D, p < 0.05). Among them,

homologous recombination, cell cycle, mismatch repair, DNA

replication, microRNAs in cancer, and other pathways were also

significant.

PPI analysis of HBV gene in HCC

PPI analysis was carried out based on 1344 DEGs in the above

HCCDB18 data set, andMCODEwas used to find network function

modules. Modules containing at least 10 genes were retained,

including Cluster 1 (Figure 2A), Cluster 2 (Figure 2B), Cluster 3

(Figure 2C), Cluster 10 (Figure 2D), and Cluster 11 (Figure 2E).

The genes in the clusters were performed with KEGG

pathway analysis and GO function enrichment analysis.

Specifically, Cluster one was closely associated with the FoxO

signaling pathway, Human T-cell leukemia virus one infection,

p53 signaling pathway, and other pathways (Supplementary

Figure S1); Cluster two was closely related to DNA

replication, Mismatch repair, Homologous recombination,

Base excision repair, and other pathways (Supplementary

Figure S2); Cluster three was closely related to RNA transport,

structural constituent nuclear pore and other pathways

(Supplementary Figure S3); Cluster 10 was closely related to

Homologous recombination, Fanconi anemia pathway, Cell cycle

and other pathways (Supplementary Figure S4); Cluster 11 was

FIGURE 3
Construction of HBV gene prognostic model for HCC. (A) Analysis results of DEGs; (B) The locus of each independent variable changing with
lambda; (C) CI under lambda; (D) Lasso coefficient distribution of HBV-related gene characteristics.
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closely related to homologous recombination, mismatch repair,

DNA replication, cell cycle and other pathways (Supplementary

Figure S5);

Construction of a prognostic model
related to HBV in HCC

We randomly divided TCGA dataset into train and test data

sets and there was no significant difference of their clinical

features between two data sets (Supplementary Table S1). For

472 HBV-related DEGs in the PPI network, univariate Cox

regression analysis was conducted using the Train data set in

the TCGA data set. Finally, a total of 222 genes, including

219 “Risk” and 3 “Protective” genes (p < 0.01) with great

impact on prognosis, were identified (Figure 3A). The

222 genes in the Train data set were further compressed by

Lasso regression to reduce the genes in the risk model. We

assessed the change trajectory of individual independent

variables and discovered that a mutual increase between

number of independent variable coefficients tending to 0 and

lambda. The model reached its optimum efficiency at a lambda

value of 0.0628 (Figure 3B). Then, a model was developed by

performing 10-fold cross-validation, and confidence interval

under each lambda was analyzed (Figure 3C). Finally,

14 genes with lambda = 0.0628 were chosen as the target

genes. Based on the 14 genes in Lasso analysis, five genes

(ABCB6, IPO7, TIMM9, FZD7, and ACAT1) were identified

FIGURE 4
Construction and validation of the clinical prognostic model. (A) Multivariate Cox forest map of model genes; (B) ROC curve and KM survival
curve of RS in TCGA training data cohort; (C) ROC curve and KM survival curve of RS in the TCGA validation data cohort; (D) ROC curve and KM
survival curve of RS in TCGA cohort; (E) ROC curve and KM survival curve of RS in HCCDB18 cohort; (F) ROC curve and KM survival curve of RS in
GSE14520 cohort.
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as HBV-related genes affecting prognosis by stepwise

multivariate regression analysis (Figure 3D). The prognostic

model was defined as risk score = 0.494*ABCB6 +

0.355*TIMM9 + 0.201*FZD7 + 0.415*IPO7—0.338*ACAT1.

Development and validation of the clinical
prognostic model

The genes of the above clinical prognostic models were

analyzed by multivariate analysis (Figure 4A). Moreover, ROC

analysis of prognosis classification was carried out based on the

RS of each sample. We assessed the grouping efficiency of one-,

three- and 5-year prognosis prediction of the training data set

(Figure 4B). The area under the ROC curve (AUC) values were

0.81, 0.75, and 0.76, respectively. Finally, with the median value

as the cutoff, we sorted the samples into RS-high and -low groups

and drew the KM curve. It can be observed that there is a

substantial variation between RS-low and -high groups (p <
0.0001). Number of samples in both the RS-high group and RS-

low group was 91. Patients with higher RS showed worse overall

survival in the training cohorts. To confirm the robustness of

risk-related genes in the prediction of the clinical prognostic

model, we verified them in the TCGA validation data set

FIGURE 5
Differences in RSs among different clinicopathological groups in the TCGA cohort. (A) T Stage; (B) Stage; (C) Grade; (D) Virus; (E) Gender; (F)
Age. (ns, p > 0.05; * * *, p < 0.001; * *, p < 0.01; *, p < 0.05).
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(Figure 4C) and TCGA all data set cohort (Figure 4D). Patients’

RS was similarly measured. The validation cohorts showed

similar results to the training sets. High RS had a poor

prognosis, while low RS was the opposite. Simultaneously, we

performed verification in the independent data sets HCCDB18

(Figure 4E) and GSE14520 (Figure 4F). The validation cohorts

showed the same outcomes as the training set, proving the

reliability of our results. Compared with other prognostic

models of HCC from Zheng et al. (4-gene signature) (Zheng

et al., 2018), Hu et al. (7-gene signature) (Hu et al., 2020), Ke et al.

(6-gene signature) (Ke et al., 2018), and Liu et al. (3-gene

signature) (Liu et al., 2019), our model showed a relatively

higher AUC in predicting 1-year and 3-year survival

(Supplementary Figure S6).

Comparison of the RS distribution among clinical-

pathological features groups demonstrated a major variation

in RS among T stage, stage, grade, etc. In TCGA data set

(Figures 5A, B, C). In T Stage, the RS of the T1 Stage was the

lowest (Figure 5A). No major variations were observed in RS in

relation to virus, gender, or age (Figures 5D, E, F).

Mutation characteristics between RS
groups

The differences in genome changes among different RS

groups in the TCGA cohort were discussed. Therefore, we

analyzed the mutation characteristics of 37 high-frequency

FIGURE 6
Genome changes of RS groups in TCGA cohort. (A) Somatic mutation analysis of various RS groups in TCGA cohort (fisher’s exact test); (B)
Differences in Homologous Recombination Defects, Fraction Altered, Number of Segments, and Tumor mutation burden in different RS groups of
TCGA cohort. (ns, p > 0.05; * * *, p < 0.001; * *, p < 0.01; *, p < 0.05).
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mutant genes in different groups. It has been found that the

mutation frequency of TP53 in the RS-low group (41%) was

increased than the RS-high group (17%), and that the mutation

frequency of SPEG in the RS-low group (7%) was increased than

the RS-high group (2%), while that of LRRC7 in the RS-low

group (1%) was lower when compared than the RS-high group

(4%) (Figure 6A). Further distribution comparison of fraction

altered, tumor mutation burden, homologous recombination

FIGURE 7
Pathway characteristics between RS groups. (A) The correlation analysis results between the KEGGpathway and RSwhose correlationwith RS in
TCGA cohort is greater than 0.35; (B) RS-high and RS-low enrichment fractional heat maps.
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defects, and the number of segments among different groups

demonstrated that fraction altered and homologous

recombination defects scored considerably higher in the RS-

high group than those in the RS-low group (Figure 6B).

Pathways characteristics between RS
groups

To investigate the association of RS with the biological role of

different samples, we further investigated the correlation between

these functions and RS and determined functional pathways with

a correlation greater than 0.35 (Figure 7A). These pathways were

positively correlated with RS of samples and were mainly tumor-

related (KEGG_HOMOLOGOUS_RECOMBINATION,

KEGG_DNA_REPLICATION, KEGG_P53_SIGNALING_

PATHWAY, KEGG_BLADDER_CANCER). Simultaneously, it

was negatively correlated with metabolic pathways, such as

KEGG_FATTY_ACID_METABOLISM, KEGG_HISTIDINE_

METABOLISM, KEGG_TRYPTOPHAN_METABOLISM, etc.

Next, we analyzed whether there were differentially activated

pathways in different RS groups. Compared with the RS-low

group in TCGA cohort, 26 pathways in the RS-high group were

activated, 12 pathways in the GSE14510 cohort were activated,

nine pathways were inhibited, and 11 pathways in the

HCCDB18 cohort were activated. On the whole, the activated

pathways in the RS-high group were mainly tumor-related

pathways such as EPITHELIAL_MESENCHYMAL_

TRANSITION, MYC_TARGETS_V1, TNFA_SIGNALING_

VIA_NFKB, and G2M_CHECKPOINT, etc. (Figure 7B, False

Discovery Rate (FDR) < 0.05).

The difference in immunotherapy/
chemotherapy among groups

First, the differences in immunotherapy in different groups

were analyzed, and TIDE was employed for analyzing clinical

effect of immunotherapy in our described RS-low and -high

groups. In the TCGA (Figure 8A), HCCDB18 (Figure 8B), and

FIGURE 8
Difference analysis of immunotherapy. (A) Differences in the results of TIDE analysis among different groups in TCGA cohort; (B) Differences in
TIDE analysis results among different groups in HCCDB18 queue; (C)Differences in TIDE analysis results among different groups in GSE14520 queue;
(D) Immune checkpoints differentially expressed between different groups in the TCGA cohort. (ns, p > 0.05; * * *, p < 0.001; * *, p < 0.01; *, p < 0.05).
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GSE14520 (Figure 8C) cohorts, the TIDE score in the RS-high

group was much higher than that in the RS-low group, and was

consistent in different data sets, suggesting that the RS-high

group had increased possibility of immune escape and less

benefit from taking immunotherapy. In addition, comparison

on the expression of immune checkpoints among groups was

conducted. Here, our immune checkpoints were provided by

HisgAtlas (Liu et al., 2017). It could be seen that some immune

checkpoint genes were differentially expressed in TCGA data set

(Figure 8D).

The differences between chemotherapy and

immunotherapy in different immune molecular subtypes

were analyzed. Here, we employed the subclass mapping

method (Roh et al., 2017) for comparing the similarity

between the risk groups in our defined data sets and the

immunotherapy patients in IMvigor210 data sets. A reduced

p-value indicated increased similarity. The results showed that

in TCGA (Figure 9A), HCCDB18 (Figure 9C), and GSE14520

(Figure 9E) data sets, the RS-low group was more sensitive to

programmed cell death-Ligand 1 (PD-L1) treatment, while the

RS-high group might not be sensitive to the treatment of PD-

L1. This was consistent with the result of TIDE.

In addition, the analysis of the responsiveness of the TCGA

(Figure 9B), HCCDB18 (Figure 9D), and GSE14520 (Figure 9F)

cohorts to the traditional chemotherapy drugs cisplatin,

rapamycin, pyrimethamine, salubrinal, vinorelbine, and

midostaurin showed that the RS-high group was more

sensitive to the mentioned drugs.

FIGURE 9
Immunotherapy mapping and drug sensitivity analysis. (A) Immunotherapy mapping of different risk groups of TCGA; (B) Estimated IC50 box
diagram of cisplatin, rapamycin, pyrimethamine, salubrinal, vinorelbine, and midostaurin in TCGA; (C) Immunotherapy mapping of different risk
groups of HCCDB18; (D) Estimated IC50 box diagram of cisplatin, rapamycin, pyrimethamine, salubrinal, vinorelbine and midostaurin in HCCDB18;
(E) Immunotherapy mapping of different risk groups of GSE14520; (F) Estimated IC50 box diagram of cisplatin, rapamycin, pyrimethamine,
salubrinal, vinorelbine and midostaurin in GSE14520. (ns, p > 0.05; * * *, p < 0.001; * *, p < 0.01; *, p < 0.05).
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FIGURE 10
Improvement of a prognostic model and survival prediction. (A) The survival decision tree was constructed by using all annotations of patients,
including RS, stage, gender, and age, to optimize risk stratification; (B)Overall survival analysis of three risk subgroups; (C–D): Comparative analysis
between different groups; E–F: univariate and multivariate Cox analysis of RS and clinicopathological characteristics; (G) Nomograph model; (H)
Calibration curve of nomograph in 1, 3 and 5 years; (I) ROC curves of different clinicopathological characteristics at different times; (J)Decision
curve of nomograph.

Frontiers in Genetics frontiersin.org13

Ma et al. 10.3389/fgene.2022.1065644

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1065644


Improvement of a prognostic model and
survival prediction by RS combined with
clinicopathological characteristics

According to the sex, T Stage, Stage, grade, age, stage, and RS

of HCC patients in the TCGA cohort, a decision tree was

generated. The outcomes revealed that only RS and Stage

were left in the decision tree, and four different risk

subgroups were identified (Figure 10A). Stage and RS were

the most powerful parameters. Major variations were

observed in the overall survival among the four risk

subgroups, of which C1 had the highest survival rate and

C4 had the lowest (Figure 10B). Risk subgroups C2 and

C4 were RS-high patients, while patients in groups C1 and

C3 were RS-low patients (Figure 10C). Moreover, the survival

status of patients in different risk subgroups was different

(Figure 10D). Univariate and multivariate Cox regression

analysis of clinicopathological properties and RS confirmed

the later one as the most significant prognostic factor (Figures

10E, F). In univariate Cox regression analysis, the hazard ratio

(HR) value of RS was 2.3, the 95% confidence interval (CI) was

1.6–3.2, and the p-value was 7.8e-06 (Figure 10E), while in

multivariate regression analysis, the HR value of RS was 2.3,

95%CI was 1.6–3.3, and p-value was 2.2e-05 (Figure 10F). A

nomogram (Figure 10G) was established in combination with RS

and other clinicopathological characteristics to quantify the risk

assessment and survival probability of patients with HCC. From

the model results, RS impacted the survival prediction the most.

The calibration curve was applied for evaluating the model’s

prediction accuracy (Figure 10H). The nomogram had strong

prediction performance because the anticipated calibration curve

for the three calibration points in 1, 3, and 5 years was near to the

standard curve. In addition, to investigate the model’s reliability,

decision curve analysis (DCA) was utilized. And we found that

the accuracy of using RS and nomogram was considerably higher

in comparison with those of the extreme curve. The nomogram

and RS showed the strongest ability to predict survival (Figures

10I, J) in compared with other clinicopathological

characteristics.

Construction of a diagnostic model of
HBV gene in HCC

TCGA was used as the training data set, and for the

validation dataset we used HCCDB18. In the training data set,

FIGURE 11
Construction of a diagnostic model of HBV gene in HCC. (A) The classification outcomes and ROC curves of samples in TCGA by diagnostic
model; (B) The classification outcomes and ROC curves of samples in HCCDB18 samples by diagnostic model.
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five genes of the prognostic model were characterized to obtain

their corresponding expression profiles. A support vector

machine (SVM) was constructed to distinguish HBV patients

from non-HBV patients. The classification accuracy was 100%,

and 181 samples were classified appropriately. The model’s

sensitivity and specificity were 100%, and the value of AUC

was 1 (Figure 11A). The HCCDB18 data set was used to verify

that 78 of 82 samples could be classified accurately. The model’s

sensitivity was 100%, its specificity was 86.2%, and its AUC was

0.993. The classification accuracy was 95.12% (Figure 11B).

These findings demonstrated that the diagnostic and

prognostic models developed in this study were capable of

accurately differentiating HBV patients from non-HBV

patients with HCC, and that the five genes identified here can

serve as reliable biomarkers for the diagnosis of HCC.

Discussion

Although the clinical therapy of HCC and our

understanding of its pathophysiology have been

significantly advanced, the incidence rate and mortality of

this malignant tumor remain noticeably high. In China and

other parts of Asia, chronic hepatitis B is the major cause of

HCC (Yang et al., 2012). Thus, it is important to construct the

prognostic and diagnostic models of HBV gene-related HCC.

Public databases such as TCGA and GEO store massive data

sets of high-throughput sequencing technologies, for instance,

chips and RNA-seq, which enable us to carry out integrated

data mining and overcome the limitations of small sample size

in a single cohort and heterogeneity among samples. In this

report, firstly, 1344 DEGs in total were identified between

HBV and non-HBV patients in tumor patients, including

1168 high-expressed genes and 176 down-regulated genes.

These 1344 DEGs were considerably enriched in cell division

activities, according to GO analysis (such as nuclear division,

regulation of mitotic cell cycle transition, regulation of nuclear

division, and cell cycle transition). KEGG pathway analysis

showed that mismatch repair, DNA replication, homologous

recombination, cell cycle, microRNA, and other pathways

were significant in tumors. These enrichment analysis

results confirmed the mentioned outcomes were consistent

with prior research, in which that HBV-related genes in HCC

were found to be related to cell division, DNA replication, and

other functions (Zeng et al., 2019; Wu et al., 2021).

After that, five HBV-related genes, ABCB6, IPO7, TIMM9,

FZD7, and ACAT1, which affect the prognosis, were identified by

multiple strategy combinations. It has been reported that

ABCB6 is one of the biomarker genes capable of effectively

predicting the clinical diagnosis, prognosis, and immune

microenvironment of HCC with ferroptosis and iron

metabolism characteristics (Tang et al., 2020). Furthermore, it

has been found that the biomarkers ABCB6 DNA methylation

and mRNA levels can be utilized for predicting the early

intrahepatic recurrence of HCC caused by the hepatitis C

virus (Tsunedomi et al., 2013). Meanwhile, it has been

reported that IPO7 can combine with MTBP to participate in

the regulatory mechanism of HCC metastasis (Ranjan et al.,

2018). In addition, research has shown that FZD7 is up-regulated

in gastric cancer, esophageal cancer, and HCC (Katoh and Katoh,

2005), and is the target gene of tumor-suppressive miRNA miR-

504. FZD7 can stimulate the proliferation and invasion of HCC

cells through Wnt/β-catenin signal transduction (Quan et al.,

2018). Other reports have highlighted that the down-regulation

of ACAT1 is substantially linked with a poor prognosis of HCC

patients who have elevated HbA1c (Bi et al., 2021). And some

literature has shown that ACAT1-mediated acetylation of

GNPAT to stabilize FASN plays a key role in

hepatocarcinogenesis (Gu et al., 2020). Four of these five

genes were reported previously as oncogenes, therapeutic

targets, or useful biomarkers in HCC, which fully confirmed

the reliability of our analysis results.

In addition, it has been reported that FZD7 can promote

the tumor development of HCC cells in vivo viaWnt/β-catenin
signal transduction in HBV-induced HCC (Kim et al., 2008).

The other four prognostic genes have not been shown to be

associated with HBV in reports. Therefore, this study was the

first proposed the relationship between ABCB6, IPO7, TIMM9,

and ACAT1 and HBV, and they may be related to tumor

progression in HBV-induced HCC as FZD7. In addition, this

study has established a clinical prognostic model and

categorized RS-high and -low groups. We continued to

focus on whether the efficacy of immunotherapy was

different among groups. Previous research has demonstrated

that HCC can cause an immunosuppressive tumor immune

milieu and accelerate the growth and spread of tumors in

various ways (Shuai et al., 2016). Immunotherapies, like

immune checkpoint inhibitors, have been reported to have

efficacious antitumor activity. Although only a few patients

respond to immunotherapy (Ruiz de Galarreta et al., 2019;

Wang and Wang, 2019), our analysis showed that some

immune checkpoint genes were differentially expressed.

Because PD-L1 can mediate immune escape of hepatoma

tumor cells (Gao et al., 2018; Yan et al., 2020), follow-up

analysis was also conducted. The analysis of

immunotherapy and chemotherapy showed that the RS-low

group was more sensitive to PD-L1 treatment, while the RS-

high group may not show sensitivity to PD-L1 treatment.

Therefore, patients having low RSs may be more responsive

to immunotherapy.

HBV infection will have complex biological impacts on the

tumor microenvironment, which could partially reduce the

effectiveness of immunotherapy (Li et al., 2020). HCC is

known to be a highly heterogeneous disease that has

different immune microenvironments between tumors and

surrounding tissues (Chen et al., 2016). Chronic inflammation
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is usually known to be the continuous expression of different

cytokines and the adding of immune cells to the diseased areas

(Makarova-Rusher et al., 2015). Immunosuppression is

stimulated by HBV infection and then peripheral immune

tolerance develops with the progress of chronic infection.

Finally, it mediates tumorigenesis as a result of

compromised immune surveillance (Vandeven and Nghiem,

2014). Immunosuppressive checkpoints, such as programmed

death 1 (PD-1)/PD-L1, T cell immunoglobulin domain and

mucin domain-3 (TIM-3), CTLA-4, play a significant role in

immunosuppression in chronic viral hepatitis by suppressing

T cell responses (Makarova-Rusher et al., 2015). HBV

promotes some signaling pathways composed of PD-1/PD-

L1. This explains to some extent that patients with low RSs

may be more responsive to immunotherapy through the PD-

L1 signaling pathway. Although this paper has performed

sufficient analysis, our research still has several limitations.

First, a larger cohort is needed for further validation of these

outcomes. Secondly, a detailed study is required to further

analyze the specific role of the chosen five HBV-related genes

in affecting the prognosis in HCC through in vitro and in vivo

tests. Thirdly, the particular interaction and regulation

mechanism of related genes in the prognostic and

diagnostic model should be studied in detail. To overcome

the limitations of this study, we will re-collect and expand

clinical samples in the follow-up work, and try to verify the

accuracy of the models with more external experiments. For

the verification of the effectiveness of the models in the timely

diagnosis and treatment of HCC, large-scale independent

research is required in the future.

The independent assessment of TCGA, HCCDB18, and

GSE14520 data sets confirmed the reliability and effectiveness

of our immunophenotypic analysis model. Through a series of

analyses, we developed a prognostic and diagnostic model of

HCC, contributing to the understanding of the prognostic

characteristics of HBV-related HCC patients and providing

novel insight and foundation for detailed investigation of

individual differences in immunotherapy.

Conclusion

The RS clinical prognostic model was constructed using to

HBV-related genes. The model showed a strong robustness and

was independent of clinical-pathological characteristics. In

conclusion, this prognostic model had a high prediction

accuracy and survival prediction ability. Finally, a diagnostic

model was constructed based on the prognostic model.
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