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Introduction: In genetic epidemiology, log-linear models of population risk

may be used to study the effect of genotypes and exposures on the relative risk

of a disease. Such models may also include gene-environment interaction

terms that allow the genotypes to modify the effect of the exposure, or

equivalently, the exposure to modify the effect of genotypes on the relative

risk. When a measured test locus is in linkage disequilibrium with an

unmeasured causal locus, exposure-related genetic structure in the

population can lead to spurious gene-environment interaction; that is, to

apparent gene-environment interaction at the test locus in the absence of

true gene-environment interaction at the causal locus. Exposure-related

genetic structure occurs when the distributions of exposures and of

haplotypes at the test and causal locus both differ across population strata.

A case-parent trio design can protect inference of genetic main effects from

confounding bias due to genetic structure in the population. Unfortunately,

when the genetic structure is exposure-related, the protection against

confounding bias for the genetic main effect does not extend to the gene-

environment interaction term.

Methods:We show that current methods to reduce the bias in estimated gene-

environment interactions from case-parent trio data can only account for

simple population structure involving two strata. To fill this gap, we propose

to directly accommodate multiple population strata by adjusting for genetic

principal components (PCs).

Results and Discussion: Through simulations, we show that our PC adjustment

maintains the nominal type-1 error rate and has nearly identical power to detect

gene-environment interaction as an oracle approach based directly on

population strata. We also apply the PC-adjustment approach to data from a

study of genetic modifiers of cleft palate comprised primarily of case-parent

trios of European and East Asian ancestry. Consistent with earlier analyses, our

results suggest that the gene-environment interaction signal in these data is due

to the self-reported European trios.
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1 Introduction

We start by considering a log-linear model of population

disease risk that includes main effects for genotypes G,

environmental exposures E, and a gene-environment

interaction term G × E. The G × E term allows genotypes to

modify the effect of the exposure or, equivalently, the exposure to

modify the effect of genotypes on the relative risk of developing

the disease. Including a G × E term can improve model accuracy

and provide a more detailed picture of disease etiology compared

to models with just G and Emain effects (Hunter, 2005). G × E is

also useful for identifying environmental exposures with greater

disease-association in individuals who carry particular alleles at

susceptibility loci (Thomas, 2010). For example, dietary fat intake

is more highly associated with obesity in carriers than in non-

carriers of the Pro12Ala allele in the PPAR-γ gene (Garaulet et al.,

2011).

We suppose throughout thatG is an unmeasured causal locus

in linkage disequilibrium with a measured non-causal test locus

G′, and that the distribution of GG’ haplotypes differs across

population strata (i.e. genetic structure). Stratum-specific

differences in the GG′ haplotype frequencies can lead to

differences in G′ risk across the population strata where none

exist for G (Zaykin and Shibata, 2008). Exposure-related genetic

structure occurs when the distribution of E also differs across the

population strata (Weinberg et al., 2011). Without some

adjustment for the population strata, E will tag the stratum-

specific differences in G′ risk (Figure 1), suggesting that E

modifies G′ risk, even in the absence of G × E (Shi et al.,

2011; Weinberg et al., 2011); we refer to this as spurious G′ × E.

A case-parent trio design can protect inference of genetic

main effects from confounding bias due to genetic structure in

the population (Weinberg, 1999). In this design, investigators

collect information on G′ and E in children affected with a

disease of interest as well as the genotypes, Gp′ , of their parents.
To increase sample size, investigators may pool trios from

multiple ancestral groups into one study; e.g., the GENEVA

Oral Cleft Study (GENEVA, 2010) combined case-parent trios

from recruitment sites in the United States, Europe and East Asia.

Assuming G′ and E are independent within families, a log-linear

model of disease risk leads to a conditional likelihood for the G′
and G′ × E effects, based on the child’s genotype given their

exposure, affection status and parental genotypes (Shin et al.,

2012). Unfortunately, when the genetic structure is exposure

related, the protection against confounding bias for the genetic

main effect does not extend to the gene-environment interaction

term (Shi et al., 2011; Weinberg et al., 2011). Thus, spurious G′ ×
E may be inferred from heterogeneous case-parent trio data in

the absence of true G × E.

Methods to mitigate this bias may be classified as design- or

data-based. For a binary environmental exposure, the design-

based tetrad approach of (Shi et al., 2011) augments the case-

parent trio by adding the exposure of an unaffected sibling. These

authors control the bias by including the sibship-averaged

exposure in the log-linear model. They show that all

information about the interaction in the tetrad design comes

from the siblings, not the parents (Weinberg et al., 2011).

Accordingly, they propose a sibling-augmented case-only

design and analysis. By contrast, (Shin et al., 2012) takes a

data-based approach, replacing the sibship-averaged exposure

of (Shi et al., 2011) with the predicted exposure given ancestry.

Predictions are obtained from a regression of exposure on

principal components (PCs) computed from genetic markers

that are unlinked to the test locus. This data-based approach may

be applied to arbitrary exposures, including continuous

exposures, and does not require siblings. However, its

properties have not been evaluated in the case of more than

two population strata.

We use the GENEVA Oral Cleft Study to motivate a new

approach to unbiased inference ofG′ × E in case-parent trios. The

analysis of (Beaty et al., 2011) found multiple single nucleotide

polymorphisms (SNPs) that appeared to modify the effect of

maternal smoking, maternal alcohol consumption or maternal

multivitamin supplementation on the risk of cleft palate (CP).

The self-reported ancestry of the study sample is primarily

European or East Asian, and all three exposures are more

common in self-reported Europeans than in self-reported East

FIGURE 1
Schematic of log-GRRs for a non-causal test locus versus
exposure in a structured populationwith two strata, S = 0 and S = 1.
Dashed lines represent log-GRRs within each stratum. Horizontal
positioning of these dashed lines indicates the support of the
respective E distributions. High values of E are associated with S =
1, in which one of the alleles at the test locus is associated with
increased disease risk. Low values of E are associated with S = 0 in
which this same allele at the test locus is associated with low
disease risk. Ignoring S yields the linear log-GRR curve indicated by
the solid line, which erroneously suggests that E modifies the
disease risk at the test locus.
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Asians (Beaty et al., 2011, Table 2). If the frequencies of

haplotypes spanning causal SNPs also vary by ancestral

groups, exposure-related genetic structure may lead to

spurious gene-environment interaction. (Ratnasekera and

McNeney, 2021). focused on the self-reported Europeans and

East Asians in the GENEVA Oral Cleft Study data. Applying the

approach of (Shin et al., 2012), they confirmed the gene-

environment interaction found by (Beaty et al., 2011), and

concluded that the evidence for gene-environment interaction

is predominantly from the data of self-reported Europeans. These

authors also considered whether exposure-related genetic

structure within self-reported Europeans could explain the

apparent G′ × E. Their results were inconclusive, however,

possibly owing to the methodology’s limitation to just two

ancestry groups. In modern datasets, the possibility of both

inter- and intra-continental genetic structure necessitates

methods that can more flexibly accommodate multiple

ancestries. In this work we propose such an approach which

relies on direct use of the genetic PCs to adjust for population

structure.

The manuscript is structured as follows. In Section 2 we

develop our direct PC-adjustment method and compare it to the

indirect PC-based approach of (Shin et al., 2012). In Section 3 we

present simulations to evaluate the statistical properties of both

approaches. In Section 4 we re-analyze the GENEVA data.

Section 5 includes a discussion and areas for future work.

2 Models and methods

2.1 Overview

We start with a log-linear model of disease risk parametrized in

terms of genotype relative risks (GRRs) at a causal locus G. Under

this model, G × E is equivalent to GRRs that depend on the exposure

E. We then derive the GRRs at a non-causal test locus G′ in linkage

disequilibrium with G and show that, in the absence of G × E, the

G′-GRRs can depend on E when there is dependence between E and
GG′ haplotypes in the population. Such dependence can lead to

spurious inference of G′ × E in the absence of G × E. However, valid

inference is obtained if we adjust the risk model for any variable X

for which E and GG′ haplotypes are conditionally independent

given X (Shin et al., 2012). We review the rationale for the

adjustment used by (Shin et al., 2012) in this context, and

propose an alternative adjustment based on inferred population

structure. In particular, we use the method of (Gavish and Donoho,

2014) to select a parsimonious set of PCs with which to adjust the

risk model. A key question is whether the PC-selection method

yields a set of PCs that provide enough adjustment to maintain type

1 error in the absence of G×E, but not somuch that we compromise

power in the presence of G × E. The Models and Methods section

concludes with a discussion of the simulation methods used to

answer this question.

2.2 Risk model and likelihood

Let G = 0, 1 or 2 denote the number of copies of the variant

allele at the causal locus and E denote the exposure variable. The

disease-risk model of (Shin et al., 2012) can be obtained from a

log-linear model of the GRRs

logGRRg e( ) � log
P D � 1|G � g, E � e( )

P D � 1|G � g − 1, E � e( )
� βg + fg e( ) for g � 1, 2, (1)

and the log-disease risk for carriers of the baseline genotypeG = 0

logP D � 1|G � 0, E � e( ) ≡ η e( ).

The parameters βg and fg(·) are, respectively, genotype-specific
main effects and functions that allow for G × E interaction. We can

also write disease risk in terms of the baseline risk η(e) and the GRRs

as follows. First define GRR0(e) ≡ 1. Next, note that

P D � 1|G � 1, E � e( )
P D � 1|G � 0, E � e( ) � GRR1 e( ) � GRR1 e( )GRR0 e( )

and

P D � 1|G � 2, E � e( )
P D � 1|G � 0, E � e( ) �

P D � 1|G � 2, E � e( )
P D � 1|G � 1, E � e( )

P D � 1|G � 1, E � e( )
P D � 1|G � 0, E � e( )

� GRR2 e( )GRR1 e( )GRR0 e( ).

it follows that

P D � 1|G � g, E � e( ) � η e( )∏
g

i�0
GRRi e( ) for g � 0, 1or2.

(2)
A likelihood for estimation of the GRR parameters βg and

fg(·), g = 1, 2, from case-parent trio data can be derived under

the assumption that G and E are conditionally independent

given parental genotypes Gp. As shown in Supplementary

Appendix S1, the likelihood is based on the conditional

probability of the child’s genotype given their exposure and

parental genotypes. The function η(·) that parametrizes the

environmental main effect drops out of the likelihood and

cannot be estimated from case-parent trio data.

TABLE 1 GG9 haplotype frequencies in four population strata.

Stratum

GG′ S = 0 S = 1 S = 2 S = 3

R1 0.0 0.5 0.375 0.125

R0 0.5 0.0 0.125 0.375

N1 0.5 0.0 0.125 0.375

N0 0.0 0.5 0.375 0.125
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2.3 GRRs at a non-causal test locus

Let G′ denote genotypes at a non-causal test locus in linkage

disequilibrium with the causal locus G. We assume D and G′ are
conditionally independent given G and E, so that

P D � 1|G � g, G′ � g′, E � e( ) � P D � 1|G � g, E � e( ).

Therefore, the risk of disease given G′ and E can be written as

P D � 1|G′ � g′, E � e( )

� ∑
2

g�0
P D � 1|G � g, E � e( )P G � g|G′ � g′, E � e( ). (3)

Eq. 3 is a latent-class model (Xu, 2017) with the unobserved

causal locusG as the latent class having probabilities P(G = g|G′ =
g′, E = e). Eqs 2, 3 enable the log-GRRs atG′ to be written in terms

of the latent-class probabilities and the GRRs at G as follows:

logGRRg′ e( ) ≡ log
P D � 1|G′ � g′, E � e( )

P D � 1|G′ � g′ − 1, E � e( )

� log
∑2

g�0P D � 1|G � g, E � e( )P G � g|G′ � g′, E � e( )

∑2

g�0P D � 1|G � g, E � e( )P G � g|G′ � g′ − 1, E � e( )

� log
∑2

g�0 ∏g

i�0GRRi e( )( )P G � g|G′ � g′, E � e( )

∑2

g�0 ∏g

i�0GRRi e( )( )P G � g|G′ � g′ − 1, E � e( )
.

(4)
Without G × E, GRRs at G do not depend on E. Importantly,

though, the log-GRRs at G′ can depend on E through the latent-

class probabilities P(G = g|G′ = g′, E = e). In fact, as shown in

Supplementary Appendix S2, these latent-class probabilities will

depend on E whenever GG′ haplotypes and E are associated, as

happens when the population has exposure-related genetic

structure. Since G′ × E is equivalent to GRRg′ varying with E,

Eq. 4 gives insight into how exposure-related genetic structure

creates spurious G′ × E.

2.4 Augmented risk model

The development so far has considered a disease-risk model

that depends only on E and a causal locusG. We now consider an

augmented disease-risk model that depends on E, G and a third

variable X:

logGRRg e, x( ) ≡ log
P D � 1|G � g, E � e, X � x( )

P D � 1|G � g − 1, E � e, X � x( )
� βg + fg e, x( ) for g � 1, 2,

where βg and fg(·, x) are, respectively, genotype-specific main

effects and functions that allow for G × E × X interaction.

Defining

GRR0 e, x( ) ≡ 1,

an analogous development to Section 2.3 leads to the following

X-adjusted log-GRRs at G′:

logGRRg′ e,x( )≡ log P D� 1|G′�g′,E� e,X� x( )
P D� 1|G′�g′−1,E� e,X� x( )

� log
∑2

g�0 ∏g

i�0GRRi e,x( )( )P G�g|G′�g′,E� e,X�x( )

∑2

g�0 ∏g

i�0GRRi e,x( )( )P G�g|G′�g′−1,E� e,X�x( )
.

(5)
In the next section we discuss choices for X that eliminate E

from the latent-class probabilities for G, and hence eliminate

spurious G′ × E arising from exposure-related genetic structure.

2.5 Removing dependence of the latent-
class probabilities on E

The diagram in Figure 2 depicts the dependence between GG′
haplotypes and E from exposure-related genetic structure in the

population. In the figure, S is a categorical variable that indicates

population strata. The categorical variable XE is a “coarsening” of S

such that different levels of XE correspond to different E

distributions, and, similarly, XGG′ is a coarsening of S such that

different levels of XGG′ correspond to different GG′ haplotype

distributions.

The path connecting E and GG′ in Figure 2 is said to be

blocked by each of the variables XE, S and XGG′ [ (Pearl, 2009),

Definition 1]. Therefore, E and GG′ are conditionally

independent given any of the blocking variables XE, S or XGG′
(Pearl, 1998). As shown in Supplementary Appendix S2, a

consequence is that conditioning on any of these variables

removes the dependence of the latent-class probabilities on E.

FIGURE 2
Diagram depicting exposure-related genetic structure. The
latent population strata S induce dependence beetween E and
GG′. Latent factors XE and XGG′ encode different distributions of E
and GG′, respectively. E and GG′ are conditionally
independent given any of the three variables that lie on the path
between them.
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That is, letting X denote any of XE, S or XGG′, P(G = g|G′ = g′, E =

e, X = x) = P(G = g|G′ = g′, X = x). Consequently, from Eq. 5,

logGRRg′ e, x( ) ≡ log
P D � 1|G′ � g′, E � e, X � x( )

P D � 1|G′ � g′ − 1, E � e, X � x( )

� log
∑2

g�0 ∏g

i�0GRRi e, x( )( )P G � g|G′ � g′, X � x( )

∑2

g�0 ∏g

i�0GRRi e, x( )( )P G � g|G′ � g′ − 1, X � x( )
.

(6)
GRRs at G′ will thus depend on E if and only if GRRs at G do.

2.6 Linear model for the log GRRs

From Eq. 6 we see that, for fixed g′ and x, log GRRg′(e, x)

varies with e if and only if theGRRg(e, x) do.We can therefore test

for G × E by fitting a model for log GRRg′(e, x) that allows

separate curves in e for each combination of g′ and x (Shin et al.,

2014). We take these curves to be straight lines, and test whether

any of them have non-zero slope. For a fixed value x of the

adjustment variable X and a fixed value e of the environmental

exposure E, the log-GRR is:

logGRRg′ e, x( ) � βg′ + βg′Xx + βg′E × e + βg′EXx × e;

g′ � 1, 2. (7)

The generalization of the above model to a vector X is to

replace βg′Xx with βTg′Xx and βg′EX with βTg′EXx for coefficient

vectors βg′X and βg′EX. The intercepts of the log-GRR curves,

βg′+βg′Xx, are the genetic main effects in stratum x (i.e. when e = 0).

The slopes, βg′E+βg′EXx, are theG′ × E interaction terms in stratum

x. We use a likelihood-ratio test of the null hypothesis that βg′E =

βg′EX = 0 for g′ = 1, 2, versus the alternative hypothesis that at least

one of these slope parameters is non-zero to detect G × E. We

emphasize that the simplified log-GRR curves in e characterizeG ×

E rather than environmental main effects, which are not estimable

from case-parent trio data. Genetic main effects are estimable

however and flexibly parametrized by the intercept terms of the

log-GRR curves. The flexibility in the intercept terms avoids mis-

specification of the genetic main effects which can lead to biased

inference of interaction effects (Yu et al., 2015).

2.7 Choice of X

Following (Shi et al., 2011), (Shin et al., 2012) set X to be the

categorical variable XE that distinguishes E distributions among

the genetic strata of the population. Since XE is unobserved, (Shin

et al., 2012), consider the expectation of E given genetic markers

(EEGM) as a surrogate X̂E. The idea behind their EEGM

approach is to distinguish exposure distributions by their

mean, which may vary across genetic strata, S. Though S is

not known, it is reflected in principal components (PCs), Ŝ,

computed from a set of genetic markers that are unlinked to G′.
The expectation of E given Ŝ can be estimated by linear regression

of E on Ŝwhen E is continuous, or by logistic regression when E is

binary. For EEGM adjustment, the expected exposure within

genetic strata is estimated by X̂E � ̂E(E|Ŝ). (Shin et al., 2012).

showed that EEGM adjustment works well where there are two

population strata, but our simulation results (Section 3) indicate

that it works poorly for more than two strata. We therefore

propose to adjust for population strata directly; i.e., to take X = S.

In particular, if the population has K+1 genetic strata, indexed 0,

. . . , K, we let S denote a vector of K dummy variables that

distinguish these strata such that the kth element Sk = 1 for trios

in stratum k > 0 and 0 otherwise, for k = 1, . . . , K.

2.8 Inferred population strata

The population stratum variable S reflects genetic ancestry

and is not generally known. Since adjustment for self-reported

ancestry can lead to bias (Wang et al., 2010) we use marker-based

PCs, Ŝ. An advantage of PC-adjustment is that it does not enforce

discrete strata, and individuals whose PC values lie between those

of clusters on the PC plot (e.g. admixed individuals) will have

intermediate values of the slope and intercept of their log-GRR

curve.

Standard PC adjustment in genetic association analyses relies

on a relatively large set of PCs. For K PCs the degrees of freedom

of the test for G′ × E is equal to 2(K+1). Thus, using more PCs

than are necessary reduces the power of the test for G′ × E. We

seek methods to select a parsimonious set of PCs that provides

enough adjustment to control type 1 error rate, without

sacrificing power. We consider three PC-selection methods.

The first (Zhu and Ghodsi, 2006) is an automated version of

the graphical approach of looking for an “elbow” in the scree plot

of variance explained by the PCs as a function of their number.

The second (Gavish and Donoho, 2014) is an estimator of the

rank of a matrix under a model in which the data matrix is a noisy

version of a low-rank matrix. The third (Patterson et al., 2006) is

to select PCs corresponding to eigenvalues that exceed a

significance threshold determined from the distribution of the

largest eigenvalue of an unstructured random matrix.

2.9 Simulation methods

2.9.1 Simulating G, G′ and E on case-parent trios
To study the statistical properties of our proposed approach

and compare it to the method of (Shin et al., 2012), we generated

5,000 data sets of 3,000 informative case-parent trios. Trios were

sampled from one of four population strata labelled S = 0, 1, 2 or

3. We assumed random mating within and no mixing between

strata. We performed some simulations using equal-sized strata

and others using unequal-sized strata. In the case of unequal
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stratum sizes, the split was 60%, 40% for two strata; 50%, 30%

and 20% for three strata; and 40%, 30%, 20% and 10% for four

strata.

For a given stratum, informative trios were simulated

following the methods proposed by (Shin et al., 2013; Shin

et al., 2014). Briefly, GG′ haplotypes are first simulated on

parents in a random-mating population according to the

stratum-specific GG′ haplotype distributions in Table 1. Child

haplotypes are then simulated following Mendel’s laws and

assuming no recombination between G and G′. The child’s

exposure E is also simulated according to the stratum-specific

distributions described below. Finally, the child’s disease status is

simulated based on the disease-risk model (1). Trios with an

affected child and at least one heterozygous parent at the test

locus are retained. The data recorded on each trio are Gp′ , G′, and
E, where Gp′ is the pair of parental genotypes at the test locus.

Spurious G′ × E is induced by specifying different

distributions of E and GG′ haplotypes in the four strata of

Table 1. The GG′ distributions for strata S = 0 and S = 1 are

as in (Shin et al., 2012). Alleles at G are denoted R (risk) and N

(non-risk), while alleles atG′ are denoted 1 and 0.We summarize

the haplotype distributions by the implied allelic correlations

between the index alleles R and 1. Under the GG′ haplotype
frequencies given in Table 1, these correlations are r0 = −1 in

stratum S = 0, r1 = 1 in stratum S = 1, r2 = 0.5 in stratum S = 2 and

r3 = −0.5 in stratum S = 3.

The stratum-specific distributions of E are chosen to be

normal with common variance σ2 = 0.36, and means

μ0 = −0.8, μ1 = 0.8, μ2 = 2.4 and μ3 = 4.0 in strata 0, 1, 2 and

3, respectively. The E distributions for strata S = 0 and S = 1 are as

in (Shin et al., 2012).

The disease-risk model is specified as follows. The genetic

main effect is βg = log(3)/2 for g = 1, 2, corresponding to a	
3

√
-fold increase in relative risk for each copy of the risk allele (R)

in the absence of G × E. To evaluate the type 1 error rate of the

G × E test we set fg(e) = 0 in our simulations. To investigate power

we choose a linear interaction model for the G × E term, setting

fg(e) = βgEe with βgE = −0.10, −0.15, −0.20 or −0.25.

2.9.2 Simulating markers for PC adjustment
A standard method of PC adjustment is to calculate PCs from a

genomic region that is unlinked to the test locus. It is recommended

that markers in this region be thinned, or LD pruned, to have

pairwise correlations of r2 ≤ 0.1 (Grinde, 2019). We simulated such

panels of markers based on data from the 1,000 genomes project

(Clarke et al., 2016) using two East Asian (Chinese Dai in

Xishuangbanna, China [CDX] and Han Chinese in Bejing China

[CHB]) and two European (Iberian population in Spain [IBS] and

Finnish in Finland [FIN]) populations. From the initial download of

the genome-wide data, we retained 6,929,035 diallelic, autosomal

markers with minor allele frequency (MAF) 0.05 or greater in all

four of the population groups.

Our initial approach to simulating markers for a given

population stratum was to fit a hidden Markov model (HMM)

to the haplotypes in that stratum, chromosome by chromosome,

using fastPHASE (Scheet and Stephens, 2006), and use this fitted

model to simulate individual multilocus genotypes using SNPknock

(Sesia et al., 2019). The simulated data are then LD pruned and

principal components are computed from the thinned panel of

markers. However, the computation involved in this approach

proved to be prohibitive. For example, fitting the HMMs took up

to 5 h per chromosome. We therefore considered two

computationally cheaper alternatives. In the first alternative, we

started from an LD-pruned set of markers in the original data and fit

HMMs to this set. In the second alternative, we used the same panel

of prunedmarkers, but simulated genotypes independently based on

the MAFs in the population strata. In what follows we refer to the

first and second alternatives as LD-based and independent marker

simulation, respectively.

Independent markers could contain more information about

the population strata than markers in LD. As a result, PC

adjustment with independent markers might control type

1 error more effectively than adjustment with markers in LD.

To assess this possibility, we completed 100 preliminary

simulation replicates using LD-based marker simulation and

5,000 replicates using independent marker simulation. We

simulated trios from four population strata under the null

TABLE 2 Estimated type 1 error rates (top entry) and corresponding 95%
confidence intervals (bottom entry) when data are simulated from 2, 3 or
4 strata with equal (top three rows) or unequal (bottom three rows)
stratum sizes.

Equal stratum sizes

Number of strata

Adjustment 2 3 4

S 0.0556 0.0524 0.0498

(0.049, 0.062) (0.046, 0.0586) (0.044, 0.056)

EEGM 0.0538 1.0000 1.0000

(0.048, 0.060) NA NA

PC 0.0546 0.0534 0.0496

(0.048, 0.061) (0.047, 0.060) (0.044, 0.056)

Unequal stratum sizes

2 3 4

S 0.0524 0.0482 0.0536

(0.046, 0.058) (0.042 0.054) (0.047,0.059)

EEGM 0.0536 1.0000 1.0000

(0.047, 0.060) NA NA

PC 0.0540 0.0508 0.0527

(0.048, 0.060) (0.045, 0.057) (0.046, 0.059)
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hypothesis of no G × E, used the PC selection method of (Gavish

and Donoho, 2014) to adjust the risk model and estimated the

resulting type 1 error rates. Estimated type 1 error rates and their

95% confidence intervals under the LD-based and independent

simulation methods were 0.04 (0.002, 0.078) and 0.0496 (0.044,

0.056), respectively, and consistent with similar type 1 error rates

for the two approaches. We therefore used the faster simulation

of independent markers for the simulation study.

In Section 3.2, Section 3.3we present type I error and power results

for two, three or four population strata. For two strata (S= 0 and S= 1),

marker simulations were based on the CHB and IBS population

groups. For three strata (S = 0, S = 1 and S = 2), simulations were

based on the CHB, IBS and CDX population groups.

3 Results

3.1 Selection of principal components

All PC selection methods performed well when the sizes of

the population strata were equal (results not shown), but not

when the sizes were unequal. We illustrate with simulation

results involving datasets of 3,000 trios sampled from four

unequal-sized strata. For K+1 = 4 populations we require

K = 3 PCs. In 5,000 simulation replicates, the method of

(Gavish and Donoho, 2014) always selected three, the

method of (Zhu and Ghodsi, 2006) always selected one, and

the method of (Patterson et al., 2006) selected three PCs

4,942 times and four PCs 58 times. Other simulation results

with unequal-sized strata (not shown) yielded similar results.

Therefore, in what follows we use the method of (Gavish and

Donoho, 2014) to select PCs.

3.2 Type I error rate

We compared the type I error rates of the test for G′ × E

using (i) adjustment with the true stratum membership S, (ii)

the EEGM adjustment of (Shin et al., 2012), and (iii) PC

adjustment. Results for simulated datasets with equal or

unequal stratum sizes are shown in Table 2. For both equal

and unequal stratum sizes, adjustment by S or direct PCs

maintains the nominal 5% error rate regardless of the

number of strata. By contrast, EEGM adjustment leads to an

inflated type I error rate when there are more than two strata. In

light of the inflated size of the test, we do not consider EEGM

adjustment in the following section on power.

3.3 Power

Table 3 provides a comparison of estimated power when data

are simulated from two, three or four strata. Results are shown for

simulations using both equal and unequal stratum sizes and for

different values of the G × E effect. From these results we see that

power increases with effect size, decreases with number of strata

and tends to be slightly larger for unequal strata than equal strata.

Importantly, the estimated power under PC adjustment is always

within simulation error of that under adjustment for true stratum

membership.

4 The GENEVA Oral Cleft study

4.1 Data and objectives

The GENEVA Oral Cleft study (GENEVA, 2010) is

comprised of 550 case-parent trios from 13 different sites

across the United States, Europe, Southeast and East Asia.

Data were obtained through dbGAP at https://www.ncbi.nlm.

nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000094.v1.

p1 with accession number phs000094.v1.p1. Of the 550 trios,

only 462 were available for analysis. Summaries of the trios by

ancestry and gender of the affected child are shown in Table 4.

From this table we see the ancestry of the sample is

predominantly European (46%) and East Asian (51%).

The objective of the GENEVA study is to discover genetic

contributions to orofacial clefts, the most common type of

craniofacial birth defect in humans, and to assess whether

these genes modify the effect of exposures known to be

associated with cleft palate. Maternal exposure to

multivitamins, alcohol and smoking were assessed through

maternal interviews focused on the peri-conceptual period

(3 months prior to conception through the first trimester),

which includes the first 8–9 weeks of gestation when palatal

development is completed. Exposure status is summarized in

Table 5. From this table we see that the three dichotomous

exposures are all more common in Europeans. In contrast to the

continuous exposures of the simulation study, the exposures we

consider in the GENEVA study are all dichotomous.

4.2 GENEVA data analysis

4.2.1 PC selection
LD pruning of the genome-wide panel of SNPs at an r2

threshold of 0.1 yielded 63,694 markers. In a principal

component analysis of these markers, the first PC explains

6.3% of the total variance and all others explain less than 0.4%.

Not surprisingly, the method of (Gavish and Donoho, 2014)

selects one PC. A plot of the projections of the data onto the

first two PCs is shown in Figure 3, with points colored by self-

reported ancestry. Each PC has been shifted by subtracting the

minimum value and scaled by the range so that the values are

between zero and one. The first PC distinguishes those with

self-reported East Asian ancestry from those with self-
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reported European ancestry; hence, a value near zero

corresponds to a hypothetical East Asian and a value near

one corresponds to a hypothetical European. The second

PC separates the single self-reported African child from all

others.

4.2.2 Inference of G × E
The conditional-likelihood methods outlined in

Supplementary Appendix S1 were applied to the data. We

focused on inference of G × E between maternal alcohol

consumption and the six SNPs in the MLLT3 gene that had

TABLE 3 Estimated power (top entry) and corresponding 95% confidence intervals (bottom entry) of different adjustment schemes for different G × E
interaction effects βgE, number of strata and stratum-size distributions.

Equal stratum sizes

βgE

Num. Strata Adjustment −0.10 −0.15 −0.20 −0.25

2 S 0.2602 0.5660 0.8420 0.9558

(0.248, 0.272) (0.552, 0.580) (0.832, 0.852) (0.950, 0.961)

PC 0.2580 0.5660 0.8404 0.9564

(0.246, 0.270) (0.552, 0.580) (0.830, 0.850) (0.951, 0.962)

3 S 0.1742 0.3844 0.6498 0.8288

(0.164, 0.185) (0.371, 0.398) (0.636, 0.663) (0.818, 0.839)

PC 0.1788 0.3920 0.6616 0.8316

(0.168, 0.189) (0.378, 0.406) (0.648, 0.675) (0.821, 0.842)

4 S 0.1306 0.2766 0.5010 0.6970

(0.121, 0.140) (0.264, 0.289) (0.487, 0.515) (0.684, 0.710)

PC 0.1396 0.2936 0.5088 0.6918

(0.130, 0.149) (0.281, 0.306) (0.495, 0.523) (0.679, 0.704)

Unequal stratum sizes

βgE

−0.10 −0.15 −0.20 −0.25

2 S 0.2636 0.5724 0.8328 0.9518

(0.251, 0.276) (0.559, 0.586) (0.822, 0.843) (0.946, 0.958)

PC 0.2648 0.5722 0.8322 0.9514

(0.252, 0.277) (0.558, 0.586) (0.822, 0.842) (0.945, 0.957)

3 S 0.1950 0.4322 0.7082 0.8640

(0.184, 0.206) (0.418, 0.446) (0.696, 0.721) (0.854, 0.874)

PC 0.1936 0.4334 0.7054 0.8632

(0.183, 0.204) (0.420, 0.447) (0.693, 0.718) (0.854, 0.873)

4 S 0.1614 0.3470 0.6028 0.7894

(0.151, 0.172) (0.334, 0.360) (0.589, 0.616) (0.778, 0.801)

PC 0.1598 0.3380 0.5872 0.7820

(0.150, 0.170) (0.325, 0.351) (0.574, 0.601) (0.770, 0.794)
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significant G × E at the 5% level in the analysis of (Beaty et al.,

2011). Displays of the LD between these SNPs and others nearby

(Shin et al., 2006) are shown in Supplementary Figure S1,

Supplementary Appendix S3, for self-reported European

subjects and self-reported East Asian subjects. Table 6 shows

the results of fitting three different log-linear models of G′ × E.

Following (Beaty et al., 2011), each is based on an additive genetic

model that specifies equal log-GRRs for genotypes g′ = 1 or 2.

Results based on fitting a more general co-dominant model (1)

were similar (results not shown). The first model, as in (Beaty

et al., 2011), makes no adjustment for exposure-related genetic

structure in the population, the second uses EEGM adjustment

and the third uses PC adjustment. From the table we see that, for

each test SNP, p-values for the tests of G′ × E are smallest when

we make no adjustment. Comparing the EEGM and PC

adjustment approaches we find that p-values from PC

adjustment are similar to, but tend to be slightly smaller than,

those from the EEGM adjustment. Of the six test SNPs show in

the table, four retain significance at the 5% level after adjustment

for exposure-related genetic structure.

The estimates shown in Table 6 are of the multiplicative

factors by which maternal alcohol consumption modifies the

GRRs at the six test SNPs. For a binary exposure such as maternal

alcohol consumption, these modifying effects can be obtained by

exponentiating the interaction term in the log-GRR model. With

no adjustment for genetic structure there is a single interaction

term and hence a single estimated modifying effect for all trios.

For example, maternal alcohol consumption is estimated to

increase the GRR at SNP rs4621895 by a factor of about

2.1 for all trios. By contrast, with EEGM or PC adjustment

the interaction term depends on the value of the adjustment

variable and we have reported estimates for hypothetical East

Asian and European subjects in our sample. For example,

maternal alcohol consumption is estimated to decrease the

GRR at SNP rs4621895 by a factor of about 0.73 for East

Asian trios and to increase the same GRR by a factor of about

2.4 for European trios. For these data, the adjustment variables

used in the EEGM- and PC-adjustment approaches are highly

correlated (Pearson correlation 0.996), and so the estimates for

the two approaches are very similar. These estimates are also

similar to those obtained from an analysis using self-reported

ancestry (results not shown). The 95% confidence intervals for

hypothetical East Asians cover one for each SNP but do not cover

one for hypothetical Europeans, with the exception of SNP

rs2780841. These results suggest that any G × E signal is from

trios of European ancestry, where maternal alcohol consumption

is more common.

5 Discussion

We consider a log-linear model of GRRs at a causal locus G.

Under this model,G × E is equivalent to GRRs that vary with the

exposure E. We show that exposure-related genetic structure in

the population can lead to spurious G′ × E at a non-causal test

locus G′ in LD with G. However, valid inference of G′ × E can be

obtained by augmenting the GRR model with a blocking

variable X, such that GG′ haplotypes and E are conditionally

independent given X. We discuss the choice of X for inference of

TABLE 4 Gender of 462 affected children by self-reported ancestry.

Ancestry Males Females Total %

European 103 111 214 46%

Asian 93 141 234 51%

Other/Afr 3 11 14 3%

Total 199 263 462 100%

TABLE 5 Exposure rates for maternal alcohol consumption, maternal
smoking and maternal vitamin supplementation by self-reported ancestry
in affected trios.

Percent exposed to Maternal

Ancestry Alcohol Smoking Vitamin
Supp

Affected
children

European 41% 28% 57% 214

East Asian 4% 3% 21% 234

Other/Afr 14% 7% 71% 14

Total 21% 14% 39% 462

FIGURE 3
Projections of each affected child onto the first two PCs by
self-reported ancestry: red = East Asian (234 trios), blue =
European (214 trios), orange = African (one trio) and green =
multiple ancestry/other (13 trios). Each PC has been shifted
and scaled so that a PC1 value near zero corresponds to a
hypothetical East Asian and a PC1 value near one corresponds to a
hypothetical European.
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G′ × E when data are collected from a study of case-parent trios.

The population strata S would be an ideal choice for X but may

not be known definitively. We propose to use principal

components (PCs) instead. In particular, we calculate PCs

from a genomic region unlinked to the test locus and select

a parsimonious subset using the method of (Gavish and

Donoho, 2014). We then specify a linear model for the log-

GRRs whose intercept and slope depend on PC values. Slopes

that vary with PC values allow the modifying effect of the

exposure to vary with population strata, which can be important

for maintaining power [20, Section 3.3]. Through simulations,

we show that our PC adjustment maintains the nominal type-1

error rate and has nearly identical power to detect G × E as an

oracle approach based directly on S. We illustrate our approach

by applying it to an analysis of real data from case-parent trios

in the GENEVA Oral Cleft Study. In our analysis of the

GENEVA data, we focussed on SNPs and exposures

identified by (Beaty et al., 2011). In a discussion of their

results, these authors noted that the SNPs they identified are

not in known cleft-palate susceptibility genes and are either

intronic or are upstream/downstream of coding regions. This

lack of compelling biological plausibility, coupled with the

striking differences in exposure distributions between the

self-reported European and East Asian strata, motivated our

G × E analysis that adjusts for population structure. However,

our results (Table 6) and those of (Ratnasekera and McNeney,

2021) do not contradict the hypothesis of G × E, but rather

suggest that any G × E signal is due to the self-reported

European trios. Further data collection aimed at self-reported

European trios may provide stronger conclusions regarding the

presence of G × E.

To reduce bias from exposure-related genetic structure,

direct PC adjustment has advantages over the EEGM

approach and design-based strategies such as the tetrad

approach of (Shi et al., 2011) and the sibling-augmented case-

only approach of (Weinberg et al., 2011). Unlike the EEGM

approach, PC adjustment controls the type 1 error when there are

more than two population strata. Unlike the design-based

TABLE 6 Estimated modifying effects of maternal alcohol consumption on GRRs, 95% confidence intervals and p-values from the analysis of the GENEVA data,
at six SNPs in theMLLT3 gene (Chr 9) showing significant interactionwithmaternal alcohol consumption in (Beaty et al., 2011). Estimates, confidence intervals
and tests are based on fitting an additive genetic model and use (i) no adjustment, (ii) EEGM adjustment or (iii) PC adjustment to control for exposure-related
genetic structure in the population. The unadjusted analysis considers all trios without regard to genetic structure. The EEGM- and PC-adjusted analyses allow
for genetic structure and we have reported estimates for hypothetical East Asian and European subjects.

All East Asian European

SNP Adj Est 95% CI Est 95% CI Est 95% CI p-value

rs4621895 None 2.08 (1.36, 3.18) − − − − 0.0006

EEGM − − 0.762 (0.214, 2.72) 2.44 (1.42, 4.20) 0.0047

PC − − 0.701 (0.181, 2.72) 2.40 (1.42, 4.04) 0.0037

rs4977433 None 2.15 (1.40, 3.30) − − − − 0.0003

EEGM − − 0.916 (0.244, 3.44) 2.47 (1.44, 4.25) 0.0036

PC − − 0.854 (0.208, 3.45) 2.44 (1.45, 4.11) 0.0028

rs6475464 None 1.75 (1.13, 2.69) − − − − 0.0104

EEGM − − 0.909 (0.271, 3.05) 2.25 (1.29, 3.95) 0.0158

PC − − 0.840 (0.234, 3.02) 2.22 (1.29, 3.81) 0.0139

rs668703 None 2.02 (1.33, 3.07) − − − − 0.0008

EEGM − − 0.588 (0.177, 1.95) 2.50 (1.45, 4.29) 0.0032

PC − − 0.531 (0.148, 1.91) 2.43 (1.44, 4.09) 0.0025

rs623828 None 1.55 (1.00, 2.39) − − − − 0.0481

EEGM − − 0.772 (0.239, 2.50) 1.77 (1.01, 3.11) 0.1368

PC − − 0.757 (0.220, 2.60) 1.73 (1.00, 2.98) 0.1384

rs2780841 None 1.55 (1.01, 2.36) − − − − 0.0417

EEGM − − 0.653 (0.217, 1.96) 1.71 (0.960, 3.04) 0.1613

PC − − 0.620 (0.195, 1.97) 1.68 (0.965, 2.93) 0.1471
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strategies, PC adjustment does not require siblings nor assume

binary exposures.

Development of alternative approaches based on

propensity scores is an area for future work. The EEGM

approach is attractive in that it reduces the genetic principal

components to a single score, E(E|Ŝ). For binary exposures,

such as those in the GENEVA study, the EEGM is a

propensity score (Rosenbaum and Rubin, 1983). For

continuous exposures, such as those in the simulation

study, the analog to the EEGM is a continuous-treatment

propensity score (Brown et al., 2021). With continuous

exposures, we could predict E given the genetic markers

and then convert the predictions to a Normal density

score that takes low values for predictions far from their

observed value. These density scores could be used either as

predictors (Hirano and Imbens, 2004) or weights (Robins

et al., 2000) in subsequent analyses. It would be interesting to

explore the use of propensity-score methods in inference of

G′ × E from case-parent trios with continuous

exposures, particularly when there are more than two

population strata.
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