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Ferroptosis is that under the action of ferrous iron or ester oxygenase,

unsaturated fatty acids highly expressed on the cell membrane are catalyzed

to undergo lipid peroxidation, thereby inducing cell death. In this study, we used

ferroptosis marker genes to identify 3 stable molecular subtypes (C1, C2, C3)

with distinct prognostic, mutational, and immune signatures by consensus

clustering; TP53, CDKN2A, etc. Have higher mutation frequencies in the

three subtypes. C3 has a better prognosis, while the C1 subtype has a worse

prognosis. WGCNA is used to identify molecular subtype-related gene

modules.After filting, we obtained a total of 540 genes related to the

module feature vector (correlation>0.7).We performed univariate COX

regression analysis on these genes, and identified a total of 97 genes (p <
0.05) that had a greater impact on prognosis, including 8 ‘‘Risk” and

89 ‘‘Protective” genes. After using lasso regression, we identified 8 genes

(ZNF566, ZNF541, TMEM150C, PPAN, PGLYRP4, ENDOU, RPL23 and

MALSU1) as ferroptosis-related genes affecting prognosis. The ferroptosis

prognosis-related risk score (FPRS) was calculated for each sample in

TCGA-HNSC dataset. The results showed that FPRS was negatively

correlated with prognosis.The activated pathways in the PFRS-high group

mainly include immune-related pathways and invasion-related pathways. We

assessed the extent of immune cell infiltration in patients in our TCGA-HNSC

cohort by using the expression levels of gene markers in immune cells. The

FPRS-high group had a higher level of immune cell infiltration. We found that

the expression of immune checkpoints was significantly up-regulated in the

FPRS-low group and the FPRS-high group had a higher probability of immune

escape and a lower probability of benefiting from immunotherapy. In this work,
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we constructed a scoring Ferroptosis-related prognostic model that can well

reflect risk and positive factors for prognosis in patients with head and neck

squamous cell carcinoma. It can be used to guide individualized adjuvant

therapy and chemotherapy for patients with head and neck cancer.

Therefore, it has a good survival prediction ability and provides an important

reference for clinical treatment.
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hNSC, risk score, prognostic model, predicting survival, ferroptosis-associated genes

1 Introduction

There are about 600,000 new cases of head and neck

malignant tumors every year, and more than 60% of these

cases are insidious (Chen et al., 2016; Miller et al., 2016).

Although great progress has been made in multidisciplinary

treatment in head and neck malignant tumors, 5-year survival

rate has not improved significantly, only 40%–50% (Siegel et al.,

2011). It is an important means to further understand the

molecular mechanism of head and neck tumors and explore

new molecular targets such as early diagnosis, prognosis

evaluation, and targeted therapy.

Ferroptosis is an iron-dependent, different from apoptosis,

necrosis, cell autophagy, a novel form of programmed cell death

(Dixon et al., 2014; Stockwell, 2022). The main mechanism of

ferroptosis is that under the action of ferrous iron or ester

oxygenase, unsaturated fatty acids highly expressed on the cell

membrane are catalysed to undergo lipid peroxidation, thereby

inducing cell death (Stockwell, 2022). Induction of ferroptosis has

received increasing attention as a potential tumor treatment option

(Lin et al., 2020). Recent studies have found that many tumor

suppressors exert some of their tumor suppressor functions by

inducing ferroptosis (Jiang et al., 2015; Chu et al., 2019).

p53 inhibits the expression of solute carrier family 7 member 11

(SLC7A11) (Jiang et al., 2015). p53 also causes ALOX12-dependent

cell death that is inhibited by ferrostatin-1 and involves the

expression of the ferroptosis marker gene Ptgs2 (Chu et al., 2019).

It also reported that the loss of ferroptosis can drive

tumorigenesis (Wu et al., 2021). Wang et al. found that CD8 +

T cells could drive ferroptosis (Wang et al., 2019). Therefore,

activating CD8+ T through immune checkpoint blockade therapy

to drive ferroptosis to selectively kill tumor cell are obviously

beneficial to the improvement of prognosis (Sanmamed and Chen,

2018). Epithelial-mesenchymal transition (EMT) plays an

important role in invasion and metastasis, with adverse effects

on prognosis. Recent studies have shown that ferroptosis inducers

are associated with mesenchymal or metastatic properties of

cancer cells and that inhibition of E-cadherin or induction of

EMT may contribute to enhanced ferroptosis (Hangauer et al.,

2017; Viswanathan et al., 2017; Wu et al., 2019). Inhibition of

ferroptosis is an important mechanism of drug resistance in tumor

therapy. Inhibition of GPX4 is a well-known method of inducing

ferroptosis. Traditional chemotherapeutic drugs inhibit ferroptosis

by upregulating GPX4 and Xc- system, leading to chemoresistance.

However, when some classic chemotherapy drugs are used in

combination with ferroptosis inducers, the anticancer effect will be

enhanced (Yu et al., 2015). Therefore, ferroptosis can be regarded

as an important factor affecting prognosis.

In this study, we used ferroptosis marker genes to identify

stable molecular subgroups by consensus clustering type, and

further compare the pathway characteristics and immune

characteristics between the subtypes. We identified genes

associated with the ferroptosis prognostic score by WGCNA

and lasso, and further, we constructed a clinical prognostic model

of ferroptosis-related prognostic risk score (FPRS). To further

improve the prognostic model and survival prediction, we

adopted a decision tree model to combine FPRS with

clinicopathological features to construct a nomogram for risk

assessment of head and neck cancer patients.

2 Materials and methods

2.1 Date set

We downloaded the HNSC RNA-seq data from the Cancer

Genome Atlas public data portal, which finally included a total of

499 primary tumor samples after filtering. The expression data of

GSE65858 and GSE42743 were obtained from the Gene

Expression Omnibus database. After filtering, 253 and

104 head and neck cancer samples, respectively, were included

in the analysis. In this study, we used TCGA-HNSC data as the

training set and GSE65858 and GSE42743 datasets as

independent validation sets. At the same time, we also

downloaded a group of head and neck cancer immunotherapy

data GSE78220 as risk mode of immunotherapy response

prediction. Here, the ferroptosis-related genes are derived

from the FerrDb database, with a total of 259 genes.

2.2 Data preprocessing

Perform the following steps to preprocess the RNA-seq data

of TCGA: 1)Remove the samples without clinical follow-up
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information; 2) Remove the samples without survival time; 3)

Remove the samples without Status; 4) Convert Ensembl to Gene

symbol; 5) Take the median value for expressions with multiple

Gene Symbols; Do the following steps to preprocess the GEO

data: For the GEO dataset, we downloaded the annotation

information of the corresponding chip platform, mapped

probes to genes according to the annotation information, and

removed probes that matched one probe to multiple genes.When

multiple probes matched a gene, the median was taken as the

gene expression value. Various datasets and samples showed in

such as attachments * .exp.txt, * .cli.txt.

2.3Molecular typing of ferroptosis-related
genes

Consensus clustering (ConsensusClusterPlus) was used to

construct a consistency matrix and cluster the samples

(PMID: 20427518). Using the expression data of ferroptosis

-related genes, the molecular subtypes of the samples were

obtained. We utilized the pam algorithm and “1-Pearson

correlation” as the metric distance and performed

500 bootstraps, each bootstraps process including 80% of

the training set patients. The number of clusters was set

from 2 to 10, and the optimal classification was determined

by calculating the consistency matrix and the consistency

cumulative distribution function to obtain the molecular

subtypes of the samples.

2.4 Construction of weighted gene Co-
expression network

Gene co-expression networks were constructed using

weighted gene co-expression network analysis (WGCNA)

(PMID: 19114008). First, to construct the gene expression

similarity matrix, we calculated the absolute value of Pearson’s

correlation coefficient between genes i and j using the equation:

Sij � 1 + cor xi + yi( )( )
∣∣∣∣

∣∣∣∣/2

where i and j represent the expression of genes i and j,

respectively. Further, the gene expression similarity matrix

was transformed into an adjacency matrix. β is a soft-

thresholding parameter and represents Pearson’s correlation

coefficient b for each pair of genes [PMID: 17090670]. This

step strengthens the strong correlation and weakens the weak

correlation from the index level

aij � 1 + cor xi + yi( )( )/2
∣∣∣∣

∣∣∣∣β

The representative genes in each module are called

characteristic vector genes, referred to as ME, which represent

the overall level of gene expression within the module

ME � princomp xqij( )

where i represents the gene in modulus q, and j represents the

microarray sample in modulus q. We used Pearson’s correlation

for the expression profiles of the genes in all samples, and the ME

expression profiles of the signature vector genes to gauge the

identity of that gene in the module. We called this module

membership (MM)

MMq
i � cor xi,MEq( )

where ME represents the expression profile of gene i.

2.5 Construction of the FPRS scoring
system to evaluate head and neck cancer
samples

(1) Molecular subtype -related modules, where we performed

WGCNA analysis using the entire expression profile of

TCGA-HNSC, we identified the most relevant modules

for molecular subtypes as key modules;

(2) Further, we extracted the genes in the key modules, and

selected the genes whose correlation with the module feature

vector was greater than 0.7 and had a significant prognosis as

the genes related to the ferroptosis phenotype;

(3) The number of genes was further reduced by the method of

lasso regression, and the genes related to the prognosis of

ferroptosis were obtained;

(4) FPRS scoring system construction. We calculated the FPRS

score of each patient using the following formula: FPRS = Σβ
i ×Exp i), where i refers to the gene expression level of the

ferroptosis prognosis-related gene signature, and β is the Cox
regression coefficient of the corresponding gene. According

to the best cut-off value of FPRS obtained by the R package

survminer, the patients were divided into high and low risk

groups of FPRS, the survival curve was drawn by the Kaplan-

Meier method for prognostic analysis, and the log-rank test

was used to determine the significance of the difference.

2.6 Prediction of responsiveness to
immunotherapy

We used the TIDE algorithm to verify the effect of IMS on the

prediction of clinical responsiveness to ICIs. The TIDE algorithm

is a computational method for predicting ICB responsiveness

using gene expression profiling [PMID: 30127393]. The TIDE

algorithm evaluated three cell types that limit T cell infiltration in

tumors, including theM2 subtype of tumor-associated fibroblasts

(TAF), myeloid-derived suppressor cells (MDSCs), and tumor-

associated macrophages (TAM), and two different mechanisms

of tumor immune escape, including the dysfunction score of

tumor-infiltrating cytotoxic T lymphocytes (CTLs) (dysfunction)
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and the rejection score of CTLs by immunosuppressive factors

(exclusion).

2.7 Gene set enrichment analysis

To study the pathways of different biological processes in

different molecular subtypes, we used GSEA for pathway

analysis, here we used all candidate gene sets in the Hallmark

database [PMID: 26771021] for GSEA.

2.8 Calculation of invasive abundance of
TME cells

We used the CIBERSORT algorithm (https://cibersort.

stanford.edu/) to quantify the relative abundance of

22 immune cells in head and neck cancer. At the same time,

we also used ESTIMATE software to calculate the proportion of

immune cells.

2.9 Real-time PCR

We used TRIzol to obtain total RNA from fresh human head

and neck squamous cell carcinoma tissues and paracancerous

tissues, and then reverse transcribed into cDNA. The human

tissues got from the patients consented to this study during the

time of surgery from January 2020 to December 2020 in

Quanzhou First Hospital Affiliated to Fujian Medical

University. It is considered by the Ethic Committee of the

Quanzhou First Hospital Affiliated to Fujian Medical

University. Ethics Committee agrees the program to carry out

as planned [No. (2019) 109]. The Quantitative real-time PCRwas

performed on an ABI 7900 system (Takara, Dalian, China) with

SYBR Green using SYBR Green RT-PCR Assay (Takara, Dalian,

China) and normalized to GAPDH. The following primers were

used for PCR: ZNF566, forward primer: 5′-ctcgacatcacagaattcaca
c-3′; and reverse primer: 5′-tctgatgtcgagtgaagtttga-3′;
TMEM150C, forward primer, 5′-gagaccagcctgaccaatgtgaag-3′
and reverse primer, 5′-ctgcctccgcctcctgagtag-3′; ENDOU,

forward primer, 5′-ttacagtcacatctcgccttta-3′ and reverse

primer, 5′-ggagtagagtgcaaactcaaac-3′. MALSU1, forward

primer, 5′-ttctacccgacacttacatgccatgand-3′ and reverse primer,

5′-ccacgcacagccagtcatcag-3′.

2.10 Statistical analysis

Statistical analysis was performed using GraphPad Prism

5 and R software (version 3.6.3). Data in the figures are shown as

mean ± SD. To compare the expression of tissues Student’s t-test

was used. To obtain a correlation with the prognosis of head and

neck cancer univariate cox analysis was performed using the

coxph function in R. The survival curve was drawn by the

Kaplan-Meier method for prognostic analysis, and the log-

rank test was used to determine the significance of the

difference. Statistical significance was set at p < 0.05.

3 Results

3.1 Molecular typing based on ferroptosis-
related genes

We extracted the expression levels of ferroptosis-related genes

from the expression profile matrix of TCGA-HNSC. Then we got

47 genes after performed a univariate cox analysis using the coxph

function in R to obtain a correlation with the prognosis of head and

neck cancer (p < 0.05) (tcga.ferroptosis.genes.cox.sig.txt). Next we

clustered 499 HNSC samples based on the 47 prognostic-related

ferroptosis-related genes through ConsensusClusterPlus,

determined the optimal number of clusters according to the

cumulative distribution function (CDF). And we observed that,

the CDF Delta area curve has relatively stable clustering results

(Figures 1A,B) when Cluster is selected as 3. Finally we choose k =

3 to obtain three molecular subtypes (Figure 1C; tcga.subtype.txt).

Further analysis of the prognostic characteristics of these three

molecular subtypes, we observed that they have significant

prognostic differences as shown in Figure 1D. In general, the

C3 subtype has a better prognosis, while the C1 subtype has a poor

prognosis. The mortality rate of patients with C1 subtype was

significantly higher than that of C3 subtype Figure 1E.

In addition, same method was used to perform molecular

typing on the GSE65858 microarray data, and we observed that

there were also significant differences in the prognosis of these

three types of molecular typing as shown in Figures 1F,G, which

is consistent with the training set.

3.2 Clinicopathological features between
molecular subtypes

We further explored the differences in clinicopathological

characteristics between different molecular subtypes in the

TCGA-HNSC cohort. Here, we compared the distribution of

different clinical features in the three molecular subtypes we

defined to see if the clinical features are different in different

subtypes. As shown in Figure 2A, it was found that: there were no

significant differences between M Stage, age, alcohol

consumption and smoking history. However, there were

significant differences between C1 and C3 subtypes in terms

of T Stage, and between C2 and C3 subtypes in terms of N Stage.

And there are significant differences between subtypes C1 and

C2 in terms of Stage, and between subtypes C1 and C3 in terms of

Grade, and between subtypes C1 and C2 in terms of gender. In
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addition, we also compared the clinicopathological

characteristics of different molecular subtypes in the

GSE65858 cohort as shown in Figure 2B.

3.3 Mutational signatures between
molecular subtypes

We further explored differences in genomic alterations

between different molecular subtypes in the TCGA cohort.

Compared with the C3 subtype, the C1 subtype showed

higher Aneuploidy Score (Kruskal-Wallis test, p = 5e-05),

Homologous Recombination Defects (Kruskal-Wallis test, p =

3.5e-07), Fraction Altered (Kruskal-Wallis test, p = 1.1e-06),

Number of Segments (Kruskal-Wallis test, p = 3.3e-08) and

Tumor Mutation Burden (Kruskal-Wallis test, p = 0.0016)

(Figure 3A). In addition, we also analyzed the correlation

between gene mutation and copy number variation and

molecular subtype, and found that there was a significant

correlation between subtype and gene mutation. Some

FIGURE 1
Molecular typing based on ferroptosis-related genes. (A) the cumulative distribution function (CDF) curve of TCGA-HNSC cohort sample; (B)
the CDF Delta area curve of TCGA-HNSC cohort sample. Delta area curve of consensus clustering, indicating the relative change in area under the
CDF curve for each category number k compared with k–1. The horizontal axis represents the category number k and the vertical axis represents the
relative change in area under CDF curve; (C) Consensus heat map of sample clustering when k = 3; (D) Prognosis of three subtypes Relational
Kaplan-Meier curve. (E) In TCGA-HNSC Differences in survival status of different subtypes; (F) the differences in prognosis of three molecular
subtypes in GSE65858 cohort; (G)Differences in survival status of different subtypes in GSE65858. The lower half is the proportion, and the upper half
is the statistical significance of the distribution difference between the two pairs—log10 (p-value).
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common genes TP53, CDKN2A, etc. Have higher mutation

frequencies in the three subtypes. In terms of copy number

variation, the C1 subtype has a higher overall copy number

amplification than the C3 subtype, while the C3 subtype has an

overall higher copy number deletion than the C1 subtype

(Figure 3B).

3.4 WGCNA analysis identifies molecular
subtype-associated gene modules

We used the R software package WGCNA to identify gene

modules related to molecular subtypes. Specifically, samples were

firstly clustered to filt for co-expression modules. The clustering

results of the samples are shown in Figure 4A. The study shows

that the co-expression network conforms to the scale-free

network, that is, the logarithm log(k) of a node with a degree

of connection k is negatively correlated with the logarithm log

(P(k)) of the probability of the node appearing, and the

correlation coefficient is greater than 0.85. To ensure that the

network is scale-free, we choose β = 9 (Figures 4B,C). The next

step is to convert the expression matrix into an adjacency matrix,

and then convert the adjacency matrix into a topology matrix.

Based on TOM, we use the average-linkage hierarchical

clustering method to cluster genes according to the standard

of hybrid dynamic shear tree. And set the minimum number of

genes for each gene network module is 30. After using the

dynamic shearing method to determine the gene modules, we

calculate the eigengenes of each module in turn, then perform

cluster analysis on the modules, merge the modules with closer

distances into a new module, and set height = 0.3, deepSplit = 2,

minModuleSize = 30. A total of 39 modules (Figure 4D) were

FIGURE 2
Clinicopathological features between molecular subtypes. (A) Clinicopathological characteristics of molecular subtypes of the TCGA-HNSC
cohort; (B) Clinicopathological characteristics of molecular subtypes of the GSE65858 cohort; the lower half is the proportion, and the upper half is
the distribution difference between the pairwise statistically significant-log10 (p-value).
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obtained. It should be pointed out that the grey module is a set of

genes that cannot be aggregated into other modules. The gene

statistics of each module are shown in Figure 4E, and the genes in

the modules are shown in tcga.wgcna.module.genes.txt.

Further, we analyzed the correlation of each module with

molecular subtypes as shown in Figure 4F.

It can be seen that there is a significant positive correlation

between the brown module and the C1 subtype, the tan

module and the C2 subtype, and the middlenightblue

module and the C2 subtype. There are highly positively

correlated between the module membership (MM) and

gene significance (GS) of genes within the brown module

(r = 0.53, P < 1e-5, Figure 4G), the tan module (r = 0.25, P <
1e-5, Figure 4H), and the middlenightblue module (r = 0.72,

P < 1e-5, Figure 4I). Further, we used the R software package

clusterProfiler to enrich the genes in the brown, tan and

middlenightblue modules. The enrichment results are

shown in tcga.XXX.enrich.txt.

It was found that the middlenightblue module significantly

enriched Estrogen signaling pathway, Ether lipid metabolism,

FIGURE 3
Genomic alterations in molecular subtypes of the TCGA cohort. (A) Comparison of Homologous Recombination Defects, Aneuploidy Score,
Fraction Altered, Number of Segments and Tumor Mutation Burden among different molecular subtypes in TCGA cohort; (B) Somatic mutation and
copy number variation analysis of different molecular subtypes in TCGA cohort (Fisher’s test). *p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001.
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FIGURE 4
WGCNA analysis identifies molecular subtype-associated gene modules. (A) Clustering tree of each sample; (B) Analysis of the scale-free fit
index for various soft-thresholding powers (β). (C) Analysis of the mean connectivity for various soft-thresholding powers. (D) Dendrogram of all
differentially expressed genes/lncRNAs clustered based on a dissimilarity measure (1-TOM); (E) statistics of the number of genes in each module; (F)
correlation between the module eigenvectors of each module and clinical information; (G) Scatter diagram for module membership vs. gene
significance for C1 in the brown module; (H) Scatter diagram for module membership vs. gene significance for C2 in the tan module; (I) Scatter
diagram for module membership vs. gene significance for C3 in the middlenightblue module.
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alpha-Linolenic acid metabolism, Linoleic acid metabolism and

other pathways (Supplementary Figure S1C), and the gene

enrichment results in brown and tan modules are shown in

Supplementary Figures S1A,B. The brown, tan and

middlenightblue modules with high positive correlation in

typing were regarded as the key gene modules related to

molecular typing.

3.5 Determination of ferroptosis
phenotype-related genes

For the genes in the brown, tan and middlenightblue

modules identified by WGCNA that are significantly related

to molecular subtypes, we first filtered out the genes that are

significantly related to the module eigenvectors. Here we select

FIGURE 5
Determination of ferroptosis phenotype-related genes. (A) A total of promising candidates were identified through the correlation analysis of
the gene expression and the Module Membership; (B) The trajectory of each independent variable with lambda; (C) Confidence interval under
lambda; (D) Distribution of LASSO coefficients of the ferroptosis-related prognostic gene signature.
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the genes with a correlation coefficient >0.7. After filting, we

obtained a total of 540 genes related to the module feature vector

(correlation>0.7). The correlation results showed in

brown.cor.txt, tan.cor.txt and midnightblue.cor.txt. Further, we

aimed at these Univariate COX regression analysis of genes

identified 97 genes that had a greater impact on prognosis

(p < 0.0 5), including 8 risk and 89 protective genes

(Figure 5A). Taking it a step further, we compressed these

97 genes in the TCGA-HNSC dataset using lasso regression to

reduce the number of genes for the risk model. The Lasso (Least

absolute shrinkage and selection operator) method is a

compression estimation (Tibshirani, 1996). It obtains a more

refined model by constructing a penalty function, so that it

compresses some coefficients and sets some coefficients to

zero. Therefore, the advantage of subset shrinkage is retained,

and it is a biased estimation for processing data with complex

collinearity, which can realize the selection of variables at the

same time as parameter estimation, and better solve the

multicollinearity problem in regression analysis.

Here, we performed lasso cox regression using the R package

glmnet. First, the change trajectory of each independent variable

is analyzed as shown in Figure 5B. It can be seen that with the

gradual increase of lambda, the number of independent variable

coefficients tending to 0 also gradually increases. We use 10 -fold

cross-validation for the model. Construct and analyze the

confidence interval under each lambda as shown in Figure 5C.

It can be seen from the figure that the model is optimal when

lambda = 0.0254. For this reason, we choose 22 genes when

lambda = 0.0254 as the next step target gene. Further, based on

the 22 genes in the lasso analysis results, we used stepwise

multivariate regression analysis, and the stepwise regression

used the AIC Akaike Information Criterion, which considered

the statistical fit of the model and the number of parameters used

for fitting, stepAIC in the MASS package. The method starts with

the most complex model and deletes one variable in turn to

reduce the AIC. The smaller the value, the better the model,

which means that the model obtains sufficient fit with fewer

parameters. Ultimately, we identified 8 genes as ferroptosis-

related genes affecting prognosis, as shown in Figure 5D.

3.6 Establishment and validation of clinical
prognostic model

Next, the FPRS for each sample was calculated and

normalized according to the formula defined by our sample

ferroptosis score. The FPRS distribution of patients in the

training set TCGA-HNSC cohort is shown in Figure 6A,

which suggests that high FPRS samples have poorer

prognosis.The low expression of ZNF566, ZNF541,

TMEM150C, PPAN, PGLYRP4, and ENDOU is associated

with high risk, which is a protective factor. While the high

expression of RPL23 and MALSU1 genes is associated with

high risk, which is a risk factor. Further, we used the R

software package timeROC to carry out the ROC analysis of

the prognostic classification of FPRS. We analyzed the 1-year, 3-

year, 5-year prognosis prediction classification efficiency is

shown in Figure 6B, from which we can see that the model

has a higher area under the AUC line. Finally, we classify the

FPRS score greater than 0 as high risk, and the FPRS score less

than or equal to 0 as low Risk. And we draw the KM curve, as

shown in Figure 6C, there is a very significant difference between

the high and low FPRS groups (p < 0.0001). 249 samples were

divided into the high FPRS group, and 250 samples were divided

into the low FPRS group. Patients with higher FPRS exhibited

worse overall survival in the training cohort (Figure 6C). To

confirm the robustness of ferroptosis-related gene signature

clinical prognostic model predictions, we performed validation

in two independent head and neck cancer cohorts, and we

calculated the FPRS scores of patients in the same way. Seeing

that in the validation cohort we observed similar results to the

training set, with high FPRS having a worse prognosis and low

FPRS having a better prognosis (Figures 6D–G).

3.7 FPRS scores on different
clinicopathological features and different
molecular subtypes

By comparing the distribution of FPRS among

clinicopathological groups, we found that higher TNM stage

means higher FPRS (Figure 7A). And we also found no

significant difference in FPRS between ages (Figure 7A). At

the same time, we compared the differences of FPRS among

molecular subtypes and found that the FPRS of the C1 subtype

with poor prognosis had the highest FPRS score, while the

C3 molecular subtype with better prognosis had the lowest

FPRS (Figure 7B).

3.8 Mutation signatures between FPRS
groups

We further explored differences in genomic alterations between

different FPRS subgroups in the TCGA cohort. Compared with the

FPRS-low group, the FPRS-high group showed higher Aneuploidy

Score (wilcox. test, p = 0.0019), Homologous RecombinationDefects

(wilcox. test, p = 0.026), Fraction Altered (wilcox. test, p = 0.0034),

and Number of Segments (wilcox. test, p = 0.00016) (Figure 8A). At

the same time, we also analyzed the correlation between FPRS and

Homologous Recombination Defects, Aneuploidy Score, Fraction

Altered, Number of Segments, and Tumor mutation burden, and

found that FPRS was significantly positively correlated with

Aneuploidy Score (p = 0.001), Fraction Altered (p = 0.006), and

Tumor Mutation Burden (p = 0.032) (Figure 8B). In addition, we

also analyzed the correlation between gene mutation and copy
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number variation andmolecular subtype, and found that there was a

significant correlation between subtype and gene mutation. The

common TP53 was mutated at a higher frequency in both subtypes.

In terms of copy number variation, the copy number deletion in the

FPRS-low group was generally higher than that in the FPRS-high

group, while the copy number amplification was lower than that in

the FPRS-high group (Figure 8C).

3.9 Path characteristics between FPRS
packets

In order to observe the relationship between FPRS and biological

function in different, we selected the gene expression profiles

corresponding to the head and neck cancer samples in the

TCGA-HNSC cohort using the R software package GSVA to

perform a single-sample GSEA analysis (ssgsea). The ssGSEA

score of each function corresponding to each sample is

obtained after calculating the different functions of each sample.

And the correlation between these functions and FPRS is

further calculated, and the function with a correlation greater

than 0.4 is selected (Figure 9A). It can be seen that 13 of

pathways was positively correlated with the FPRS of the

samples, and 8 pathways were negatively correlated with the

FPRS. Among them, the metabolism-related pathway

KEGG_PROTEIN_EXPORT, KEGG_ GLYCOSAMINOGLYCAN

_ BIOSYNTHESIS_CHONDROITIN_SULFATE, KEGG_GALAC

TOSE_METABOLISM, KEGG_NICOTINATE_AND_NICOTIN

FIGURE 6
Establishment and validation of clinical prognostic model. (A) FPRS in TCGA-HNSC data set, survival time and survival status and expression of
ferroptosis-related prognostic genes; (B) ROC curve and AUC of FPRS classification in TCGA-HNSC data set; (C) FPRS in TCGA- KM survival curve
distribution in HNSC dataset; (D,E) ROC curve and KM survival curve of FPRS in GSE65858 cohort; (F,G) ROC curve and KM survival curve of FPRS in
GSE 42743 cohort.
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AMIDE_ METABOLISM, KEGG_PURINE_METABOLISM

showed a significant positive correlation with FPRS. Next, we

analyzed whether there are differentially activated pathways in

different FPRS groupings. To identify these pathways, we

performed Gene Set Enrichment Analysis (GSEA) using all

candidate gene sets in the Hallmark database [PMID: 26771021],

where we defined FDR < 0.05 as significant enrichment as shown in

Figure 9B. It can be seen that compared with PFRS-low in TCGA-

HNSC cohort, 20 pathways were activated in PFRS-high,

4 pathways were inhibited, and 28 pathways were significantly

enriched in GSE65858 cohort. Overall, the activated pathways in

the PFRS-high group mainly included immune-related

pathways such as INFLAMMATORY_RESPONSE,

COMPLEMENT, etc., and the invasion-related pathways such as

FIGURE 7
FPRS scores on different clinicopathological features and different molecular subtypes. (A) Differences in FPRS between different
clinicopathological groups in TCGA-HNSC cohort; (B) Differences in FPRS between different clinicopathological groups in GSE65858 cohort.
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FIGURE 8
Differences inFPRS groupings of the TCGA cohort. (A) Compare the differences in Homologous Recombination Defects, Aneuploidy Score,
Fraction Altered, Number of Segments and Tumor mutation burden in different FPRS groups of the TCGA cohort; (B) FPRS and Homologous
Recombination Defects, Aneuploidy Score, Fraction Altered, Number of Segments and Tumor mutation Correlation between burden; (C) Somatic
mutation and copy number variation analysis (Fisher test) of FPRS groupings in the TCGA cohort. *p < 0.05; **p < 0.01; ***p < 0.001; and ****p <
0.0001.
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EPITHELIAL_MESENCHYMAL_TRANSITION, ANGIOGENES

IS, TNFA_SIGNALING_VIA_NFKB, etc. were significantly

enriched in the FPRS-high group as shown in Figure 8B. Overall,

the activation of immune-related pathways and the activation of

invasion -related pathways in the FPRS-high groupmay be potential

factors for the poor prognosis of FPRS-high.

FIGURE 9
Path characteristics between FPRS packets. (A) Correlation analysis results between KEGG pathways with FPRS correlation greater than 0.3 and
FPRS; (B) a heatmap demonstrating normalized enrichment scores (NESs) of Hallmark pathways calculated by comparing FPRS-high with FPRS-low
(with a false discovery rate (FDR) of < 0.05).
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3.10 Immune signatures between FPRS
subgroups

To further elucidate the differences in the immune

microenvironment of patients in the FPRS cohort, we assessed

the extent of immune cell infiltration in patients in our TCGA-

HNSC cohort by using the expression levels of gene markers in

immune cells, we first employed CIBERSORT to calculate 22 The

relative abundance of immune cells is shown in Figure 10A, and

it can be observed that B_cells_naive, T_cells_CD8,

T_cells_follicular_helper, T_cells_regulatory_.Tregs. are

significantly enriched in the FPRS-low group. At the same

time, we also used ESTIMATE to evaluate the infiltration of

immune cells, as shown in Figure 10B. It can be seen that the

ImmuneScore in the FPRS-low group was slightly higher than

that in the FPRS-high group, with higher immune cell

FIGURE 10
Immune signatures between FPRS subgroups. (A) The proportion of immune cell components in the TCGA- HNSC cohort; (B) The proportion
of immune cell components in the TCGA-HNSC cohort calculated by ESTIMATE software; (C) The correlation analysis of 22 immune cell
components and FPRS.

Frontiers in Genetics frontiersin.org15

Wei et al. 10.3389/fgene.2022.1065546

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1065546


infiltration. Further, we analyzed the relationship between FPRS

and 22 immune cell components, and found that FPRS was

significantly negatively correlated with B_cells_naive,

T_cells_CD8, T_cells_follicular_helper,

T_cells_regulatory_.Tregs., and significantly positively

correlated with Macrophages_M2, Mast_cells_activated.

3.11 Differences in immunotherapy/
chemotherapy between FPRS groups

Further, we analyzed whether there were differences in

response to immunotherapy between the FPRS groups. First,

we compared whether there are differences in the expression of

FIGURE 11
Differences in immunotherapy/chemotherapy between FPRS groups. (A) Differentially expressed immune checkpoints between different
groups in the TCGA-HNSC cohort; (B) Differentially expressed immune checkpoints between different groups in the GSE65858 cohort; (C) TIDE
between different groups in the TCGA-HNSC cohort Differences in analysis results; (D)Differences in TIDE analysis results between different groups
in the GSE65858 cohort; (E) Correlation between TIDE scores and FPRS scores; (F) Differences in FPRS for different clinical response status to
immunotherapy in the GSE78220 cohort; (G) ROC curve and AUC of FRPS classification; (H) KM survival curve distribution of FPRS; (I–L): The box
plots of the estimated IC50 for Paclitaxel, Docetaxel, Cisplatin and 5–Fluorouracil in TCGA—HNSC.

Frontiers in Genetics frontiersin.org16

Wei et al. 10.3389/fgene.2022.1065546

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1065546


FIGURE 12
FPRS combined with clinicopathological features to further improve prognostic models and survival prediction. (A) Patients with full-scale
annotations including FPRS, stage, gender and age were used to build a survival decision tree to optimize risk stratification; (B) Significant differences
of overall survival were observed among the three risk subgroups; (C,D) Comparative analysis between different groups; (E,F) univariate and
multivariate Cox analysis of FPRS and clinicopathological characteristics; (G) nomogram model; (H) 1, 3, and 5-year calibration curve of
nomogram; (I) Decision curve of nomogram; (J) Compared with other clinicopathological features, the nomogram exhibited the most powerful
capacity for survival prediction.
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immune checkpoints between FPRS groups. Here, our immune

checkpoints come from the database HisgAtlas [PMID:

31725860]. The results are shown in Figures 11A,B. Most

immune checkpoint genes were differentially expressed in

FPRS groups. Combining the expression of immune

checkpoints in the two cohorts, we found that immune

checkpoints such as BTLA, CD160, CD27, and

CEACAM1 were significantly up-regulated in the FPRS-low

group as shown in Figures 11A,B. Further, we analyzed the

differences in immunotherapy among different FPRS groups.

Here, we used TIDE (http://tide.dfci.harvard.edu/) software to

assess the potential clinical effects of immunotherapy in our

defined FPRS high and low groups. The higher the TIDE

prediction score, the higher the possibility of immune escape,

and the lower the possibility of patients benefiting from

immunotherapy. As shown in Figure 11C, we can find that

the FPRS-high group has the highest TIDE score in the

TCGA-HNSC cohort. It suggesting that the FPRS-high group

has a higher possibility of immune escape and is less likely to

benefit from immunotherapy. At the same time, we also

compared the differences in the predicted T cell dysfunction

score and T cell exclusion score among different metabolite

subtypes in the TCGA-HNSC cohort, as shown in Figure 11C.

And it can be found that the FPRS-high subtype has the highest

MDSC, CAF and Exclusion. A similar result was observed in the

GSE65858 cohort as shown in Figure 11D.

In addition, we also analyzed the correlation between FPRS

score and TIDE score, and found that there was a significant

positive correlation between FPRS score and TIDE score

(Figure 11E). Further, we included a set of immunotherapy

data GSE78220 (anti-PD-1), and calculated the FPRS scores of

the samples in the same way, and found that there were

differences in the FPRS scores of different clinical response

states of immunotherapy in the GSE78220 data set. The FPRS

score of patients with response to immunotherapy was lower

than that of patients with PD and SD response status

(Figure 11F). At the same time, we also found that our

clinical prognostic model had stable performance in the two

FIGURE 13
Validation of the 4 ferroptosis-related genes in HNSC tissues. RT-qPCR detecting themRNA expression levels of (A) ZNF566, (B) TMEM150C, (C)
ENDOU, (D) MALSU1 in the tumor tissue and adjacent tissue of HNSCC patients and normal tissues HNSCC patients*p < 0.05; **p < 0.01; ***p <
0.001.
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immunotherapy cohorts, with better classification efficiency for

prognosis prediction at 6 months, 1 year, and 2 years and with

higher AUC area below the line (Figure 11G). There was a

significant difference in prognosis between the high and low

FPRS groups (Figure 11H). In addition, we also analyzed the

response of FPRS subgroups to traditional chemotherapy drugs

Paclitaxel, Docetaxel, Cisplatin and 5-Fluorouracil in the TCGA-

HNSC cohort, and found that FPRS-high was more sensitive to

these four drugs as shown in Figures 11I–L.

3.12 FPRS combined with
clinicopathological features to further
improve prognostic models and survival
prediction

Here, we constructed a decision tree based on age, gender, T

stage, N Stage, Stage, Grade, and FPRS of head and neck cancer

patients in the TCGA-HNSC cohort. The results showed that

only FPRS and Stage were left in the decision tree and

determined three distinct risk subgroups (Figure 12A).

Among them, FPRS is the most powerful parameter,

followed by the stage. Here, we defined patients with low

FPRS as the low risk group, while the intermediate risk

group was labeled with low FPRS and Stage low and the

high risk group was labeled with high FPRS and Stage high.

There were significant differences in overall survival between

the three risk subgroups as shown in Figure 12B. The patients in

the high risk group and the intermediate risk group were all

FPRS-high patients, while the patients in the low risk group

were all FPRS-low patients as shown in Figure 12C. In addition,

we also found that the high risk group and the intermediate risk

group were the proportion of patients in the Dead group was

significantly higher than that in the intermediate risk and low

risk groups as shown in Figure 12D. Univariate and

multivariate Cox regression analysis of FPRS and

clinicopathological features showed FPRS to be the most

significant prognostic factor (Figures 12E,F).

In order to quantify the risk assessment and survival

probability of patients with head and neck cancer, we

combined FPRS and other clinicopathological features to

establish a nomogram as shown in Figure 12G. From the

model results, it can be seen that FPRS has the greatest

impact on survival rate prediction. Further, we use the

calibration curve (Calibration curve) to evaluate the prediction

accuracy of themodel, as shown in Figure 12H. It can be observed

that the predicted calibration curves of the three calibration

points at 1, 3, and 5 years are nearly coincident with the

standard curve, which suggests that the nomogram has a good

Predictive performance. In addition, we also used DCA (Decision

curve) to evaluate the reliability of the model. It can be observed

that the benefits of FPRS and nomogram are significantly higher

than those of extreme curves. Compared with other

clinicopathological characteristics, both nomogram and FPRS

show the strongest survival predictive power is shown in

Figures 12I,J.

3.13 Validation of the 4 ferroptosis-related
genes in HNSC tissues

We validated the mRNA expression levels of the

4 ferroptosis-related genes (ZNF566, TMEM150C, ENDOU,

MALSU1) in the tumor tissue and adjacent tissue of

10 HNSCC patients by RT-qPCR. The results showed that in

most patients ZNF566 (8/10, 80%, Figure 13A), TMEM150C (9/

10, 90%, Figure 13B), ENDOU (8/10, 80%, Figure 13C) were all

significantly decrease in HNSCC tissues than in normal tissues

(p < 0.005). There was no statistical difference in the expression

of MALSU1 (Figure 13D).

4 Discussion

Identification of key biomarkers to assess tumor prognosis

raises implications for early tumor diagnosis, treatment regimen

selection, and cancer prevention (Economopoulou et al., 2019).

The prognosis of patients with head and neck cancer is related to

many factors, such as age, smoking, gender, TNM stage, stage,

drug sensitivity, immune cell infiltration, etc (Zhang et al., 2020;

Zhang et al., 2021; Yao et al., 2022). In this work, we got

47 ferroptosis-related genes to obtain a correlation with the

prognosis of head and neck cancer patients from the FerrDb

database. We identified three stable molecular subtypes (C1, C2,

C3) through these genes in TCGA-HNSC cohort. These subtypes

are also validated in GSE65858 microarray data. These subtypes

did not differ significantly in M Stage, age, alcohol consumption

and smoking history. C1 subtype, which has a worst prognosis,

has higher tumor mutational burden than other subtypes. In

many cancer types, high tumor mutational burden (TMB) is

associated with longer survival after immune checkpoint

inhibitor (ICI) therapy. While in patients not receiving ICI

therapy, higher TMB is associated with worse survival (Valero

et al., 2021). Some common genes TP53, CDKN2A, etc. Have

higher mutation frequencies in the three subtypes. Recent study

had reported a variant of p53 at codon 47 (S47) found in African-

descent populations, which alters the ability of p53 to induce cell

death and suppress tumor formation (Jennis et al., 2016). This

variant leads to accumulation of GSH and CoA (Leu et al., 2019).

To evaluate head and neck cancer samples we construction of

the FPRS scoring system. Patients with higher FPRS exhibited

worse overall survival. We observed the similar results after

validating two independent head and neck cancer cohorts,

which confirmed the robustness of ferroptosis-related gene

signature clinical prognostic model predictions. The FPRS of

the C1 subtype with poor prognosis had the highest FPRS score,
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while the C3 molecular subtype with better prognosis had the

lowest FPRS. FPRS-high group has a higher possibility of

immune escape and is less likely to benefit from

immunotherapy, which lead to worse prognosis.

The low expression of ZNF566, ZNF541, TMEM150C, PPAN,

PGLYRP4, and ENDOU is considered high risk, predicts a worse

prognosis. This is generally consistent with the trend we showed in

our clinical sample validation. In most validated samples ZNF566,

TMEM150C, ENDOUwere all significantly decrease in tumor tissues

than in normal tissues. ZNF566 plays a central role in heart

regeneration and repair through epithelial to mesenchymal

transitions (EMT) (Xin et al., 2013; von Gise and Pu, 2012).

Considering that EMT is highly correlated with tumor metastasis,

it has an important impact on prognosis. CircZNF566 is highly

expressed in hepatoma cells and tissues and positively correlated with

poor prognosis (Li et al., 2020). This suggests a complex role of

ZNF566 in different tissues. ZNF541mediates chromatin remodeling

and is associated with histone hypoacetylation, normally expressed in

germ cells (Choi et al., 2008). The U.S. Food and Drug

Administration approved histone deacetylase inhibitors for PTCL

(O’Connor et al., 2014). TMEM150C (Tentonin 3) was identified as a

cation channel activated bymechanical stimulation with unique slow

inactivation kinetics and is a molecular component that helps sense

changes in dynamic arterial pressure in baroreceptors (Hong et al.,

2016; Lu et al., 2020). In pancreatic β-cells TMEM150C is highly

expressed, which regulates glucose-stimulated insulin secretion in

vivo (Wee et al., 2021). Human PPAN localizes to the nucleolus and

mitochondria, and PPAN knockdown triggers a p53-independent

nucleolar stress response that ultimately leads to mitochondrial

apoptosis (Olausson et al., 2012). PPAN knockdown is also

associated with mitochondrial damage and stimulation of

autophagy (Dannheisig et al., 2019). ENDOU (PP11) was

detected in 66.7% of analyzed mucinous cystadenocarcinomas,

57.1% of serous cystadenocarcinomas, but not in normal ovaries,

47% of breast cancers and 38% of all testicular and gastric cancers

(Inaba et al., 1980; Inaba et al., 1981; Inaba et al., 1982).

In this work, we constructed a scoring Ferroptosis-related

prognostic model that can well reflect risk and positive factors

for prognosis in patients with head and neck squamous cell

carcinoma. It can be used to guide individualized adjuvant

therapy and chemotherapy for patients with head and neck

cancer. Therefore, it has a good survival prediction ability and

provides an important reference for clinical treatment.

Undoubtedly, our prognostic model is limited by the use

of public databases. More in vitro and in vivo studies and

clinical research were need to validate the clinical utility of

this model.
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