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Background: RNA modifications are important in the study of epigenetic

regulatory mechanisms in immune responses and tumorigenesis. When RNA

writers are mutated or disrupted in expression, the genes associated with the

pathways they modify are also disrupted and can activate or repress related

pathways, affecting tumorigenesis and progression. However, the potential role

of RNA writers in prostate cancer is unclear.

Methods: Based on data from three datasets, we describe 26 RNA writers that

mediate gene expression and genetic mutation in prostate cancer and assess

their expression patterns in 948 prostate cancer samples. Using principal

component analysis algorithms, the RM Score was developed to quantify the

RNA modification patterns of specific tumors.

Results: Two different categories were determined by unsupervised clustering

methods, and survival analysis showed significant differences in OS prognosis

between these two categories. Differentially expressed genes between the

different categories were detected and the RNA writers-mediated scoring

model RM_Score were constructed based on this. Also, the RM_Score was

analyzed in relation to clinical characteristics, immune infiltration level, drug

response, and efficacy of chemotherapy and immunotherapy. Those results

confirm that multilayer alterations in epitope-modified RNA writers are

associated with patient prognosis and with immune cell infiltration

characteristics. Finally, we examined differentially expressed mRNA, lncRNA

and miRNA between high and low RM_Score groups, based on which a ceRNA

regulatory network was constructed.

Conclusion: This work is a comprehensive analysis of modified writers in

prostate cancer and identified them to have a role in chemotherapy and

immunotherapy.
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Introduction

In the male population worldwide, prostate cancer is the

most commonmalignancy, and there is no effective treatment for

advanced prostate cancer, particularly metastatic prostate cancer

and castration-resistant prostate cancer (CRPC) (Siegel et al.,

2021).% (Small and de Bono, 2011; Emmanuel et al., 2014; Royce

et al., 2017).

In genetics, epigenetics is the study of stable and heritable

phenotypes caused by changes in chromosomal sequence that do

not alter gene sequences. In recent years, an increasing number of

studies have demonstrated that RNA modification is a critical

mechanism of epigenetic regulation and is involved in both

physiological processes and disease development (Mo et al.,

2014; Li et al., 2020; Ma et al., 2020; Yuan et al., 2020).

To fully understand the importance of post-transcriptional

modifications, there is a need to explore the crosstalk between

different patterns of these alterations. A few studies on pCa have

emphasized the importance of RNA alteration in carcinogenesis

(Cai et al., 2019; Chen et al., 2021a). The majority of studies have

concentrated on a limited number of genes, whereas RNA

modification “writers” may form an important and complex

network of cellular regulation in PC (Zhang et al., 2016;

Zhang et al., 2020; Zhao et al., 2020), and an understanding

of this network may provide important insights into the

mechanisms behind PC tumorigenesis.

In this study, we explored genomic alterations in PC samples

from the Gene Expression Omnibus (GEO) and The Cancer

Genome Atlas (TCGA) cohorts and assessed patterns of RNA

modifications. We found that RNA modification patterns were

not only associated with infiltration of multiple immune cell

types and clinical features, but also with AR pathway activation.

Next, based on differentially expressed genes (DEGs) in the RNA

modification pattern, we developed an RNA modification score

(RM_Score) model of “writers” to quantify the efficacy of

“writers” in individual patients. Finally, we assessed its

therapeutic value in targeted therapies and immunotherapy

and constructed a RM_Score-based CeRNA network.

Methods

Prostate cancer datasets source and
preprocessing

The workflow of our study was shown in Supplementary

Figure S1. Public gene-expression date and full clinical

annotation were searched in the Cancer Genome Atlas

(TCGA) database and Gene Expression Omnibus (GEO).

Patients without survival information were removed from

further evaluation. In total, two eligible PC cohorts

(GSE70770, GSE116918) AND TCGA-PRAD (The Cancer

Genome Atlas- Prostate Adenocarcinoma) were gathered in

this study for further analysis. For microarray data, the

normalized matrix files were directly downloaded. As to

datasets in TCGA, RNA sequencing data (FPKM value) of

gene expression and sample CNV information for prostate

cancer samples were downloaded from the UCSC xena

database (https://xenabrowser.net/datapages/), clinical

information was downloaded using the R package cgdsr

(version: 1.3.0), and mutation data was downloaded using the

R package TCGAbiolinks (version: 2.16.4). It was then merged

with the GSE70770 and GSE116918 chip expression data and

batch effects from non-biological technical biases were corrected

using the “ComBat” algorithm of sva package. (Version: 3.36.0)

(Leek et al., 2012). In addition, copy number variation

information for other tumors was downloaded using the R

package TCGAmutations (version: 0.3.0).

The immunotherapy dataset for bladder cancer was

downloaded using the R package IMvigor210CoreBiologies

(version: 1.0.0)15. AS to chemotherapy datasets for breast

cancer and advanced urothelial tumors (GSE25066 and

GSE111636), the normalized matrix files were directly

downloaded from GEO.

Clustering expression pattern of 26 RNA
modification “writers”

Cluster analysis of RNA-modified “writers” in 984 prostate

cancer samples was performed using an unsupervised clustering

algorithm. 7 m6A modification enzymes (METTL3, METTL14,

WTAP, RBM15, RBM15B, ZC3H13, and KIAA1429), 4 m1A

modification enzymes (TRMT61A, TRMT61B, TRMT10C, and

TRMT6), 12 APA modification enzymes (CPSF1-4, CSTF1/2/3,

PCF11, CFI, CLP1, NUDT21, and PABPN1), and 3 A- (ADAR,

ADARB1, and ADARB2). Unsupervised clustering was used to

identify robust prostate cancer clustering (Hartigan et al., 1979).

For the preceding steps, we utilized the Consensus-Clusterplus

package (version 1.52.0) (Wilkerson and Hayes, 2010) and

conducted 1,000 repetitions to ensure the classification’s stability.

Identification of differentially expressed
genes (DEGs) between RNA modification
distinct phenotypes

To identify RNA modification “writers”-related genes, we

classified patients into two distinct m6A modification patterns

based on the expression of 26 RNA modification “writers”. The
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empirical Bayesian approach of limma R package was applied to

determine DEGs between different modification patterns. The

criteria for determining DEGs was set as adjusted

p-value <0.05 and |logFC|>0.58.

Gene set variation analysis (GSVA) and
estimation of TME cell infiltration

To study the differences of RNA modification patterns in

biological processes, we used “GSVA” R package (version: 1.36.3)

to conduct GSVA enrichment analysis (Hänzelmann et al., 2013).

The gene set “c2. cp.kegg.v7.4” and “h.all.v7.4” for GSVA analysis

was downloaded from the MSigDB database (https://www.gsea-

msigdb.org/gsea/index.jsp, V7.4). The clusterProfiler R Package

was used to functionally annotate 26 RNA modification enzyme

genes (Yu et al., 2012).

To assess the proportion of 28 immune cell species in

different subpopulations (data source: https://www.cell.com/

cms/10.1016/j.celrep.2016.12.019/attachment/f353dac9-4bf5-

4a52-bb9a-775e74d5e968/mmc3. xlsx), we obtained the degree

of infiltration of 28 immune cell species using the ssGSEA (single

sample gene set enrichment analysis) analysis in the R package

GSVA (Charoentong et al., 2017).

Generation of RM_Score

To quantify the RNA modification patterns of individual

tumor, we constructed a set of scoring system to evaluate the

RNA modification pattern of individual patients with prostate

cancer—the RM_Score (Zeng et al., 2019). The procedures for

establishment of RM_Score were as follows:

First, the DEGs identified from distinct RNA modification

clusters were normalized across all PC samples, and the overlap

genes were extracted. Using an unsupervised clustering method

for analyzing overlap DEGs, the patients were divided into

multiple groups for further examination. The consensus

clustering algorithm was used to determine the number and

stability of gene clusters. Then, using the univariate Cox

regression model, we performed prognostic analysis on each

gene in the signature. The significant prognostic genes were

isolated for further analysis. Then, using principal component

analysis (PCA), we constructed a gene signature relevant to m6A.

Components 1 and 2 were both chosen to serve as signature

scores.

Calculation of TME cell invasion
abundance

To quantify the relative abundance of 22 types of immune

cells in colorectal cancer, we used CIBERSORT algorithm

(https://cibersort.stanford.edu/) (Becht et al., 2016): the input

mixture matrix is our gene expression matrix, the input is a gene

signature reference for 22 immune cell types from Newman et al.

(Newman et al., 2015), 100 times for permutation test, and RNA-

seq data without quantile normalization, whereas microarray

data with quantile normalization.

Correlation between RM_Score and other
related biological processes

In a study byMariathasan et al., they constructed a set of gene

sets that primarily contained genes associated with biological

processes such as 1) immune-checkpoint; 2) antigen processing

machinery; 3) CD8 T-effector signature; 4) epithelial-

mesenchymal transition (EMT) markers including EMT1,

EMT2 and EMT3; 5) Angiogenesis signature; 7) pan-fibroblast

TGFb response signature (Pan-F-TBRS); 8) WNT targets; 9)

DNA damage repair; 10) mismatch repair; 11) Nucleotide

excision repair; 12) DNA replication; 13) Antigen processing

and presentation. We quantified these biological functions in

each sample using GSVA analysis to calculate an Enrichment

score (ES), which further revealed links between samples with

high and low RM_Score groupings and a few relevant biological

pathways (Mariathasan et al., 2018).

Association analysis of RM_Score and
stromal score, immune score, estimate
score, tumor purity

Immune scores, stromal scores, and tumor purity were

calculated by R package estimate (version 1.0.13) based on

specific gene expression profiles of immune and stromal cells

by entering the gene expression profiles of the samples.

Association analysis of RM_Score and
drug sensitivity

Approximately 1,000 transcription profiles for cancer cell

lines were obtained from Genomics of Drug Sensitivity in Cancer

(GDSC) (Yang et al., 2013), available at (http://www.

cancerrxgene.org/downloads) (Adams et al., 2007). We

calculated the correlation between drug sensitivity and RM_

Score using Spearman correlation analysis, where |Rs| > 0.

35 and p 0.05 were considered significant correlations.

ceRNA regulatory network construction

Differential miRNA, lncRNA, mRNA between RM_Score

high and low risk groupings were identified by R package limma,
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where mRNA, miRNA, lncRNA screening criteria are |logFC|

>0.58, p < 0.05, and miRNA-miRNA relationship pairs were

downloaded from the miRTarBase database (http://mirtarbase.

mbc.nctu.edu.tw/php/index.php), miRDB database and

TargetScan database (http://www.targetscan.org/vert_72/)to

download miRNA-miRNA targeting relationships, and then

screened for mRNA_miRNA relationship pairs that were

included in at least two sets of databases.

lncRNA-miRNA targeting relationships were downloaded

from the TargetScan database (http://www.targetscan.org/vert_

72/) to identify lncRNAs that have interactions with the above

screened miRNAs. mRNA-miRNA-lncRNA networks were

constructed by Cytoscape.

Statistical analysis

Spearman and distance correlation were used to calculate the

RNA modification “writers” expression correlation coefficient.

The Wilcoxon test was utilized to evaluate the differences.

Utilizing the receiver operating characteristic (ROC) curve,

the model’s validity was determined.

On the basis of the correlation between RM Score and patient

survival, the servicer package was utilized to establish the survival

information cutoff point for each dataset. To reduce the

calculated batch effect, the “surv-cutpoint” function was used

to dichotomize RM Score, and all potential cutting points were

repeatedly tested to determine the maximum rank statistic.

Patients were then divided into the RM Score-high group and

the RM Score-low group based on the maximum selected log-

rank statistic. The Kaplan-Meier method was used to generate

survival curves for prognostic analysis, and the log-rank test was

applied to determine the significance of the differences. Utilizing

a univariate Cox regression model, the hazard ratio (HR)

between differentially expressed genes and “writers” was

calculated. To determine whether RM Score is an independent

predictor, we perform a multivariate Cox regression model

analysis with age, gender, and stage as independent variables.

All statistical analyses were two-sided, and p 0.05 was considered

statistically significant.

Results

Landscape of genetic variation of 26 RNA
modification “writers” in prostate cancer

The current study included 26 RNA modification “writers”

(Supplementary Table S1), including three A-I modification

“writers” seven m6A modification “writers” four m1A

modification “writers” and twelve APA modification “writers."

To determine the genetic changes in RNA modification

writers in pan-cancer, the prevalence of non-silent somatic

mutations in 26 writers was evaluated. The mutation

frequency of RNA writers was relatively low in the PRAD,

PCPG, and UVM cohorts of the TCGA, while it was relatively

high in the COAD cohort (Supplementary Figure S2A). Only 33

(29.46%) of the 484 PRAD samples contained mutations of RNA

modification “writers” (Figure 1A). ZC3H13 had the highest

mutation frequency (1%), followed by PCF11 and RBM15,

whereas PABPN1 and NUDT21 did not exhibit any

mutations in PRAD samples. PRAD patients with mutations

of these “writers” showed a trend of longer overall survival rate

than those without mutations though the difference showed non-

statistically significant (Supplementary Figure S2B). Enrichment

analysis’ Gene Set Variation Analysis (GSVA) was used to

compare the signature gene sets of the “writers” mutation

group and the non-mutation group. Myogenesis,

Inflammatory response, and other pathways are upregulated

in the mutation group, whereas MYC target and androgen

response are downregulated. (Supplementary Figure S2D).

We then examined somatic copy number variation (CNV) of

these writers in prostate cancer and found that KIAA1429 and

CPSF1 had a widespread frequency of copy number variation

(CNV) gain (Figure 1B). We defined patients with CNV or SNP

as the mutation group and the rest of the samples as the non-

mutation group, then went for further survival analysis. The

overall survival of the mutant group was significantly lower than

that of the non-mutant group. (Figure 1C).

To determine whether these genetic variations influenced the

expression of RNA writers in PC patients, we compared the

mRNA changes of regulators between paired normal and PC

samples and found that the expression of most RNA writers was

significantly elevated in PC (Figures 1D–G). Additionally, the

analysis revealed that RNA authors with CNV gain were

expressed at a higher level in cancer tissues (Figures 1D–G).

RNA modification “writers” with CNV gain (e.g., CPSF1 and

TRMT10C) were significantly more prevalent in PC tissues than

in normal prostate tissue, indicating that CNVmay be a regulator

factor for “writer” mRNA expression. However, a subset of

“writer” cells exhibited upregulated mRNA expression and a

high frequency of CNV loss. To investigate the discrepancy

between CNV values and mRNA expression in tumor

samples, we divided the PC cohort into four groups based on

their CNV values, which included CNV gain, CNV loss, and non-

significant CNV alteration. Then, we compared the “writer”

mRNA expression between these groups (Supplementary

Figure S2C). In fact, patients with CNV gain exhibited higher

expression levels than patients with CNV loss in these “writers.”

CNV changes could not fully explain the differential expression

of “writers” between tumor and normal tissues, as tumorigenesis

is a complex process. Although many of the detected expression

changes of “writers” can be explained by copy number variants

(CNVs), CNVs are not the only factor that regulates mRNA

expression. In addition to DNA methylation and transcription

factors, additional factors can regulate gene expression.
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FIGURE 1
(A) The mutation frequency of RNA modification “writers” in 484 patients from the TCGA cohort. Each column represents individual patients.
The upper bar graph shows TMB; the number on the right indicates themutation frequency in each “writer”. The right bar graph shows the proportion
of each variant type. The stacked bar graph below shows the fraction of conversions in each sample. (B) Bar graphs showing the frequency of CNV
gain (red), loss (blue) and non CNV (green) of RNA modification “writers” in the TCGA-PRAD cohort. The height of each bar represents the
alteration frequency. (C) Kaplan-Meier curves show overall survival of patients with (red) or without (blue) mutations in RNAmodification “writers” in
the TCGA-PRAD cohort. The grouping of PC samples is indicated at the bottom of the chart. P < 0.05 in the two-sided log-rank test was considered
statistically significant. (D–G). Box plots show the expression distribution of 26 “writers” of 4 types of RNAmodification between paired normal (blue)
and cancer (red) tissues. The boxes indicate themedian±1 quartile, with the whiskers extending from the hinge to the smallest or largest value within
1.5× IQR from the box boundaries.
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FIGURE 2
(A) PCA analysis of RNA writers between normal (red dot) and tumor (green) samples. (B) The difference in the relative abundance of immune
cell infiltration in TME between RNA modification Cluster_1 and RNA modification Cluster_2 was calculated by the CIBERSORT algorithm.
Difference >0 indicates that the immune cells were enriched in RNA modification Cluster_1, and the column color represents the statistical
significance of the difference. (C) Heatmap shows a positive (red) and negative (blue) correlation among RNA modification “writers” in PC. *p <

(Continued )
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This suggests that the mutation of “writer” including CNV

and SNP, has potential role in the tumorigenesis and

development of PC.

Distinct patterns of RNA modification
“writers” associated with cancer hallmarks
and immune infiltration

A total of 948 prostate cancer samples and 125 control

samples were selected for further analysis from three

databases (TCGA, GSE116918, GSE70770) to obtain a more

comprehensive understanding of the expression patterns of

writers involved in tumorigenesis in prostate cancer.

First, the distribution of the studied RNA writers in the genes

were showed (Supplementary Figure S3A, Supplementary Table

S7). PCA analysis of cancer and normal samples using these

genes can clearly distinguish cancer samples from healthy control

samples (Figure 2A).

Univariate Cox regression was performed on RNA writers

and the samples were divided into two categories based on

median gene expression values. 6 RNA writers were found to

be associated with prostate cancer prognosis, including CPSF3,

CSTF1, etc. (Supplementary Figure S1D, Supplementary

Table S8).

A pairwise correlation was calculated between the expression

of 26 writers in PC, and positive correlations were more common

than negative correlations (Figure 2B). There was a significant

correlation not only between the expression of RNAmodification

“writers” in the same category, but also among different types of

modification writers.

In addition, we also performed consistent clustering of RNA

writers expression profiles and presented the results in a network

plot, which is shown in Supplementary Figure S3C The genes

with black dots were positively correlated with prognosis and

those with green dots were negatively correlated with prognosis,

and the RNA writers gene regulatory network in this figure

depicts the correlation between these genes interactions and the

regulators with prognosis (Supplementary Table S9).

Based on the expression profiles of 23 selected RNA

modification “writers” (Supplementary Table S12), we

classified patients with qualitatively different RNA

modification patterns using Consensus Clustering. According

to unsupervised clustering, 567 patients from the combined

datasets were assigned to Cluster_1, whereas 381 patients were

assigned to Cluster_2 (Figure 2C). A prognostic analysis of RNA

modification patterns revealed that Cluster_1 showed a marked

survival advantage (Figure 2D, log-rank test, p = 0.006). An

analysis of GSVA enrichment (Supplementary Table S13) was

performed to determine the biological significance of these

distinct RNA modification patterns. Cluster_1 was enriched in

steroid hormone biosynthesis and prostate cancer pathways.

Cluster_2 was enriched in ribosome, oxidative

phosphorylation, and drug metabolism cytochrome P450

(Figure 2E).

Infiltrating immune cells from TMEs have been linked to

RNA modification in numerous studies. Thus, we investigated

the function of “writers” in TME. To determine the type of

immune cells found in tumors, we used the CIBERSORT

deconvolution algorithm, based on support vector regression,

to compare immune cell types among RNA modification

patterns (Supplementary Table S10). A significant correlation

between CFI expression and dendritic cell resting was found,

while a significant correlation between CPSF3 expression and

plasma cells was found (Supplementary Figure S3B).

There were also significant differences in TME cell

infiltration between the two RNA modification clusters

(Figure 2F). We observed that Macrophages M1 and resting

DCs were significantly higher in Cluster_1, whereas

M2 macrophages, TREGs, and NK cells were significantly

higher in Cluster_2 (Figures 2G,H). Accordingly, a

comparison of the expression of macrophage markers in

Cluster_1 and Cluster_2 indicated that M2 macrophage

marker genes and T cell CD4 memory resting genes were

significantly upregulated in Cluster_1 (Figure 2H). As a result,

RNA modification patterns affected the degree of infiltration by

certain immune cell types but did not alter the types of immune

cells infiltrating the cells.

FIGURE 2 (Continued)
0.05, **p < 0.01, and ***p < 0.001, as determined by the Spearman correlation analysis. (D) Kaplan-Meier curves compare overall survival
between two RNA modification patterns, Cluster_1 (red) and Cluster_2 (blue), in all patients. The grouping of samples is shown at the bottom of the
chart. P < 0.05 in the two-sided log-rank test was considered statistically significant. (E) Unsupervised clustering of 26 RNA modification “writers”.
The clusters of PC cohorts and RNA modification types were used as sample annotations. Red, high expression of “writers”; blue, low
expression. (F) Heatmap visualizing the GSVA enrichment analysis shows the activation states of biological pathways in distinct RNA modification
patterns. Red, activated pathways; blue, inhibited pathways. The names of PC cohorts were used as sample annotations. (G,H). The difference of
immune cell infiltration (G) and expression of macrophage M2 and T cells CD4 memory resting marker genes (H) between RNA modification
patterns. The upper bar graph shows the number of datasets that differ significantly between Cluster_1 and Cluster_2. The color of the bubble below
the graph indicates the difference in each of the distinct GEO datasets, and 0the bubble size indicates the statistical significance of the difference.
Difference >0 indicates that the infiltration of immune cells (G) or expression of macrophage M2 and T cells CD4 memory resting marker genes (H)
were higher in RNA modification Cluster 1.
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FIGURE 3
(A) Unsupervised clustering of the RNA modification phenotype-related genes. The names of those 3 PC cohorts were used as sample
annotations. Red, high expression of phenotype-related genes; blue, low expression. (B) Kaplan-Meier curves comparing overall survival between
two DEG clusters, gene. cluster_A (red) and gene. cluster_B (blue), in the 3 PC cohort. The grouping of PC samples is shown under the Kaplan-Meier
plot. P < 0.05 in the two-sided log-rank test was considered statistically significant. (C–E) Kaplan-Meier curves show overall survival in WM_
Score-high (red) and -low (blue) in all samples (C), TCGA (D) and GSE116918 (E). The grouping of PC samples is shown at the bottom of the chart. P <

(Continued )
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Construction of RNA modification “writer”
signature

To further analysis those two RNA modification patterns

in the prostate cancer, we identified 116 RNA modification

related differential expressed genes and performed

enrichment analysis (Figure 3A, Supplementary Table S15,

screening criteria were |logFC|>0.58, p-value < 0.05). These

differential genes were mainly associated with some metabolic

pathways (Supplementary Table S17). To further validate this

differential regulation, an unsupervised clustering analysis

was performed on these differential genes. This analysis

classified patients into two genetic subtypes: gene cluster A

and gene cluster B (Supplementary Table S16), and the two

subtype clusters showed significant differences in prognosis

(Figure 3B).

In order to quantify the RNAmodification pattern of individual

patients with PC, we constructed a DEGs-based score model based

on these phenotype-related genes; this model was referred to as the

RM_Score (“Writers” of RNA Modification_Score; see Methods).

According to the surv cut point function in the R package survminer,

the best threshold points for RM_Score classification was

determined (cutoff = 0.0212,004) and the samples were classified

into two categories, RM_Score high and RM_Score low

(Supplementary Table S19), the RM_Score high and RM_Score

low samples were significantly different in prognosis across all

samples, RM_Score high (Figure 3C). The similar results are

observed in the TCGA (Figure 3D) and GSE116918 (Figure 3E)

datasets. And the area under the ROC curve for prediction of

survival at 3, 6 and 12 months reached 0.62, 0.59 and 0.55

(Figure 3H). The subtypes obtained from the second clustering

analysis also had significantly different RM_Score in the two

previous clustering analyses. Based on Wayne diagrams and

histograms of frequency distributions (Supplementary Figure

S4A–D), A comparison of these three classifications revealed that

the latter two classifications were calculated consistently

(Supplementary Table S20).

Molecular subtypes and clinical
characteristics associated with RM_Score
in PC

An analysis of multivariate Cox regression using the patient’s

clinical characteristics, including age, Gleason score and stage

status, was conducted to determine whether the RM_Score could

be used as an independent prognostic factor (Figure 3F). The

analysis showed that both Gleason and RM_Score were

significantly associated with prognosis in the full sample

(Figures 4A,B, Supplementary Table S22). A sample of

prostate cancer patients from the GSE116918 database was

used to validate the reliability of the RM_Score, in which the

data set demonstrated a significant correlation between the stage

and the RM_Score. (Figure 3G, Supplementary Table S22).

The result of comparison between different subtype and

Gleason score in all patients were shown (Figures 4A,B). Also,

we compared the variability of RM_score between hormone

resistant and sensitive samples in the GSE70770 set and it

showed a significant difference in scores between two

(Figure 4C). Notably, lower RM_score was found in higher

Gleason score group and castration resistant group, which

corresponded to the result of the survival analysis in the

previous section, i.e., the low RM_score group had a poor

prognosis. It is not absolute, however. Figure 4D illustrates

the flow of various Gleason scores between RM_score groups

for all datasets. Some low Gleason score patients are categorized

as low-RM_score groups, whilst some high Gleason score

patients are categorized as high RM_score groups.

As to the GSVA analysis, most pathways were up-regulated

in RM_score high group, like PI3K, KRAS, MAPL, P53, estrogen

response pathway, while androgen response and MYC targets

were up-regulated in RM_score low group (Figure 4E).

Using the maftools package, we then analyzed the distribution

differences of somatic mutation between low and high RM score in

the TCGA-PRAD cohort. As shown in Supplementary Figure

S7A,B, the low RM score group had a mutation burden

comparable to the high RM score group. The high frequency of

mutational load suggests that these genes play a significant role in

the development of prostate cancer, despite the absence of a

statistically significant difference between the two groups.

Analysis of the relationship between RM_
Score and immune infiltration

We used ssGSEA to analyze the differences in immune

infiltrating cell types between the RM_Score high and low risk

groups (Supplementary Table S25). The results are shown in

Figure 5A. However, there is no significant difference in all cell

types between RM_score high and low groups, which indicates

RNA modification patterns may affect the degree of infiltration

but did not alter the types of infiltrating immune cells.

FIGURE 3 (Continued)
0.05 in the two-sided log-rank test was considered statistically significant. (F–G). Multivariate Cox regression model analysis, which included
the factors of WM_Score, patient age, Gleason score, TNM status, and patient outcomes in the overall samples (F) and GSE116918 (G) cohorts. The
length of the horizontal line represents the 95% confidence interval (CI) for each group. The vertical dotted line represents the hazard ratio (HR) of all
patients shown by the forest plot. (H) The predictive value of WM_Score in patients (AUC:0.62, 0.59, and 0.55, 3, 6, 12-month overall survival).

Frontiers in Genetics frontiersin.org09

Cheng and Yi 10.3389/fgene.2022.1065424

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1065424


FIGURE 4
Clinical and biological characteristics of PC associated with the WM_Score. (A)WM_Score differences among TCGAmolecular subtypes of PC
in TCGA-RAD datasets. (B) Differences in the WM_Score between Gleason score 6-7 (blue) and 8-10 (red) group in the 3 PC cohort. (C) Differences
in theWM_Score between castrate-resistant (blue) and robotic radical prostatectomy (red) group in the GSE70770 cohort. Wilcoxon test was used to
assess the difference. The boxes indicate the median±1 quartile, with the whiskers extending from the hinge to the smallest or largest value
within 1.5× IQR from the box boundaries. (D) The Sankey diagram shows the variation in the distribution of samples across these classifications (E)
Heatmap shows the differences in enrichment in the characteristic signaling pathways of PC subtypes betweenWM_Score-high and -low groups in
all samples. Red, high enrichment score; blue, low enrichment score.
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FIGURE 5
(A). Difference of immune cell infiltration in the WM_Score-high/-low. (B) Analysis of the difference in anti-tumor immune process activity
between high and low risk groups with WM_Score scores. (C) Correlation of WM_Score scores with stromal score, immune score, and tumor purity
(A: stromal score; (B) immune score; (C) estimate score; (D) tumor purity) by Spearman analysis. (D) Gene expression of immune checkpoint
expression in WM_Score -high and -low.
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FIGURE 6
The relationship between WM_Score and drug sensitivity and efficacy of immunotherapy. (A) The correlation between WM_Score and drug
sensitivity evaluated by the Spearman analysis. Each column represents a drug. The color of the column indicates the significance of the correlation.
The height of the column indicates the correlation, indicates that WM_Score related to drug resistance (Rs > 0) or drug sensitive (Rs < 0) to WM_
Score. (B) Signaling pathways targeted by drugs that are resistant (red) or sensitivity (blue) to the WM_Score. Drug names are listed on the

(Continued )
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We also performed a correlation analysis between RM_Score

and stromal score, immune score, and tumor purity (Figure 5C,

Supplementary Table S26). The stromal and immune score were

proportional to RM_score but tumor purity had negative

correlation to RM_score.

We downloaded the results of the TIP analysis of TCGA

prostate cancer samples from the TIP (Tracking Tumor

Immunophenotype) website (http://biocc.hrbmu.edu.cn/TIP/)

and then compared the differences in anti-tumor immune

process activity between the high and low RM_Score risk

groups. We also analyzed the differential expression of

immune checkpoint expression in those two groups. The RM_

Score high group showed significantly higher expression levels

than the RM_Score low group, as shown in Figure 5B,

importantly in step4 T cell recruiting, while the step7 killing

of cancer cells are more active in RM_score low group.

Additionally, we examined the differences in immune

checkpoint expression between the WM Score high and low

score groups. These genes’ expression levels varied significantly

between the two groups of samples, and they were significantly

higher in the WM Score high group than in the WM Score low

group (Figure 5D).

The role of RM_Score in drug sensitivity
and immunotherapy and chemotherapy
efficacy

In order to further understand how the RM_Score affects drug

response, we assessed the relationship between the RM_Score and

the response to drugs in cancer cell lines. As a result of Spearman

correlation analysis, we identified 52 significant correlations between

RM_Score and drug sensitivity in the Genomics of Drug Sensitivity

in Cancer (GDSC) database (Figure 6A, Supplementary Table S28).

Among them, forty-five pairs showed that drug sensitivity correlated

with the RM_Score, including the EGFR inhibitor Afatinib

(Rs = − 0.26, p = 4.12 × 10–13). Seven pairs exhibited drug

resistance correlated with the RM_Score, including PARP

inhibitor Olaparib (Rs = 0.35 p = 2.60E-15), TKI inhibitor

Axitinib (Rs = 0.47, p = 1.04E-27). A further analysis was

conducted to examine the signaling pathways of the genes

targeted by these drugs. It was found that drugs whose sensitivity

was associated with high RM_Score targeted cell cycle, chromatin,

and RTK signaling pathways. In contrast, the drugs associated with

low RM Score sensitivity targeted the MAPK and EGFR pathways

(Figure 6B). These findings suggest a correlation between RNA

modification patterns and drug sensitivity. Thus, the RM Score may

serve as a biomarker for determining the most effective treatment

strategies.

As the RM_Score appears to be associated with the immune

microenvironment of the tumor (Figure 5C), we examined its ability

to predict the response of patients to ICB treatment. A total of two

immunotherapy cohorts were analyzed in this study. As shown in

Figure 6C, the RM_Score high group had significant clinical benefits

and a markedly prolonged overall survival in the anti-PD-L1 cohort

(IMvigor210). However, there was no significant difference between

the 348 IMvigor210 patients’ responses to anti-PD-L1 blockers

(Figures 6D,E), including complete responses (CR), partial

responses (PR), stable diseases (SD), and progressive diseases

(PD). As shown in Figure 6E, we didn’t observe significant

differences between the immune subtypes of IMvigor210, namely

“immune inflamed”, “immune excluded”, and “immune desert”.

Additionally, TMB and neoantigen burden were similar in groups

with low and high RM_Score (Supplementary Figures S4C–E).

However, the situation is different in another anti-PD-1 cohort

(GSE111636). The RM_score was significantly higher in responder

to anti-PD-1 therapy group than progressor group (Figures 7C,D).

The situation is even more interesting in a breast cancer

chemotherapy cohort when we tried to better define the role of

RM_score in chemotherapy. Unlike the previous prostate cancer

cohort and the high-grade uroepithelial cancer cohort

(GSE111636), the survival analysis of the breast cancer cohort

showed significantly better survival in the low group than in the

high group (Figure 7A, p < 0.0001). Also, the chemotherapy

sensitive group exhibited lower RM_score than insensitive group

(Figure 7B, p = 0.048).

RM_Score related ceRNA network
construction

We then used R package limma to identify RM_Score high and

low risk grouping differential miRNAs, lncRNAs, and mRNAs.

mRNA, miRNA, and seven differential miRNAs, and 77 differential

lncRNAs were screened, respectively (Figures 7E–H, Supplementary

Table S30). Then the ceRNAnetworkwas constructed by combining

the regulatory relationships of the database. The network contained

a total of 15 mRNAs, 1 lncRNA and 1 miRNA (Figure 7I).

FIGURE 6 (Continued)
horizontal axis and the signaling pathway targeted by the drug on the vertical axis. The bar graph on the right shows the number of drugs
targeting each signaling pathway. The size of the point indicates the significance of the correlation. (C) Kaplan-Meier curves show overall survival in
the WM_Score-high (red) and -low (blue) subgroups after the immunotherapy in the IMvigor210 cohort. The grouping of patients is shown at the
bottom of the chart. P < 0.05 in the two-sided log-rank test was considered statistically significant. (D) The proportion of patients in the
IMvigor210 cohort with different responses to PD-L1 blockade immunotherapy. The fisher test was used to determine the statistical significance of
the difference. SD, stable disease; PD, progressive disease; CR, complete response; PR, partial response. (E) The difference in theWM_Score between
distinct clinical outcomes of anti-PD-L1 treatment in the IMvigor210 cohort.
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FIGURE 7
(A) Kaplan-Meier curves show overall survival in the WM_Score-high (yellow) and -low (blue) subgroups after the immunotherapy in the
GSE25066. The grouping of patients is shown at the bottom of the chart. P < 0.05 in the two-sided log-rank test was considered statistically
significant. (B) The proportion of patients in the GSE25066 with different responses to chemotherapy. The fisher test was used to determine the
statistical significance of the difference. (C) The difference between distinct between the WM_Score high and low groups in the GSE25066. (D)
The difference in the WM_Score between distinct clinical outcomes of anti-PD-1 treatment in the GSE111636. (E–I) WM_Score -High and -low
differential expression of miRNA, lncRNA, mRNA (E: differential volcano map; FGH: differential lncRNA, mRNA, miRNA heat map, respectively) and
ceRNA network (I: square is lncRNA, triangle is miRNA, circles are mRNAs).
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Discussion

Increasing evidence suggests that RNA modifications play a

crucial role in inflammation, innate immunity, and anti-tumor

activity by interacting with a variety of “writers.” The

interrelationships and functions of multiple types of RNA

modification “writers” in cancer are not yet fully understood.

Here, we reveal the overall variation in RNA modifications at the

transcriptional level: m6A, m1A, APA, and A-to-I RNA editing

enzymes; and their interrelationship in prostate cancer.

We identified two distinct RNA modification patterns based

on 26 RNAmodifying enzymes, defined two subtypes of prostate

cancer associated with RNA modification, and developed a

scoring model, RM Score, to evaluate the effectiveness of RNA

modification “writers” in individual patients. Intriguingly, it was

associated with a better prognosis in breast cancer but a worse

prognosis in prostate and bladder cancer. In addition, the

subtype with a high RM Score is distinguished by a significant

inhibition of the AR signaling pathway and a significant

activation of the estrogen pathway.

In our study, RM_score scores had opposite prognostic

predictive effects for two different tumors, the urological

cancer and breast cancer. It has been shown that the

androgen pathway and estrogen pathway play a different role

in these two types of tumors. Several key signaling pathways cross

over with the AR pathway, including the PI3K/Akt/mTOR and

MAPK pathways, as well as hormone receptors such as the

estrogen receptor and human epidermal growth factor

receptor 2.

It has been reported that androgens not only increase nAR-

positive BCa cell infiltration via the classical nAR, but also that

DHT and the novel membrane receptor mAR-SLC39A9 may

increase migration and infiltration of nAR-negative BCa cells by

altering Gαi protein-regulated MAPK/MMP9 intracellular

signaling (Chen et al., 2020). Inoue et al. found that AR

pathway is involved in the tumor growth modulating

ATF2 activity through ERK in bladder cancer cells (Inoue

et al., 2018).

Activated AR, on the other hand, inhibited the growth of

breast cancers driven by the ER through displacement of the ER

and critical transcriptional co-activators from chromatin, which

resulted in transcriptional downregulation (Hickey et al., 2021).

RNA modifications and androgen pathway effects have been

linked to prostate cancer progression in recent studies. The

gradual decrease of METTL14 (methyltransferase like 14) and

the increase of ALKBH5 affected the activity of AMPK, causing

an inhibition of autophagy and a subsequent suppression of

testosterone synthesis in Leydig cells (Chen et al., 2021b).

According to other studies, SIAH1 is a tumor suppressor

involved in PC pathogenesis by repressing CPSF1-mediated

AR-v7 generation and is a key regulatory factor (Xia et al., 2022).

mi206 played a key role in the differentially expressed ceRNA

network in high- and low-RM_Score subtypes, and

mi206 expression has been reported to be significantly

upregulated in the tumor-associated stromal fraction.

Nevertheless, mi206 plays a different role in prostate cancer

and breast cancer. It has been demonstrated that miR-206 is

highly expressed in breast tumors with no estrogen receptor

compared with those with estrogen receptor positive breast

tumors (Kondo et al., 2008). Specific to ER-negative breast

cancer, miR-206 expression is higher than in ER-positive

breast cancer (Adams et al., 2007). MiR-206 induces estrogen

non-dependent state in MCF-7 cells when forced to express in

these cells. Moreover, mi206 is significantly upregulated in

prostate cancer, but functions as a tumor suppressor

(Goljanek-Whysall et al., 2012; Singh et al., 2013; Walter

et al., 2013).

Finally, we demonstrate the potential therapeutic efficacy

of RNA modifiers in prostate cancer. According to the RM_

Score, resistance to drugs targeting the cell cycle or apoptotic

pathways may be associated with resistance to drugs targeting

MAPK or EGFR signaling pathways. These findings imply that

patients with a higher RM Score may benefit more from drugs

that target these signaling pathways than from those that

target the cell cycle or apoptotic pathways. By identifying

distinct RNA modifications in tumors, our findings expand

the scope for personalized chemotherapy and targeted

treatment of prostate cancer. Due to the retrospective

nature of the cohort and all our results are derived from

bioinformatics analyses of publicly available databases,

further additional experimental research is required. Still,

our findings are supported by multiple independent GEO

datasets, demonstrating their validity. Second, based on the

expression patterns of 24 writers to represent distinct RNA

modification patterns, we divided PC patients into two

clusters. Due to the lack of large-scale m6A-seq performed

in the PC cohorts, the precise RNA modification landscape is

unclear in clinical practice. Due to the lack of available data

sets, we only validated a few data sets, including breast cancer

and bladder cancer data sets. To draw more precise

conclusions, this relationship must be investigated further

in a large clinical cohort.
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