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Crohn’s disease (CD), a subtype of inflammatory bowel disease (IBD), causes

chronic gastrointestinal tract inflammation. Thirty percent of patients do not

respond to anti-tumor necrosis factor (TNF) therapy. Sialylation is involved in

the pathogenesis of IBD. We aimed to identify potential biomarkers for

diagnosing CD and predicting anti-TNF medication outcomes in CD. Three

potential biomarkers (SERPINB2, TFPI2, and SLC9B2) were screened using

bioinformatics analysis and machine learning based on sialylation-related

genes. Moreover, the combined model of SERPINB2, TFPI2, and

SLC9B2 showed excellent diagnostic value in both the training and

validation cohorts. Importantly, a Sial-score was constructed based on the

expression of SERPINB2, TFPI2, and SLC9B2. The Sial-low group showed a

lower level of immune infiltration than the Sial-high group. Anti-TNF therapy

was effective for 94.4% of patients in the Sial-low group but only 15.8% in the

Sial-high group. The Sial-score had an outstanding ability to predict and

distinguish between responders and non-responders. Our comprehensive

analysis indicates that SERPINB2, TFPI2, and SLC9B2 play essential roles in

pathogenesis and anti-TNF therapy resistance in CD. Furthermore, it may

provide novel concepts for customizing treatment for individual patients

with CD.
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Introduction

Crohn’s disease (CD) is a significant type of inflammatory bowel disease (IBD) that is

characterized by a chronic inflammatory condition that can affect any area of the

gastrointestinal tract (Adegbola et al., 2018; Cushing and Higgins, 2021).

Approximately 5% of people worldwide are affected by CD (Kaplan, 2015). In China,

the estimated incidence rate is 0.51–1.09 per 100,000 people (Ng et al., 2017; Li et al.,
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2019a). Currently, there are no curative treatments for CD. The

tumor necrosis factor (TNF) inhibitor infliximab, the first

biological response modifier, was licensed for treating CD in

1998 and increased patient response and remission rates

(Adegbola et al., 2018). Up to 30% of patients do not respond

to anti-TNF medications, and 50% of patients who initially

benefit from these medicines lose clinical improvement within

the first year, necessitating dosage increase or therapy change

(Adegbola et al., 2018; Ye et al., 2022). Therefore, exploring

effective therapeutic strategies for patients with CD is crucial.

Sialylation involves the addition of sialic acid to the terminal

end of glycoproteins, a biologically significant alteration involved

in microbial dysbiosis, gut inflammation, and immunological

responses (Li and Ding, 2019; Giron et al., 2020). A recent study

reported that sialylation of intestinal mucus by ST6GALNAC1 is

essential for commensalism and bacterial metabolite balance as

well as intestinal barrier integrity in IBD. The integrity of the

mucus is preserved by ST6GALNAC1-mediated sialylation,

which protected MUC2 from being degraded by certain

bacterial-secreted mucinases (Yao et al., 2022). Meanwhile, a

local release of free sialic acid during inflammation is probably

facilitated by the increase in sialylation of intestinal mucins

during colitis. This leads to an overgrowth of E. coli, which

exacerbates the pro-inflammatory response by intestinal

dendritic cells (Parker et al., 1995; Huang et al., 2015).

However, a comprehensive analysis of multiple sialylation-

related gene and their roles in CD is lacking. Therefore,

exploring expression patterns and functions of sialylation-

related gene may help to understand the heterogeneity and

pathogenesis of CD.

This study comprehensively analyzed the expression patterns

and functions of sialyation-related genes in CD using

bioinformatics and machine learning. First, patients with CD

were classified into two subtypes based on the expression of

differentially expressed sialylation-related genes. The immune

infiltration level and anti-TNF therapy response of patients with

CD of the two subtypes were analyzed. Weighted gene co-

expression network analysis (WGCNA), least absolute

shrinkage and selection operator (LASSO) regression, random

forest (RF), and support vector machine recursive feature

elimination (SVM-RFE) were applied to further screen

biomarkers for anti-TNF therapy response. Moreover, a

scoring system, the Sial-score, was established to predict the

response to anti-TNF therapy in patients with CD before or after

treatment.

Method

Data collection

Using the search terms “Crohn’s Disease and anti-TNF” or

“infliximab”, gene expression cohorts for CD were retrieved from

the Gene Expression Omnibus database. The following cohorts

were obtained: GSE16879 (213 CD inflamed tissues before and

after infliximab treatment and 13 normal tissues) (Arijs et al.,

2009), GSE111761 (lamina propria mononuclear cells isolated

from six CD tissues) (Schmitt et al., 2019), GSE42296 (peripheral

blood samples were obtained from 20 patients with CD) (Mesko

et al., 2013), GSE107865 (whole blood samples were collected

from 22 patients with CD) (Gaujoux et al., 2019), GSE102133

(55 inflamed CD tissues and 12 normal tissues) (Verstockt et al.,

2019), and GSE179285 (47 inflamed CD tissues and 31 normal

tissues) (Keir et al., 2021). The GSE16879, GSE111761,

GSE42296, and GSE107865 cohorts contained clinical

information on whether patients responded to infliximab

treatment. According to the clinician’s assessment, the

patients were classified according to their response to

infliximab based on endoscopic and histologic findings 6 or

14 weeks after the first infliximab treatment. Sialyation-related

genes were obtained from the GeneCards database using the

search term “sialyation”. Genes with relevance scores >1 were

selected for further analysis.

Differential analysis and unsupervised
clustering

The Limma R package was used for differential analysis

(Ritchie et al., 2015). Differentially expressed genes (DEGs)

were classified as genes with an adjusted p-value <0.05 and |

log2 (fold-change)| > 1.0. Sangerbox3.0 (http://vip.sangerbox.

com/) was used to perform a consensus clustering algorithm

using the R package ConsensusClusterPlus (Wilkerson and

Hayes, 2010; Shen et al., 2022) to identify distinct subtypes.

This was repeated 1,000 times to confirm clustering stability.

Supplementary Table S1 shows the group information following

the unsupervised clustering of cohorts.

WGCNA and single-sample gene set
enrichment analysis

WGCNA was used to identify the related modules. The

minimum number of module genes was set to 30, the

parameter deepslip was set to 4, and the mergeCutHeight was

set to 0.25. The hierarchical clustering dendrogram summarizes

the gene modules with different colors (Langfelder and Horvath,

2008; Ye et al., 2021). Based on the cutoff criteria, genes with high

connections in clinically relevant modules were identified as hub

genes. The ClueGO plug-in was used to analyze biological

functions in Cytoscape 3.8.2.

The relative level of immune cell infiltration was estimated

using single-sample gene set enrichment analysis (ssGSEA). The

gene signatures of the immune cells are listed in Supplementary

Table S2 (Bindea et al., 2013).
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Screening biomarkers based on machine
learning

LASSO regression was applied to select potential biomarkers

using the glmnet R package (Friedman et al., 2010). Binomial

distribution variables were then used in the LASSO classification

coupled with one standard error lambda value for the minimum

criterion. RF, a tree-based ensemble of tree-structured classifiers,

was created using the package “randomForest” using least error

regression trees for clinical feature genes. The importance of the

factors was ranked using “Mean Decrease Accuracy” and “Mean

Decrease Gini”. SVM is a type of generalized linear classifier that

uses supervised learning to categorize binary data (Huang et al.,

2018). SVM-RFE, a SVM-based algorithm, was applied to select

relevant genes through nonlinear kernels (Sanz et al., 2018).

Construction of the predicting score
system

The expression of potential biomarkers was used to develop a

scoring systembased onprincipal component analysis (PCA) to predict

the response to anti-TNF medication. The Sial-score was calculated as

follows: Sial-score = ∑PC1i, where i is the potential biomarker.

Results

Identification of sialyation-related DEGs

Differential expression analyses were performed using the

limma R package in the GSE16879 cohort to identify sialyation-

related DEGs between the CD and normal samples. A volcano plot

of the DEGs is presented in Figure 1A. 215 sialyation-related genes

were used to overlapped with DEGs, a total of 40 sialyation-related

DEGs were obtained, including 38 upregulated and two

downregulated (Figure 1B). Furthermore, ClueGO was used to

explore the biological functions of the sialyation-related DEGs.

As shown in Figure 1C, sialyation-related DEGs were

significantly enriched in leukocyte adhesion to vascular

endothelial cells, positive regulation of leukocyte cell-cell

adhesion, microglial cell activation, endothelial cell differentiation,

and integrin-mediated signaling pathways.

Unsupervised clustering for sialyation-
related DEGs

Unsupervised clustering was used based on the expression files

of the 40 sialyation-related DEGs. As shown in Figure 2A and

Supplementary Figure S1, the two clusters had the best clustering

effectiveness in the GSE16879 cohort. The transcription patterns of

the sialyation-related DEGs between the two clusters differed

significantly according to PCA (Figure 2B). Furthermore, we

explored the number of patients who did or did not respond to

anti-TNF therapy in clusters A and B. Patients in clusters A and B

responded to anti-TNF therapy in proportions of 85.0% (n = 20)

and 17.6% (n = 16), respectively (Figure 2C). ssGSEA was used to

investigate the differences in immune infiltration between the two

clusters. Figure 2D demonstrates significant differences between

the two clusters of 28 immune cells; cluster B had a comparatively

higher infiltration level than cluster A. Supplementary Table S3

lists the immune cell infiltration in the GSE16879 cohort.

Identification of potential biomarkers for
predicting anti-TNF therapy response

Based on the excellent ability of subtypes to distinguish

patients who had a response and nonresponse to infliximab,

FIGURE 1
Identification of Sialylation-related DEGs in GSE16879 cohort. (A) A volcano plot of DEGs between CD and normal samples. (B) Intersection of
DEGs and Sialylation-related genes. (C) Biological functions of Sialylation-related DEGs. Each color represents a different functional group. Each
node represents a GO term and each line represents a correlation between different terms.
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we further screened the biomarkers for predicting anti-TNF

therapy response. WGCNA was used to identify modules

related to anti-TNF response. To build a scale-free

network, the soft threshold β was set to 2 and no scale

R2 = 0.91. (Supplementary Figures S2A,B). Nine gene

modules were identified, and the resulting gene

dendrograms and module colors are presented in

Supplementary Figure S2C. Figure 3A demonstrates that

the blue module was negatively correlated with anti-TNF

therapy response (module trait correlation = −0.54),

whereas the green module had a positive correlation with

anti-TNF therapy response (module trait correlation = 0.62).

As patients in clusters A and B had different responses to anti-

TNF treatment, the DEGs between clusters A and B were

identified to explore the heterogeneity and characteristics of

the two clusters (Figure 3B). Furthermore, to screen the genes

related to anti-TNF treatment response, the genes in the blue

and green modules were overlapped with DEGs between

clusters A and B. As shown in Figure 3C, 35 and

19 overlapped genes were obtained, respectively. A total of

54 genes for further analyses. The biological functions of

54 intersecting genes were significantly enriched in

metabolism-related pathways (Figure 3D).

54 intersecting genes were used to screen he potential

biomarkers using machine learning. Twenty-three genes with

clinical manifestations were selected using LASSO regression

(Figures 4A,B). RF and SVM-RFE were used to identify genes

related to the anti-TNF response. As shown in Figures 4C,D,

seven genes were selected using both the RF and SVM-RFE

algorithms. We analyzed the predictive abilities of 7 genes,

SERPINB2 (area under the curve, AUC = 0.885), TFPI2

(AUC = 0.868), and SLC9B2 (AUC = 0.856), which could

easily distinguish responders and non-responders before

treatment (Figure 4E). As shown in Figures 4F–H, the

expression levels of SERPINB2, TFPI2, and SLC9B2 are

significantly downregulated in response group. Therefore,

SERPINB2, TFPI2, and SLC9B2 were selected for further

analyses.

FIGURE 2
Identification of subtypes in CD. (A) Consensus clustering matrices of sialylation-related DEGs (k = 2). (B) PCA for the expression of sialylation-
related DEGs to distinguish two subtypes. (C) Stacked bar plot of percentage of response and non-response patients in two subtypes (D) Infiltration
fraction of immune cells in two subtypes (*p < 0.05, **p < 0.01, ***p < 0.001; ns, not significant).
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Diagnostic value of SERPINB2, TFPI2, and
SLC9B2 in CD

The expression levels of SERPINB2, TFPI2, and SLC9B2 were

significantly upregulated in CD (Figures 5A–C). We further

constructed a combined model using logistic regression to

explore the diagnostic value of SERPINB2, TFPI2, and

SLC9B2. With an area under the curve (AUC) of 0.917, the

ROC of the combined model demonstrated excellent

discrimination for CD diagnosis (Figure 5D). In addition, the

GSE179285 and GSE102133 cohorts were used to validate the

diagnostic ability of the combined model. As shown in Figures

5E,F, the AUCs of the combined model in the GSE179285 and

GSE94648 cohorts were 0.952 and 0.915, respectively.

Predictive value for Anti-TNF therapy
response

Furthermore, a Sial-score based on the expression levels of

SERPINB2, TFPI2, and SLC9B2 was constructed to predict

anti-TNF responses. As shown in Figures 6A,B, the Sial-score

had outstanding discrimination for responders and non-

responders to anti-TNF therapy before (AUC = 0.912) or

after (AUC = 0.920) treatment in the GSE16879 cohort.

Subsequently, we collected three GEO cohorts to validate the

predicted values of the Sial-score. As shown in Figure 6C, the

Sial-score could easily distinguish responders from non-

responders to anti-TNF therapy. Interestingly, the Sial-score

could predict anti-TNF response in peripheral blood samples

from patients with CD in the GSE422696 and

GSE107865 cohorts (Figures 6D,E).

Patients with CD in GSE16879 were divided into Sial-high

and Sial-low groups based on the Sial-score. To explore the

characteristics of the Sial-high and Sial-low groups, we

performed GSEA using the REACTOME pathway database.

As shown in Figures 6F–I, the Sial-low group was mainly

associated with cholesterol biosynthesis. In contrast, the Sial-

high group showed conspicuous enrichment in immune-related

pathways such as interleukin 10, interleukin 4, and interleukin

13 signalings. As shown in Figure 6J, patients in the Sial-high and

the Sial-low groups responded to anti-TNF therapy in 15.8% (n =

FIGURE 3
Characteristic of two subtypes. (A) WGCNA module trait relationships in response and non-response groups, which contained the
corresponding correlation and p-value. Each colored row on the left represents a gene module (B) Volcano plot of DEGs between two subtypes. (C)
Intersection of DEGs and response-related genes. (D) Biological functions of intersected genes.
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19) and 94.4% (n = 18) of the patients, respectively. Further

analysis of the two groups with immune cell infiltration showed

that the Sial-high group was enriched in immune cell infiltration

(Figure 6K). Figure 6L illustrates the distribution of patients in

the two subtypes, two Sial-score groups, and the response status

to anti-TNF therapy.

FIGURE 4
Screening the potential biomarkers. (A) LASSO coefficient profiles of the intersected genes. (B) Selection of the optimal tuning parameter (λ). (C)
Lollipop chart of biomarkers selected by RF. (D) Lollipop chart of biomarkers selected by SVM-RFE. (E) Receiver operating characteristic (ROC) of the
selected biomarkers (F–H) The expression levels of SERPINB2, TFPI2, and SLC9B2 in response and nonresponse groups in GSE16879, respectively.
(***p < 0.001).
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Discussion

Anti-TNF treatment helps patients with CD have better

clinical outcomes, mucosal healing rates, and quality of life,

although 10%–40% of individuals predominantly have no

response (Cui et al., 2021). Pathophysiological heterogeneity

has been a key factor limiting the outcome of new drug trials

in patients with IBD over the past two decades (Bilsborough et al.,

2016). However, identifying novel biomarkers is urgently needed

to explore heterogeneity and provide personalized treatments for

patients with CD.

Recently, Yao et al. (2022) reported that intestinal mucus

sialylation by ST6GALNAC1 is critical for commensalism and

bacterial metabolite homeostasis and that treatment with

sialylated mucins reduces intestinal inflammation. Therefore,

analyzing the expression patterns and functions of sialylation-

related genes may benefit CDmanagement. We collected data on

sialylation-related genes and identified 40 genes that were

differentially expressed in CD. To further explore the

heterogeneity of CD, the two subtypes were analyzed using

the unsupervised clustering method based on the expression

of 40 sialylation-related genes. Anti-TNF therapy responders and

non-responders can be distinguished by two subtypes, with

subtypes with more non-responders exhibiting higher levels of

immune infiltration.

To screen biomarkers for predicting the outcome of anti-

TNF medication, we identified two modules related to the anti-

TNF response using WGCNA. Considering the unique

characteristics of the two subtypes, DEGs between the two

clusters were identified and overlapped with the two modules.

Furthermore, SERPINB2, TFPI2, and SLC9B2 were selected as

biomarkers of anti-TNF response using LASSO, RF, and SVM-

RFE algorithms. Our results also indicated that the diagnostic

model combining the expression of SERPINB2, TFPI2, and

SLC9B2 showed excellent performance in both the training

and validation cohorts.

SERPINB2, also known as plasminogen activator inhibitor 2,

is highly expressed in peripheral blood from CD patients

(Burczynski et al., 2006). Wei et al. (2015) reported upregulated

SERPINB2 might serve as a target gene of downregulated miR-205

to activate inflammatory signal pathways in CD rat model. In

several types of cancer, including colorectal cancer, TFPI2 has been

identified as a tumor suppressor gene (Li et al., 2019b).

TFPI2 promoter robustly hypermethylated in the patients with

FIGURE 5
Exploration and validation of diagnostic values of selected biomarkers. (A–C) The expression levels of SERPINB2, TFPI2, and SLC9B2 in CD and
normal tissues in GSE16879, respectively. (D–F) ROC of combined model in GSE16879, GSE179285, and GSE102133, respectively. (*p < 0.05, **p <
0.01, ***p < 0.001).
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CD (Kim et al., 2020). The methylation rates of TFPI2 elevated

with progression of disease in inflamed colon tissue from patients

with IBD, it seem to be a potential riskmarker for colitis-associated

cancer (Gerecke et al., 2015). SLC9B2 belongs to SLC9 family,

mainly act as Na+/H+ exchangers and present in epithelial cells of

the small intestine (Fuster et al., 2008; Cao et al., 2019).

SLC9B2 deficiency may have an indirect effect on insulin

secretion by interfering with clathrin-mediated endocytosis in

β-cells (Fuster and Alexander, 2014).

To improve the clinical significance of our study, we

constructed a Sial-score system based on SERPINB2, TFPI2, and

SLC9B2 expression. The Sial-score has an outstanding ability to

predict and classify the response to anti-TNF therapy in patients

with CD before or after treatment. Importantly, only 15.8% of

patients responded to anti-TNF therapy in the Sial-high

group. However, 94.4% of patients with a low Sial-score

responded to anti-TNF therapy. Moreover, the Sial-high group

was significantly enriched in immune-related pathways and

showed a high level of immune cell infiltration. This indicated

that immune cell infiltration plays a role in anti-TNF resistance.

Martin et al. created a cell module named GIMATS, composed of

IgG plasma cells, inflammatory mononuclear phagocytes, activated

T cells, and stromal cells. Cell module scores differed between non-

responsive and responsive patients with CD. Monocyte-derived

macrophages dominated lesions enriched in the GIMATS module

(Martin et al., 2019). The failure of patients with CD to respond to

the anti-TNF medication has been attributed to innate

transcriptional dysregulation of monocytes, resulting in

increased activation of pro-inflammatory pathways (Gaiani

et al., 2020). Our results indicate that SERPINB2, TFPI2, and

SLC9B2 play important roles in pathogenesis and resistance to

anti-TNF therapy in CD.

FIGURE 6
Construction of the Sial-score. (A) ROC of the Sial-score and selected biomarkers to distinguish responders and non-responders before
treatment in GSE16879 cohort. (B) ROC of the Sial-score to distinguish responders and non-responders after treatment in GSE16879 cohort. (C–E)
ROC of the Sial-score to distinguish responders and non-responders in validation cohorts GSE111761, GSE42296, andGSE107865, respectively. (F–I)
GSEA enrichment in Sial-low group. (F,G) GSEA enrichment in Sial-high group. (J) Stacked bar plot of percentage of response and non-
response patients in Sial-high and Sial-low groups. (K) Infiltration fraction of immune cells in Sial-high and Sial-low groups (L) Alluvial diagram of
subtype distributions in groups with different Sial-scores and outcomes of anti-TNF therapy response. (*p < 0.05, **p < 0.01, ***p < 0.001; ns, not
significant).

Frontiers in Genetics frontiersin.org08

Ye et al. 10.3389/fgene.2022.1065297

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1065297


However, our study has some limitations. First, these datasets

lacked data regarding important clinical variables such as disease

activity and duration, previous bowel resection, and smoking. Second,

we used retrospective data from public databases for our research.

Future prospective studies are needed to confirm our findings.

Conclusion

In summary, a valid diagnostic model and scoring system for

predicting anti-TNF therapy response was constructed based on

the expression levels of SERPINB2, TFPI2, and SLC9B2. Our

findings may aid auxiliary diagnoses and provide personalized

treatment strategies for patients with CD.
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