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Early identification of key biomarkers of malignant cancer is vital for patients’

prognosis and therapies. There is research demonstrating that microRNAs are

important biomarkers for cancer analysis. In this article, we used the DNA strand

displacement mechanism (DSD) to construct the DNA computing system for

cancer analysis. First, gene chips were obtained through bioinformatical

training. These microRNA data and clinical traits were obtained from the

Cancer Genome Atlas (TCGA) dataset. Second, we analyzed the expression

data by using a weighted gene co-expression network (WGCNA) and found four

biomarkers for two clinic features, respectively. Last, we constructed a DSD-

based DNA computing system for cancer analysis. The inputs of the system are

these identified biomarkers; the outputs are the fluorescent signals that

represent their corresponding traits. The experiment and simulation results

demonstrated the reliability of the DNA computing system. This DSD simulation

system is lab-free but clinically meaningful. We expect this innovative method

to be useful for rapid and accurate cancer diagnosis.
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Introduction

There are two primary methods involved in cancer diagnosis. One is the identification

of key biomarkers in gene chips by using bioinformatical methods, such as differential

expressed genes (DEGs) array, clinical traits analysis (Xu et al., 2000; Ryu et al., 2002). The

other involves clinical methods, for example, tumor site angiography, blood investigation,

extracellular vesicle test, etc. (Maton et al., 1987; Masilamani et al., 2004; Verma et al.,

2015). Using clinical procedures to diagnose diseases is reliable, but laborious and time-

consuming. With the help of bioinformatics technology, we can analyze vast amounts of

data and statistically identify critical biomarkers (Li et al., 2003; Abeel et al., 2010). Still,

those biomarkers, hub genes, and proteins require verification. Therefore, a clinically

reliable, simple, and efficient method is needed.

Recently, microRNAs (miRNAs) have been frequently employed as cancer-specific

biomarkers (Yanaihara et al., 2006; Reddy, 2015). miRNAs are small and highly conserved

non-coding RNAs that are endogenously expressed in cells. They functioned as the key
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regulators for gene expression. miRNAs have been found in a

variety of body fluids and their quantity is stable. Therefore,

miRNAs are ideal biomarkers for cancer diagnosis

(Schwarzenbach et al., 2014).

Researchers have established many miRNA datasets, for

example, the Cancer Genome Atlas (TCGA), Gene Expression

Omnibus (GEO), International Cancer Genome Consortium

(ICGC), etc. To identify the hub-gene in those datasets,

bioinformatical methods, for example, the edgeR (Robinson

et al., 2010), limma packages (Ritchie et al., 2015) from the

Bioconductor project (Anders et al., 2015), provide a complete set

of statistical methods for dealing with these data.

DNA as a natural material is biocompatible and

programmable (Seeman, 2003; Rothemund, 2006). It can be

assembled into arbitrary 2D shapes as well as many 3D

structures (Shi et al., 2015; Shi et al., 2016; Ong et al., 2017;

Chen et al., 2020a; Chen et al., 2020b; Chen et al., 2022a). DNA

nanostructures can function as drug transporters for tumor-

specific delivery (Lee et al., 2012; Linko et al., 2015). Recently,

DNA based electrochemical biosensors have been introduced as a

novelty approach for pathogen detection (Zhang et al., 2018;

Kwon et al., 2020). In the field of information science, DNA can

be used for computing. Various DNA computing models have

been performed (Xu, 2016; Xu et al., 2018; Song and Reif, 2019;

Woods et al., 2019). Among them, the DNA Strand

Displacement (DSD) computing model is highly efficient.

DSD was proposed by Yurke et al. (Turberfield et al., 2003). It

involves strand displacement with toehold mediates. Moreover,

individual DSD units can be cascaded to form multilayer,

multiple inputs and outputs computing systems.

Based on the DSD mechanism, many computational works

have been accomplished. Qian et al. designed the seesaw gate and

scaled those gates up to a larger digital computing circuit (Qian

and Winfree, 2011). John Reif et al. formed renewable time-

responsive DNA circuits (Garg et al., 2018). Fan et al. (Wang

et al., 2020) implemented digital computing using DNA-based

switching circuits. Chen et al. developed the tic-tac-toe game via

DSD (Chen et al., 2022b). Zhu et al. created a DSD-based DNA

encryption system (Zhu et al., 2022). Odd parity checkers (Eshra

and El-Sayed, 2014), Sigmoid functions (Salehi et al., 2018), and

even larger-scale neural networks (Qian et al., 2011) can be

implemented.

In this research, we constructed a two-layer DNA computing

system to analyze gastric cancer and its functional traits. We

obtained the miRNA data from ATGC datasets, and then

differential analysis methods were applied to seek the distinct

miRNA biomarkers. Further, a weighted gene co-expression

network (WGCNA) (Langfelder and Horvath, 2008) was

established to find the correlated clinical traits and gene sets. The

hub genes in those sets were selected as biomarkers for functional

classification. In theDNA computing system, those biomarkers were

the inputs.We implemented the “winner take all” strategy for cancer

FIGURE 1
Workflowof the DNA computing system. Gene expression data were used to identify the biomarkers in Differential expression (DEGs), and hub-
genes were found byWeight gene co-expression network analysis. Those biomarkers and hub-geneswere submitted to the DNA computing system
for cancer analysis and functional classification, respectively.
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analysis. The computing accuracy is up to 80%. Last, we integrated

the DSD logic gates and synthesized the microRNAs’ cDNA. These

cDNAs were used as inputs. Fluorescence intensity was applied to

represent the output signals. Figure 1.

Materials and methods

The synthetical oligonucleotides used in this experiment were

purchased from Sangon Biotech Co., (Shanghai, China) with Ultra-

Page purification. Fluorescent modified strands were dissolved in

pure water without ions. General strands were dissolved in 1×TE

Buffer (40 mMTris base, 20 mMacetic, 2 mMEDTA, pH= 8.0). All

dissolved strands were m Ieasured with a UV 260 nm

spectrophotometer and stored at 20°C.

All the gates are assembled by fluorescent molecules and

quenched molecules in a 1:1 ratio, acorroding to their design

scheme. And then the mixed solution was incubated in a thermal

cycle machine, from 50°C to 4°C. The fluorescent signals were

measured using ABI QuantStudio Plus (Thermofisher,

United States). The mixed gates should be maintained at 4°C

before adding the input strands. The fluorescent signal was

measured every 10 s, 100 times. The trajectory lines were

drawn by Python Echart.

RNA sequence data and corresponding clinic data of gastric

cancer were obtained from the ATGC dataset. There are 46 normal

cases and 443 cancer cases with miRNA expression quantitative

traits. Samples without clinic profiling were deleted (Supplementary

Excel S1). Gene expression differential analysis was implemented by

“limma” R package (Ritchie et al., 2015). The logarithmic fold

changes of UP&DOWN regulated genes (LogFC>1) and p-value

(p < 0.01) were selected to screen out DEGs.

Results and discussion

DNA computing for cancer diagnosis

Figure 2 depicts the findings of the limma analysis. We chose

the top two up- and down-regulated miRNAs (Figure 2A) as

FIGURE 2
(A) Fold change histogram table of the miRNA candidates. (B) Enhanced Volcano picture of 131 selected miRNAs. The deep red dots are
overlapped miRNAs. Top right and left dots are those significance different miRNAs.
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cancer and health input biomarkers, respectively. hsa-mir-196a-

1 and hsa-mir-196a-2 are cancer-representative inputs (positive

group). The health-represented inputs (negative group) are hsa-

mir-6510 and has-mir-1–2. Subsequently, the input sequences of

those strands were converted to their corresponding cDNA

sequences for DNA computing. Their FPKM (Fragments Per

Kilobase Million) value of gene expression data represents their

concentration. Additionally, we set the logFC value as the DSD

binding rate, that is logFC × k, k is default binding parameter (k

is 0.003nM/s−1).

The DSD mechanism involves two domains: the toehold

domain, and the migration domain. The toehold domain will

bind to the unpaired area with its corresponding gate, then its

migration domain will displace the paired area. Finally, the

output strand will be replaced at the gate (Figure 3A). The

computing process consists of two steps. First, inputs of the

positive and negative groups were added together, respectively.

Then, we subtracted the two groups to get the dominant one. In

summary, it is a simple winner-take-all strategy with four inputs

and a two-layer DNA computing system (Figure 3B).

The output strands were modified with fluorescent dyes, and

they were implemented as the report signal. In this system, the

toehold binding rate is an important factor that affects the

reaction efficiency. The binding rate is a default factor in the

DSD simulation system, which is the unit of concentration−1

time−1 (binding = k, 0.003 nM/s−1). LogFC is the value of the

average expression of the case group minus the average

expression of the control group. It represents the fold change

of each target. We directly entered this value into the DSD

simulation system, and the binding rate will be processed

under the guidance. As a result, the miRNA reaction rate will

be limited.

The chosen miRNAs served as the inputs for the DNA

computing system. We set their FPKM value as the input

strands’ concentration. The logFC values were set to the binding

rate, that is logFC×k. As illustrated in Figure 3B, mir-196a-1 and

mir-196a-2 were the tumor group, when combined with gate1, they

generated output strands 1&2. In the tumor-representing group, the

output strands were FAM-labeled. In the health-representing group,

mir-6510 andmir-1-2 actedwith gate2 and produced output strands

that were labeled with ROX. Last, all the output strands competed in

gate 3. The concentration of gate 3 is the average concentration of

mir-6510 and mir-1-2, which is set at 17 nM. Running through gate

3, the winner will take all. Then, we can differentiate between tumor

and healthy tissue based on their respective fluorescence signals. The

DNA computing results are shown in Figure 4.

Figure 4 shows the DNA computing results. The DSD reactions

can be finished in a few minutes, which means the computing

system can quickly get the detection results. We noticed that the

computational results were related to the tumor and health group’s

concentration. The greater the differences between tumor and

health, the more distinct the computed results. All the

computation results are attached in Supplementary Excel S2. The

statistical results are shown in Figures 4C,D, and the confusion

matrix shows that DNA computing accuracy is 99.7% for tumor

detection and 89.8% for health detection. The total computational

accuracy in clinical cases is 94.7%. It should be noted that PFKM

values may be subject to measurement errors, which affect the

computation precision.

Following the DSD system, we then validated these fourmiRNA

biomarkers via their synthesized cDNAs. We utilized the K-means

(K = 10) approach to classify 46 normal cases and 443 cancer cases,

each into 10 groups. We believe that these twenty cases are broadly

typical. Then, the main case inside each class was selected for

validation. The FPKM values of these 20 cases are illustrated in

Supplementary Excel S3. We verified these 20 cases by adding the

synthesized cDNA based on their FPKM values (TCGA original

data), the concentration unit is nM. The cancer-related strands were

synthesized with FAM fluorophore modification, and normal-

related strands were ROX fluorophore modification. Figure 5

shows the fluorescent results.

There are 16 cases that can be clearly distinguished. The ROX

fluorescent is predominant in the health group from cases 1 to 10.

whereas in the cancer group, FAM fluorescent is predominant.

The DSD computing accuracy is 80%. The remaining four cases

FIGURE 3
(A) The DSD mechanism, the input strand has two domains:
the toehold domain and the migration domain. Input strand can
displace the output strands with toehold domain mediated. It is a
simple one input one output DSD system. (B) The DSD
computing system. Four inputs one outputs system.Output results
were reported by fluorescent dyes.
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are reduced to negligible signals. We assume that this is because

the concentration of target cDNAs in the four cases is too low to

be identified. Because their concentration is less than the

threshold gate 3. Actual fluorescent signal data are included in

the Supplementary Excel S2–S5.

Further, we constructed a weighted gene co-expression

network (WGCNA) and selected some biomarkers for the

positive and negative correlated groups. Then we used those

biomarkers as inputs of the DNA computing system for

functional classification.

DNA computing with weighted gene co-
expression network-based clinical
classification

WGCNA is a whole-inspection method to analyze genes and

traits. WGCNA treats genes as a whole set that are closely

connected to a certain clinical trait. In the set, genes were

depicted as points, and gene-to-gene relationships were

depicted as edges. The gene-to-gene correlation was calculated

by its expression value. Therefore, genes were connected to form

a scale-free network. Then, the clustering method was applied;

typical genes were clustered as a set (gene module). Last, a

module-to-clinical trait relationship was established, and those

modules were depicted as positive or negative correlates to one

specific clinical trait.

In this work, we used the WGCNA R package (Eshra and

El-Sayed, 2014) to perform the network and construct a

module-trait matrix. First, the gene-to-gene relationship

was calculated by the covariance function. Then, the power

function was used to exclude weak connections, which is

called the soft-thresholding power. It is a key factor that

decides the mean connectivity of the genes. Typically, the

soft-thresholding power ranges from 1 to 20. A suitable

power value makes the topology model fit index over 0.8

(model scale between 0 and 1). The index and power results

are illustrated in Figure 6D. Second, genes were clustered

FIGURE 4
DNA computing results. (A)Case “TCGA-3M-AB46-01”: y-axis is the output strand’ concentration; the x-axis is the reaction time. The green line
is the tumor group with FAM fluorescent labels. The red line is the health group with ROX labeled. The green line is higher than the red line, which
indicates, in this case, the tumor group predominates. (B) 16 typical cases. The whole 490 DSD computing results are attached in Supplementary
Material S2. The x-axis represents the difference in the concentration of the input DNA strands, the y-axis indicates the difference in the
fluorescent intensity of the outputs (C)DSD simulation results, there are 138 health cases computed as health, 14 health cases computed as tumor. In
all the 353 tumor cases, 342 cases were computed as tumor, and 11 cases were computed as health. (D) The computational accuracy of tumor cases
is 78.7%, while the accuracy of health cases is 92.7%.
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using hierarchical clustering, and gene modules are

illustrated in different colors. The cluster dendrogram is

depicted in Figure 6A. Last, the modules-trait relationship

was established by using Pearson correlation, as shown in

Figure 6B.

Figure 6 shows the WGCNA analysis results. After calculating

power and clustering, genes were divided into 17 modules. The

modules-trait relationship is illustrated in Figure 6B. The value in

each panel is the module-trait relationship value. We found that the

MEturquoise group and MEmidnightblue group had a strong

positive and negative correlation with the tissue prospective

indicator, respectively. (Tissue retrospective indicator and the

tissue prospective are two correlated traits). Therefore,

MEturquoise and MEmidnightblue can represent those two

clinical traits. Furthermore, we discovered that MEturquoise and

MEpink have a weak correlation with lymph node counts.We chose

the hub-gene in each module as the biomarker for DNA computing

(the hub-gene in the same module changes when it correlates to

different clinical traits). Figure 6C shows the hub-gene (hsa-mir-99a)

in turquoise when correlated to lymph node count. The hub gene

was calculated by adding all the weight values of connective nodes.

We chose the lymph node count, tissue prospective

collective indicator as the two clinical traits for functional

classification. The hub gene with positive and negative ties is

chosen as the input. Therefore, hsa-mir-99a in MEturquoise

and hsa-mir-451a in MEpink were the inputs for lymph node

count classification. Has-mir-125b-1 in MEturquoise and has-

mir-203b in MEmidnightblue are two inputs for the tissue

collection indicator. The DNA computing systems are shown

in Figure 7.

The structure of the DNA computing system for those two

clinical traits is the same, except for the Gates sequences,

which were correspondingly modified. We chose hub-gene in

each module as the inputs. These positive and negative related

biomarkers reacted with the two-layer DSD-based system, and

produced the final strands that are labeled with either FAM or

ROX signal. The final output correlates with the expression of

its clinical trait. If the FAM signal predominates in the lymph

node trait, it implies fewer lymph nodes. If ROX is dominant,

the situation is the opposite. In the tissue collection indicator

trait, FAM/ROX correlates to the high/low expression of tissue

number, respectively. Figure 8 shows the DNA computing

results (statistics results are included in Supplementary

Excel S4).

In clinical analysis, researchers usually set node number

15 as the survival threshold for prognostic criteria (Liang et al.,

2017; Xia et al., 2019). Patients with node numbers higher

than 30 have a poor survival rate. In the lymph node examined

FIGURE 5
DNA computingwith fluorescent signal results. The red lines represent the trajectory of ROXmodified signal, and the blue line is the trajectory of
the FAM signal. The y-axis is Fluorescent intensity, X axis is the cycle number, 10 s is one cycle (A) The normal group cases 1–5. (B) The normal group
cases 6–10 (C) The cancer group cases 11–15. (D) The cancer group cases 16–20.
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group, we divided the node count into 3 parts, from low to

high. There are 190 cases in part one (node number lower than

15), 96 cases in part two (node number 16–28), and 106 cases

in part three (node number 29–105). DNA computing results

showed that mir-99a dominated in the lower node number

parts. The accuracy was 72.6% and 65.6% in part one and part

FIGURE 6
The example of WGCNA network analysis. (A) The gene cluster dendrogram. Genes are clustered into 17 modules, which are illustrated in
different colors. (B)Module-trait relationships: there are 13 clinic traits. Module and trait relationships are illustrated in red and green. The red color
shows that they are positively related, and the green color means they are negatively related. (C) Example of a gene topology graph in the turquoise
module. The hub gene in this module (has-mir-99a) is highlighted in yellow. (D) gene-gene scale independence and module fit
relationship. The red line is the suitable threshold for module fit. We chose power = 7 as the best factor, as a higher power value will make the gene
topology graph sparse.
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two, respectively. The average accuracy for mir-99a was 70%

(201 correctly computed cases out of all 286 cases). Mir-451a

dominated in the higher node part, DNA computing accuracy

is 72.7%. The DNA computing accuracy for this trait is not

high enough. We suppose the reason lies in the coefficient

value. The coefficient p value for miRNA biomarkers and

lymph node trait is 0.25, which is not high. It indicates that the

connection between miRNA and this trait is weak.

The tissue prospective collection indicator has only two

values: “Yes” and “No.” We found mir-125b has no clear

association with tissue indicator, as the computed result was

low (56%). However, that is reasonable. “No indicator” means

there are no obvious carcinogenic factors connected with this

trait. While in the “Yes” group, mir-203b is highly correlated, the

DNA computing accuracy was 85.5%. The statistical results are

included in the Supplementary Material.

FIGURE 7
DSD-based DNA computing system for functional classification. (A) Gene biomarkers mir-99a and mir-451a for lymph node examined count
classification. FAM and ROX were attached to the final output strand. FAM/ROX dominates the high/low expression of lymph node counts. (B) Gene
biomarker mir-125b-1 and mir-203b for tissue prospective collection indicator value classification. FAM/ROX dominates the high/low expression of
this trait.

FIGURE 8
(A) Lymph node number computed results. The y-axis is computational accuracy. The x-axis is the node number. Green bars show themir-99a
FAM modified group. The red bar shows the mir-451a ROX modified group. When the lymph node number is under 15, FAM dominates, and the
computed accuracy is 72.6%; when the node number is between 16 and 28, FAM dominated, and the computing accuracy is 65.6%; when the node
number is between 29 and 105, ROX strand dominated, the DNA computing accuracy is 72.7%. (B) Tissue prospective collective indicator
computed results. The indicator “Yes” or “No” was transformed to 1 or 0. Mir-125b correlates to the 0 indicator, and the computed accuracy is 56%;
mir-203b correlates to 1 indicator, and DNA computed accuracy is 85.5%.
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We randomly chose five cases in lymph node samples that were

less than or over 28, respectively. The synthesized cDNA strands

were added to the DSD system. The concentration of the input

strands follows their expression number in nM units. The strands in

group one (less than 28 nodes) were modified with FAM

fluorophore, and group two (over 28 nodes) were modified with

ROX fluorophore. The DSD computing results are illustrated in

Figure 9. The real-time fluorescence data is illustrated in

Supplementary Excel S5. Excel instructions are added.

The DNA computing outcomes were not perfectly associated

with simulation or statistical outcomes. We found some turbulence

and fluctuations in the fluorescent signals. We think deviation could

be generated in manual operations. Leakage may accrue during the

DNA strand’s reaction process. The red and blue lines show the

accurate reaction process. Therefore, we did not amend these

deviations. Additionally, the red and blue lines show the correct

computing results (high/low signal).

DNA computing for tissue prospective accuracy is 85%.

While the lymph node statistical classification accuracy is

70%–80%. We believe that the cause resides in model-trait

connections. The hub gene in those two modules did not have

a strong relationship with its clinic trait, which hampered the

computing result. But we can diagnose cancer and classify cancer

traits using DNA computing.

Conclusion

In conclusion, we proposed a novel method that uses

DNA computing to analyze cancer traits. This DSD-based

FIGURE 9
Lymph node number classification with DSD computed results. The red lines represent the trajectory of the ROX modified signal, and the blue
line is the trajectory of FAM signal. The y-axis is fluorescent intensity. X axis is the cycle number, 10-s pre-time (A)Group one, lymph node fewer than
28, cases 6–10 Biomarker mir-99a predominates. (B) Group two, lymph node greater than 28, cases 1–5. Mir-451a predominates.
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DNA computing system used biomarkers (or hub-genes in

WGCNA) as the inputs. The concentration of input strands is

their expression value. The LogFC value of each input strand

was set to the binding rate. The DNA computing accuracy for

cancer health identification is 94.7%. The computing

accuracy of these two clinical traits is 70% and 85.5%,

respectively.

Furthermore, we think selecting suitable biomarkers as the

inputs can improve the accuracy of this system. WGCNA is a

powerful tool to identify the biomarker (the hub-gene in each

module). However, the hub gene might deviate from the clinical

trait (when the p-value is high). Therefore, we are seeking more

efficient bioinformatics methods to locate suitable biomarkers.

Further, we will attempt to construct a multi-layer, serial/parallel

combined DNA computing system for complex cancer trait

examination.
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