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As single-cell chromatin accessibility profiling methods advance, scATAC-seq

has become ever more important in the study of candidate regulatory genomic

regions and their roles underlying developmental, evolutionary, and disease

processes. At the same time, cell type annotation is critical in understanding the

cellular composition of complex tissues and identifying potential novel cell

types. However, most existing methods that can perform automated cell type

annotation are designed to transfer labels from an annotated scRNA-seq data

set to another scRNA-seq data set, and it is not clear whether thesemethods are

adaptable to annotate scATAC-seq data. Several methods have been recently

proposed for label transfer from scRNA-seq data to scATAC-seq data, but there

is a lack of benchmarking study on the performance of thesemethods. Here, we

evaluated the performance of five scATAC-seq annotation methods on both

their classification accuracy and scalability using publicly available single-cell

datasets from mouse and human tissues including brain, lung, kidney, PBMC,

and BMMC. Using the BMMC data as basis, we further investigated the

performance of these methods across different data sizes, mislabeling rates,

sequencing depths and the number of cell types unique to scATAC-seq. Bridge

integration, which is the only method that requires additional multimodal data

and does not need gene activity calculation, was overall the best method and

robust to changes in data size, mislabeling rate and sequencing depth. Conos

was the most time and memory efficient method but performed the worst in

terms of prediction accuracy. scJoint tended to assign cells to similar cell types

and performed relatively poorly for complex datasets with deep annotations but

performed better for datasets only with major label annotations. The

performance of scGCN and Seurat v3 was moderate, but scGCN was the

most time-consuming method and had the most similar performance to

random classifiers for cell types unique to scATAC-seq.
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1 Introduction

With the advancement of single-cell sequencing

technologies, researchers not only can profile single-cell

transcriptomes by scRNA-seq, but can also measure multiple

modalities at the single-cell level (Packer and Trapnell, 2018;

Carter and Zhao, 2021), among which scATAC-seq is probably

the most widely used sequencing technology (Buenrostro et al.,

2015; Cusanovich et al., 2015). scATAC-seq can quantify

chromatin accessibility across tens of thousands of single cells

and is an important tool to study gene regulation accompanied

with scRNA-seq (Buenrostro et al., 2018; Fiers et al., 2018; Jia

et al., 2018; Wang et al., 2022). After performing necessary

processing including quality control, dimensionality reduction

and clustering, single-cell studies usually involve cell type

annotations and accurate and robust annotations are crucial

for downstream functional analyses that are often conducted

in a cell-type-specific manner. Cell type annotation is often

laborious and involves automated annotations from

computational tools followed by verification and manual

annotations from experts (Clarke et al., 2021). Although there

are many tools designed for automated cell type annotations for

scRNA-seq data (Abdelaal et al., 2019; Pasquini et al., 2021), only

a limited number of tools are available and suitable for scATAC-

seq data. As scATAC-seq becomes more mature and widely

adopted in single-cell studies, there is a need to comprehensively

evaluate their performance on annotating scATAC-seq data.

Currently, there are two types of annotation tools that can be

applied to scATAC-seq data. The first category includes those

originally designed for scRNA-seq data (intra-modality

annotation), such as Seurat v3 (Stuart et al., 2019), Conos

(Barkas et al., 2019) and scGCN (Song et al., 2021). The

second category includes tools designed specifically for

scATAC-seq data or for cross-modality annotation. The two

representative methods in the second category are scJoint (Lin

et al., 2022) and Bridge integration (Hao et al., 2022). Unlike the

other methods that directly transfer labels from scRNA-seq to

scATAC-seq after unifying the feature set through gene activity

calculation, Bridge integration leverages a multimodal data as a

bridge, avoiding potential loss of information and incorrectness

of assumptions on feature relationships when calculating gene

activities.

In this study, we benchmark these scATAC-seq annotation

tools using real single-cell datasets from various tissues with

available cell type annotations as the ground truth. The real data

we collected included both paired data (multimodal) where

scATAC-seq and scRNA-seq were simultaneously measured in

each single cell and unpaired data (unimodal) where scATAC-

seq and scRNA-seq were separately measured from the same

tissue. Unpaired data for each tissue were used to evaluate Seurat

v3, Conos, scGCN and scJoint, where gene activity calculation

was required to align the feature space of scRNA-seq and

scATAC-seq data. In contrast, both unpaired and paired data

from the same tissue were used to evaluate Bridge integration as

this is the only method that does not require gene activity

calculation through using multimodal data as a bridge to

connect two unimodal data. We evaluated the performance of

different methods on both annotation accuracy and scalability.

For accuracy, we considered both the overall accuracy as well as

accuracy on ATAC-specific cell types. For scalability, we

compared running time and memory usage across different

datasets. Apart from evaluating real data across different

tissues, we also investigated the model performance across

different cell numbers, mislabeling proportions, sequencing

depths and number of unique cell types using a well-

annotated human bone marrow mononuclear cell (BMMC)

multimodal data (Luecken et al., 2021). The results of our

study offer a basis for future methodology development and

provide a reference for users to choose appropriate tools for cell

type annotation from scATAC-seq data.

2 Results

2.1 Performance across different tissues

In this study, we used data from five different tissues,

including mouse lung (Consortium, 2018; Cusanovich et al.,

2018), mouse brain (Consortium, 2018; Cusanovich et al.,

2018; Chen et al., 2019; Ma et al., 2020), mouse kidney (Cao

et al., 2018; Miao et al., 2021), human peripheral blood

mononuclear cell (PBMC) (Granja et al., 2019) and human

bone marrow mononuclear cells (BMMC) (Luecken et al.,

2021) to benchmark five methods for automated scATAC-seq

label annotation, including Conos, Seurat v3, scGCN, scJoint,

and Bridge integration. For mouse lung, scRNA-seq data from

both 10x Chromium (droplet-based) and Smart-seq2 (FACS-

based) were collected. Among all the methods, only Bridge

integration required multimodal data where scATAC-seq and

scRNA-seq were simultaneously measured. Therefore, we

collected multimodal data for each tissue except for mouse

lung (the SHARE-seq data for mouse lung were sequenced too

shallowly to be used). For the mouse brain, both SHARE-seq

and SNARE-seq data were used as the multimodal data to

benchmark Bridge integration separately. For tissues except

for human BMMC, their unimodal and multimodal datasets

were collected from independent studies; while for human

BMMC, this is a multimodal data from 10 donors and we

manually separated it to unimodal RNA (donor 2, 3, 9 and 10),

unimodal ATAC (donor 4, 5, 7, and 8) and multimodal data

(donor 1). Among all tissues, mouse kidney data (43,410 RNA,

27,625 ATAC and 11,296 multimodal cells) have the greatest

number of cells. Most tissues have no more than 15 cell types,

while human PBMC has 17 and 16 cell types in the ATAC and

the RNA data, respectively and human BMMC has 22 cell

types. Other details about the datasets including the exact
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number of cells and cell types can be found in Supplementary

Table S1.

We calculated three accuracy-related metrics on all ATAC

cells, namely overall accuracy, weighted accuracy and F1 (macro)

of precision and recall. For the first and third metrics, they were

calculated based on predicted label, which was the cell type whose

predicted probability was the largest. For weighted accuracy, we

considered the similarity among cell types by calculating the

weighted average of the entire predicted probability vector of

each cell. Therefore, even though a predicted label was false, the

score could be high if similar cell types had higher predicted

probabilities (see Materials and Methods for details). In addition

to the five methods, we used K nearest neighbor (KNN) and

random classifiers as the baseline competitors. For KNN

classifiers, all common features between the scRNA-seq and

gene activity matrix calculated from the scATAC-seq data

were used for training. For random classifiers, labels were

predicted based on the background probabilities of cell types

in the scRNA-seq data. As can be seen from Figure 1A, all the five

methods had better performance than plain KNN and the

random classifiers. For mouse lung (both FACS and droplet)

andmouse brain, scJoint had consistent and leading performance

across all the three metrics, with only slightly lower F1 (macro)

than scGCN on mouse brain. For the two human tissues (PBMC

and BMMC), Bridge integration achieved the highest overall

accuracy and F1 (macro); while for weighted accuracy, Bridge

integration was the second best performer, following scJoint. For

mouse kidney, there was no leading method across all three

metrics, but scGCN and Seurat v3 had overall better

performance.

Apart from the three metrics assessing all ATAC cells, we

designed two additional metrics for cell types that uniquely

existed in ATAC data, namely weighted accuracy and F1 of

entropy and enrichment (details in Materials and Methods). For

ATAC-specific cell types, they could never be correctly classified

because their labels did not exist in the reference RNA data.

Then, there are two expected patterns for the predicted

probability vectors of these cells. One is having predicted

probability vectors close to the background distribution of cell

types, and the other is having higher predicted probabilities for

similar cell types in the RNA data. Both can have their own

benefits in real practice. For example, for the first case, one can

FIGURE 1
Performance of label transfer methods on single-cell data from selected mouse and human tissues. (A) Overall metrics considering
performance on all scATAC-seq cells. (B) Metrics calculated on scATAC-seq cells labeled with ATAC-specific cell types. The Bridge results shown
here for the mouse brain used SNARE-seq as the multimodal “bridge”. Comparison of results using SNARE-seq and SHARE-seq can be found in
Supplementary Figure S1. For mouse lung (both FACS and droplet), Bridge integration was not considered because of no available multimodal
data.
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perform another round of manual annotations on cells with

predicted probabilities close to the background distribution;

while for the second case, one can tell from the predicted

probabilities which existing cell types are the closest to the

unknown cell type, however, this might suffer from

misclassifying novel cell types due to biological similarity to

known cell types. F1 (entropy and enrichment) and weighted

accuracy were calculated over cells with unique cell types in the

ATAC data to cover the first and the second cases, respectively

(Figure 1B). Although scJoint consistently had relatively high

weighted accuracy across tissues, there were not significant

differences in weighted accuracy among all the five methods.

For F1 (entropy and enrichment), the scores of scJoint and Conos

were extremely low, while scGCN achieved the best scores among

the five methods, followed by Bridge integration and Seurat v3.

Furthermore, we compared the performance between any

pair of methods by performing Wilcoxon matched-pairs signed-

rank test using all available tissues under each metric

(Supplementary Figure S2). The directions of the test statistics

were consistent with what we observed in Figure 1. For example,

Bridge integration and scJoint had better performance in general

and scJoint consistently achieved the highest weighted accuracy

in most tissues (3/4 nominal p-values ≤0.06). Moreover, in terms

of F1 on ATAC-specific cell types, scJoint performed poorly (3/

4 nominal p-values ≤0.06) and scGCN performed relatively

better compared to the other four methods (3/4 nominal

p-values ≤0.06).
We also performed consensus analysis to assess the

consistency of predicted labels among different methods.

Specifically, we calculated the proportion of ATAC cells that

were annotated equally in each tissue. From Supplementary

Figure S3, we can see that the proportions rarely exceeded

0.80 (only 5 out of 52 comparisons among the five methods).

The highest value was achieved by scGCN and scJoint in

mouse brain, which was consistent with the high overall

accuracy of the two methods (scGCN: 0.90; scJoint: 0.91)

observed in Figure 1A. By examining the relationship

between pairwise consensus scores and average overall

accuracy compared to the ground truth, we found the two

methods that had higher average overall accuracy tended to

have higher consensus scores (Supplementary Figure S3C).

By taking all tissues into consideration, scGCN and scJoint

were the two methods that were most consistent with each

other (Supplementary Figure S3B, average consensus

score: 0.76).

Apart from the prediction accuracy, we evaluated the

efficiency and scalability of the five methods by recording

their running time and peak memory usage on each tissue

(Figure 2). scGCN was the most time-consuming method

and took the largest memory on mouse kidney, where there

were about 71,000 cells in total. Conos was the most time and

memory efficient method and remained nearly constant as

the data scale increased. For the remaining three methods

(Bridge integration, scJoint, and Seurat v3), their running

time did not differ significantly, but Bridge integration

consumed more memory than others.

2.2 Performance across different data
scales

The BMMC data is a first-of-its-kind single-cell

multimodal dataset which consists of about 70,000 cells

with paired scRNA-seq and scATAC-seq measurements

from 10 diverse donors at four sequencing sites. This

dataset contains the largest number of cell types (22)

among all selected tissues and captures both

developmental and differentiated cell types. This dataset is

FIGURE 2
Running time (A) and peak memory usage (B) of different methods on selected tissues. Tissues are placed in the increasing order of their scales
from left to right. For mouse lung (both FACS and droplet), Bridge was not considered because of no available multimodal data. 10 independent runs
were performed for each method and data combination and the error bars show the 95% confidence intervals.
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the most comprehensive multi-modal benchmark dataset to

date as far as we know, so we designed several experiments

using the BMMC data to investigate the performance of

different methods across diverse data characteristics. For

all of the following experiments on the BMMC data, we

manually separated all donors into three groups and used

them as unimodal RNA data, unimodal ATAC data, and

multimodal data, respectively (see Materials and Methods).

Figure 3A shows the performance of different methods

across an increasing number of RNA cells, where KNN

classifier and random classifiers were used as baseline

references. We can observe that the value of three metrics

did not further increase when the cell number reached 3 k,

which is a relatively small number given the current high-

throughput sequencing technologies. In terms of overall

accuracy and F1 (macro) of precision and recall, the order

of the five methods from the best to the worst were the same,

which was Bridge > Seurat v3 > scJoint > scGCN > Conos.

For weighted accuracy, which took into consideration the

similarity among cell types (see Materials and Methods for

details) when assessing the predicted probability matrix,

scJoint achieved the highest score and Conos was slightly

better than scGCN, while the order of the rest of the methods

remained the same. Conos is a graph-based method and

either Seurat or Pagoda2 is recommended for data processing

before constructing the cell graph. We found the

performance of Conos was worse when paired with Seurat

(Supplementary Figure S4A), resulting in both lower values

of the three metrics and higher instability. For Bridge

integration, since it requires additional multimodal data as

the “Bridge”, we performed another set of experiments

specifically for Bridge by varying the number of cells in

the multimodal data. We found the performance also

stabilized when the cell number reached 3 k and Bridge

was more sensitive to the smaller number of cells in the

multimodal data than in the unimodal RNA data (Figure 3B).

We recorded the running time and peak memory usage of

the five methods when increasing the number of RNA cells

(Supplementary Figure S5A). scGCN was the most time-

consuming method and the second most memory-

consuming method. Most of the time of running scGCN

was spent on processing the data where intra-data and inter-

data graphs were constructed. Bridge integration required

the largest memory usage among all the methods because it

involved additional multimodal data as the bridge, while its

running time was close to that of scJoint. Conos and Seurat

v3 were the two fastest methods and Conos was the least

memory-consuming method.

FIGURE 3
Performance of methods on different data scales of BMMC. (A) Change the number of cells in scRNA-seq only, while keeping scATAC-seq and
multimodal (for Bridge only) cell numbers as 10 k. Results shown here for Conos were paired with Pagoda2 for data processing. (B) Performance of
Bridge while changing number of cells in scRNA-seq and in the multimodal data, respectively. The error band shows the 95% confidence interval.
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2.3 Performance across different
mislabeling proportions

The second set of experiments was designed to study the

performance across different mislabeling proportions of the RNA

data (Figure 4). For overall accuracy and F1 (macro), their scores

remained constant for Bridge integration and Seurat v3 until

mislabeling proportion reached 50% and decreased sharply when

the proportion exceeded 70%. For scGCN, scJoint and Conos,

their scores decreased slowly when the proportion was less than

50% and decreased faster after that. For weighted accuracy,

almost all methods except scJoint decreased linearly as the

FIGURE 4
Performance of methods on different mislabeling proportions of BMMC. Results shown here for Conos were paired with Pagoda2 for data
processing. The error band shows the 95% confidence interval.

FIGURE 5
Performance ofmethods on different downsampling proportions of BMMC. (A)Downsample scRNA-seq, scATAC-seq andmultimodal data (for
Bridge only) at the same time. Results shown here for Conos were paired with Pagoda2 for data processing. Figures for scenarios where only scRNA-
eq or scATAC-seq were downsampled can be found in Supplementary Figure S6. (B) Performance of Bridge integration under different
downsampling scenarios. The error band shows the 95% confidence interval.
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mislabeling proportion increased. The order of the five methods

was similar to the previous experiment, with Bridge and Seurat

v3 being the top two methods in terms of overall accuracy and F1

(macro), and Conos and scGCN being the two worst-performers.

scJoint was still the best method when considering the weighted

accuracy. We also compared the performance of Conos when

paired with Seurat and Pagoda2 separately and found that Conos

(Seurat) was significantly worse than Conos (Pagoda2) across all

metrics, especially when the mislabeling proportion was low

(Supplementary Figure S4B).

2.4 Performance across different
downsampling proportions

In the third set of experiments, we downsampled each count

matrix to some proportions to mimic different levels of

sequencing depth. As we can observe from Figure 5A, all

methods had a decreasing trend in their performance as the

downsampling proportion decreased (lower sequencing depth).

When the downsampling proportion was no less than 50%, the

order of methods in terms of overall accuracy and F1 (macro)

was the same, which was Bridge > Seurat v3 > scJoint > scGCN >
Conos. When the sequencing depth was extremely low

(downsampling proportion <50%), Bridge integration was still

the best performer, but the performance of scJoint became better

than Seurat v3. As for weighted accuracy, scJoint was the best

performer across all the methods. For Conos, its performance

was worse when using Seurat for data processing compared to

using Pagoda2 (Supplementary Figure S4C).

If we downsampled cells in the RNA or ATAC data

separately, similar patterns can be observed (Supplementary

Figure S6). Still, Bridge integration and Seurat v3 had the

highest overall accuracy and F1 (macro), and scJoint had the

highest weighted accuracy. For Bridge integration, we found that

at the same downsampling rate, downsampling all cells resulted

in the worst performance, followed by downsampling ATAC

cells, multimodal cells and RNA cells only (Figure 5B). Therefore,

Bridge integration was the most sensitive to the sequencing depth

of ATAC cells and least sensitive to the sequencing depth of RNA

cells of the BMMC data. For other methods, they were more

sensitive to the sequencing depth of ATAC cells than that of the

RNA cells as well (Supplementary Figure S6).

2.5 Performance when there exist ATAC-
specific cell types

The last set of experiments was designed to investigate the

performance of methods when there were ATAC-specific cell

types by manually removing some cell types in the reference

scRNA-seq data. For overall accuracy and F1 (macro), Bridge

integration achieved the highest scores followed by scJoint and

Seurat v3 with close performances, and Conos was still the worst

performer (Supplementary Figure S7A). The overall accuracy did

not change much as the number of removed cell types in RNA

increased, while F1 (macro) decreased linearly when the number

of removed cell types increased. For weighted accuracy, scJoint

was the best method followed by Bridge integration and Seurat

v3. For Conos, its performance became worse when Seurat was

used for data processing (Supplementary Figure S7B). For Bridge

integration, we found that the values of overall accuracy,

weighted accuracy and F1 (macro) were smaller when

removing cell types in the RNA data compared to removing

cell types in the multimodal data given the same number of

removed cell types (Supplementary Figure S7C).

Since after removing cell types in scRNA-seq, there existed

ATAC-specific cell types, we also calculated the metrics designed

for assessing performance of methods on these cell types. As

shown in the last two plots in Supplementary Figure S7A, scJoint

had the highest weighted accuracy followed by Bridge integration

and Conos with close performances; while scGCN was the best

performer in terms of F1 (entropy and enrichment) and scJoint

performed worst. Therefore, scJoint tended to classify ATAC-

specific cell types to their similar cell types in the reference data.

3 Discussion

We performed a comprehensive benchmarking study on five

automated scATAC-seq label annotations methods across five

different tissues using both unimodal and multimodal single-cell

data. By conducting experiments on the well-annotated BMMC

data, we also studied the performance across different cell

numbers, mislabeling proportions, sequencing depths and

number of unique cell types. We designed three overall

metrics and two metrics for ATAC-specific cell types to

evaluate the prediction accuracy. In addition, we assessed the

running time and memory usage of each method.

Through the designed experiments on BMMC, we found that

lower number of RNA cells, higher mislabeling proportions, and

lower sequencing depth could lead to worse performance of all

methods. When changing the number of RNA cells, we found

that all methods were not sensitive to the data scale when the cell

number was larger than 3 k. When changing the mislabeling

proportion, most methods had a significant decrease in overall

accuracy and F1 (macro) only after the mislabeling proportion

reached 50%. Bridge integration was able to maintain accuracy at

a high level even when the mislabeling proportion was 70%. In

contrast, all methods were sensitive to lower sequencing depth.

Across all the experimental scenarios, we found Bridge

integration was consistently the best performer in terms of

overall accuracy and F1 (macro), and the second-best

performer in terms of weighted accuracy. scJoint was found to

always achieve the highest weighted accuracy across all

experiments, suggesting it did a good job in relating similar
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cell types. In contrast, Conos performed the worst regardless of

the processing pipeline used (Seurat or Pagoda2). Additionally,

for Bridge integration, we found that the sequencing depth of

scATAC-seq and multimodal data played a more important role

than the sequencing depth of scRNA-seq. This might be because

scATAC-seq is known to be sparser than scRNA-seq due to the

limitation of current sequencing technologies (Minnoye et al.,

2021).

By benchmarking across different tissues, we found that all

methods had better performance than KNN and random

classifiers when considering all cells. On human PBMC and

BMMCwhere all data were sequenced by 10x and were published

no earlier than 2019, Bridge was the leading method. However,

for mouse lung and mouse brain, scJoint was the best performer.

Note that the sequencing depth of SHARE-seq mouse lung data

was too low so that we were not able to assess the performance of

Bridge integration on mouse lung (Ma et al., 2020). For mouse

brain, when applying Bridge integration, we had to remap the

original fastq data of unimodal ATAC data to mm10 because

there was inconsistency between the reference genome used for

the provided unimodal ATAC (mm9) and multimodal ATAC

data (both SHARE-seq and SNARE-seq used mm10). After

remapping, we found the sequencing depth of the unimodal

ATAC data was extremely low, with median count sum per cell

being 78 (mapped to the peak set of SNARE-seq) and 94 (mapped

to the peak set of SHARE-seq). While for other tissues, there were

usually thousands of counts per cell (Supplementary Table S3).

Such high sparsity might cause the poor performance of Bridge

integration on mouse brain, which was consistent with the

finding in BMMC experiments of changing sequencing depth.

For mouse kidney, Bridge integration performed relatively badly

but the difference between it and other methods was not

significant, and the bad performance might also result from

the low sequencing depth of multimodal RNA data

(Supplementary Table S3).

For performance on ATAC-specific cell types, we found

scJoint consistently had the highest weighted accuracy but the

lowest F1 (entropy and enrichment), suggesting that it tended to

classify unique cell types to existing cell types that were the most

similar to them. This might be because scJoint didn’t take care of

modality-specific cell types very carefully in their design of loss

functions or training data selection. On the contrary, scGCN was

the best method in terms of F1 (entropy and enrichment),

followed by Bridge and Seurat v3.

In terms of efficiency and scalability, scGCN was both time

and memory consuming, and Conos was the most efficient

algorithm. Bridge integration required additional multimodal

data, so it consumed more memory than others, but its memory

usage did not increase sharply when the data scale increased

because it utilized dictionary learning and only performed heavy

computation on a subset of data (Hao et al., 2022).

Our study had some limitations. First, the conclusions

are tissue and technology specific. Second, the granularity of

cell types was coarse for most tissues, like the three mouse

tissues after unifying annotations across datasets. The

performance of methods might change if finer cell

annotations were provided.

Based on the findings in our benchmarking study, we have

the following recommendations. If all data are from 10x and

multimodal data from the same tissue are available, Bridge

integration is likely the best method for label transfer;

otherwise, scJoint is the to-go method. For scJoint, the caveat

is that it tends to misclassify ATAC-specific cell types to the

biologically similar cell types in RNA. If one cares about ATAC-

specific cell types, a better strategy might be using scGCN or

Seurat v3 and another method in two separate rounds. For

scGCN or Seurat v3, manual annotations can be performed

on cells that have high entropy and low enrichment.

4 Materials and methods

4.1 Single-cell data preprocessing

A full list of data used in this study can be found in the

Supplementary Table S1. Descriptions of preprocessing pipelines

specific to each dataset are provided below.Moreover, to facilitate

the evaluation of label prediction performance, we manually

unified the naming conventions of cell labels provided in the

scRNA-seq and scATAC-seq (Supplementary Table S2). Details

for data preprocessing can be found in our GitHub repository.

4.1.1 Human BMMC
This is so far the largest single-cell multimodal RNA and

ATAC dataset with well-annotated labels and hierarchical

batch structures. To mimic the case where scRNA-seq,

scATAC-seq and multimodal data were measured

separately, we manually separated all batches to three

groups without any overlaps. Specifically, batches s1d2,

s1d3, s3d3, s4d9, and s3d10 were used as scRNA-seq

(26,450 cells), s2d4, s2d5, s3d7, and s4d8 were used as

scATAC-seq (22,653 cells), and s1d1, s2d1, s4d1 were used

as multimodal data (18,467 cells). Since the raw gene activity

matrix was not provided, the gene activity matrix for cells

assigned to the scATAC-seq group was obtained using Signac

(Stuart et al., 2021).

4.1.2 Human PBMC
The reference genomes used for scATAC-seq (hg19) and 10x

multiome ATAC-seq (hg38) were different and only the latter

had public raw sequence data in fastq formats. We remapped the

10x multiome data using cellranger-arc to get the peak count

matrix and fragment files. Since Bridge integration requires that

the peak sets of count matrices in scATAC-seq and multimodal

ATAC data are the same, we requantified the abundance of

scATAC-seq peaks on the multimodal peak set using the
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FeatureMatrix function in Signac. For the gene activity matrix,

we used Signac to do the calculation.

4.1.3 Mouse kidney
To unify the feature set as required by Bridge integration, we

requantified the scATAC-seq peaks on the multimodal peak set

as what we did for human PBMC data. In addition, since the gene

activity matrix for mouse kidney scATAC-seq was not provided,

we calculated it using the GeneActivity function in Signac.

4.1.4 Mouse brain
The reference genome used for scATAC-seq (mm9) was

different from that used for ATAC in the two brain

multimodal data (mm10). To correct the inconsistency, we

used the provided bam files of scATAC-seq data to map it to

mm10 in three steps. First, samtools was used to convert bam to

fastq files. Second, fastq files were mapped to mm10 to get new

bam files using bowtie2 and samtools sequentially. Last, sinto was

used to get fragment files from bam files. After getting fragment

files, Signac was used to obtain the count matrix using the peak

set in the multimodal ATAC data (SNARE-seq and SHARE-seq

separately) and the fragment files. For the scATAC-seq gene

activity matrix, we used the provided one.

4.1.5 Mouse lung
We did not find an appropriate multimodal data for mouse

lung, so the data for this tissue were only used to benchmark

methods that do not require multimodal data (only Bridge

integration requires). For the gene activity matrix, we used the

one provided by the original paper.

4.2 Description and implementation of
methods

4.2.1 Conos
Conos is designed as a graph-based batch effect removal

method. The joint graph embedding using nearest neighbors and

Pearson correlation is constructed as the first step to connect all

cells. Then, the label transfer from reference data to query data

can be implemented by information propagation between graph

vertices through an iterative diffusion process.

4.2.2 Seurat v3
Seurat first identifies a set of anchors between the reference

and the query data through canonical correlation analysis (CCA)

and mutual nearest neighbors (MNNs). Then, a weight matrix is

constructed to quantify the distance between each query cell and

anchor cell in the query data by a Gaussian kernel. Last, the

prediction score of any cell in the query data is calculated as a

weighted average of labels of anchor cells in the reference data.

4.2.3 scGCN
The first step of scGCN is to build a hybrid graph of all cells

using MNNs approach and CCA. Based on the constructed

graph, a semi-supervised graph convolutional neural network

is trained to embed cells from both reference and query data on

the same latent space and predict cell type labels for cells in the

query data.

4.2.4 scJoint
Like scGCN, a semi-supervised neural network with cross

entropy loss is trained to jointly embed cells from both scRNA-

seq and scATAC-seq. Different from scGCN that directly utilizes

the trained network to predict probability vectors through

Softmax layers, scJoint performs label transfer by training an

additional kNN classifier in the embedding space.

4.2.5 Bridge integration
This method utilizes multimodal data as a bridge to transfer

labels from scRNA-seq to scATAC-seq. The multimodal dataset

is treated as a dictionary and each cell is an atom, on which

dictionary representations of both unimodal scRNA-seq and

scATAC-seq are constructed. After dimensionality reduction

of multimodal cells via Laplacian Eigendecompostions,

unimodal cells can be embedded on the same space by the

dictionary representations. Then, the final label transfer can

be achieved by any single-cell integration techniques and

Bridge integration chooses mnnCorrect.

For Conos, Seurat v3, scGCN and scJoint, the raw count

matrix of scRNA-seq and gene activity score matrix of

scATAC-seq were provided as inputs. In addition, the raw

count matrix of scATAC-seq was provided for Seurat v3 to

perform dimension reduction. For Bridge integration, since

the information transfer was realized by using the multimodal

data as a bridge, the gene activity matrix was not needed.

Instead, we provided raw count matrices of scRNA-seq,

scATAC-seq (mapped to the same peak set of multimodal

ATAC data) and multimodal data for Bridge integration. The

implementation of each method followed the instructions on

their websites. Details can be found in the scripts on our

GitHub repository and package versions can be found in

Supplementary Table S4.

4.3 Benchmarking design

To investigate the model performance across different cell

numbers, mislabeling proportions, sequencing depths and number

of unique cell types, we designed the following set of experiments

based on the human BMMC multimodal data. For each specific

setting, 20 replicates were generated using unique random seeds.
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4.3.1 Change data scale
This was separated into three sub-experimental designs. 1)

Change the cell numbers in scRNA-seq (reference) while keeping

the scATAC-seq and the multimodal cell numbers (for Bridge

integration) as 10 k. The chosen numbers were 0.2 k, 0.6 k, 1 k,

3 k, 5 k, and 10 k. 2) Change the cell numbers in the multimodal

data while keeping the scRNA-seq and scATAC-seq cell numbers

as 10 k. The chosen numbers were 0.2 k, 0.6 k, 1 k, 3 k, 5 k, and

10 k. This setting was used for Bridge integration specifically.

4.3.2 Change mislabeling proportion
The mislabeling proportions for scRNA-seq cells were

chosen as 10%, 30%, 50%, 70%, and 90%. Mislabeled cells

were randomly selected and assigned wrong labels based on

the background compositions of other cell labels.

4.3.3 Change sequencing depth
The sequencing depths were manually changed by

downsampling reads to 10%, 30%, 50%, 70%, and 90% of the

original number of reads using R package DropletUtils (Griffiths

et al., 2018; Lun et al., 2019). We set four different scenarios

under this experiment, which are changing sequencing depth in

1) all cells, 2) RNA cells, 3) ATAC cells, and 4) multiome cells

(for Bridge integration).

4.3.4 Change the number of unique cell types
We randomly removed 2, 4 or 6 selected cell types in the

scRNA-seq data. Candidate cell types were those whose cell

numbers were between 200 and 1,000.

4.4 Evaluation metrics

4.4.1 Accuracy
After getting the predicted probability matrix across all cells

in scATAC-seq, the cell type that had the highest predicted

probability was assigned to each cell as the predicted label. Then

the overall accuracy was calculated using the predicted labels and

true labels.

4.4.2 Weighted accuracy
To account for the prediction uncertainty and similarity

across cell types. We proposed a weighted accuracy (WACC)

by taking the average of the predicted probability vector

weighted by cell type similarities.

WACC � 1/N∑
i

∑
j∈CR

Sc i( ),jPi,j

In the equation above, P is the predicted probability matrix

with each row as a cell in scATAC-seq and each column as a cell

type observed in scRNA-seq reference data.CR is the set of all cell

types in scRNA-seq and N is the total number of scATAC-seq

cells. S is a cross-modality cell type similarity matrix with each

row as a cell type in scATAC-seq and each column as a cell type

in scRNA-seq and c(i) is a function mapping cell i to its true cell

type label.

The similarity matrix was calculated in three steps. First,

partition-based graph abstraction (PAGA) (Wolf et al., 2019) was

performed on the normalized count matrix of scRNA-seq and

gene activity matrix of scATAC-seq separately. Then, the within-

modality similarity matrix was calculated based on the Euclidean

distance of each pair of cell types using the PAGA positions. For

cell types i and j, their within-modality similarity was

calculated as:

Smod
i,j � exp − PAGAmod

i − PAGAmod
j

�����
�����( ), mod ∈ ATAC, RNA{ }

Last, we calculated the cross-modality similarity matrix using

the two within-modality matrices by considering three scenarios.

If two cell types existed in both modalities, their similarity was

calculated as the average of two within-modality similarities:

Si,j � 1/2 SATACi,j + SRNA
i,j( ), i, j ∈ common cell types{ }

If one cell type is modality-specific, its similarity with any

common cell type would be the similarity calculated using the

modality that contained the two cell types:

Sl,c � SATACl,c , l ∈ ATAC − specific cell types{ }, c ∈ common cell types{ }
Sc,k � SRNA

c,k , k ∈ RNA − specific cell types{ }, c ∈ common cell types{ }

If a cell type l only existed in scATAC-seq and the other cell type

k was only observed in scRNA-seq, their similarity was

calculated as

Sl,k � SATACl, common+1 SATACl, common ≥ .5{ }[ )]SRNA
common, k

/∑
i∈common

1 SATACl, i ≥ .5{ }

where SATAC and SRNA are within-modality similarity matrix for

ATAC and RNA, respectively, 1 represents an indicator function

and common is the set of all common cell types. The first product

is Hadamard product which is element wise and the second

product is matrix multiplication.

Precision, recall and F1 score. Precision is defined as true

positive (TP) over the summation of TP and false positive (FP)

and recall is defined as TP over the summation of TP and false

negative (FN). F1 score is the harmonic mean of precision and

recall,

F1 � 2
Precision · Recall
Precision + Recall

Since this is a multi-class classification problem, we need to

specify whether we want macro or micro level metrics. It is easy to

show that overall accuracy is equivalent to micro precision, recall

and F1 score under themulti-class scenario. Therefore, we calculated
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macro level precision and recall in this study, which is the average of

precisions and recalls obtained for each class. Then, macro F1 score

is calculated based on macro precision and recall.

4.4.3 Entropy and enrichment
To evaluate the performance of methods on cell types unique

to scATAC-seq data, we borrowed the two metrics proposed in

scGCN which are scaled entropy and enrichment (Song et al.,

2021). Scaled entropy is defined as

NE � − 1
Mlog2 CR| |∑i

∑
j∈CR

Si, j
∑j∈CR

Si, j
log2

Si, j
∑j∈CR

Si, j
, where Si, j

� Pi, j

Qj

Pi, j is the predicted probability for cell i with unique cell type

label in scATAC-seq and cell type j, and Qj is the proportion of

cell type j in scRNA-seq as the background probability. CR is the

set of all cell types in scRNA-seq and M is the total number of

scATAC-seq cells with unique cell labels. The final score is

normalized by log2|CR| to make it in the range of [0, 1].

Another metric is enrichment score,

ES � 1
M
∑

i
maxj∈CR

Si, j
∑j∈CR

Si, j

The enrichment score is also bounded within 0 and 1. For cell

types only observed in scATAC-seq, an ideal method should deliver

high normalized entropy and low enrichment score. Therefore, we

also calculated an F1 score to combine these two

F1 � 2
NE · 1 − ES( )
NE + 1 − ES( )

4.4.4 Running time and memory
All methods were run on Yale’s high performance computing

clusters with one computing core. For neural network methods

scGCN and scJoint, they were run using GPUs; and for the rest

methods, they were run using CPUs. The CPU of our device is

Intel ® Xeon ® Gold 6240, 2.6 GHz, and the GPU is NVIDIA RTX

3090 with 25 GB RAM. When evaluating running time, we did

not count the time used for data preprocessing (e.g. remap to

alternative reference genome, requantify scATAC-seq peaks, and

calculate gene activity matrix) because the needed steps for

different tissues were different. For memory assessment, we

used the recorded peak memory usage of each method.
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