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Colorectal cancer is a highly heterogeneous disease. Tumor heterogeneity limits

the efficacy of cancer treatment. Single-cell RNA-sequencing technology (scRNA-

seq) is a powerful tool for studying cancer heterogeneity at cellular resolution. The

sparsity, heterogeneous diversity, and fast-growing scale of scRNA-seq data pose

challenges to the flexibility, accuracy, and computing efficiency of the differential

expression (DE) methods. We proposed HEART (high-efficiency and robust test), a

statistical combination test that can detect DE genes with various sources of

differences beyond mean expression changes. To validate the performance of

HEART, we compared HEART and the other six popular DE methods on various

simulation datasets with different settings by two simulation data generation

mechanisms. HEART had high accuracy (F1 score >0.75) and brilliant

computational efficiency (less than 2min) on multiple simulation datasets in

various experimental settings. HEART performed well on DE genes detection for

the PBMC68K dataset quantified by UMI counts and the human brain single-cell

dataset quantified by read counts (F1 score = 0.79, 0.65). By applying HEART to the

single-cell dataset of a colorectal cancer patient, we found several potential blood-

based biomarkers (CTTN, S100A4, S100A6, UBA52, FAU, and VIM) associated with

colorectal cancer metastasis and validated them on additional spatial

transcriptomic data of other colorectal cancer patients.
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1 Introduction

Colorectal cancer (CRC) was the world’s third most common

cause of cancer mortality, with more than 850000 deaths annually

(Biller and Schrag, 2021). The Colorectal cancer mortality rate was

high in the setting of metastatic disease or recurrence. Predicting

tumor response and selecting personalized cancer therapies based on

validated biomarkers is important. Tumor heterogeneity is the

major obstacle to cancer treatment (Linnekamp et al., 2015; Eide

et al., 2021). Identifying differential expression genes (DE genes)

associated with tumors is critical in investigating cancer

heterogeneity (Soneson and Robinson, 2018; Wang et al., 2019;

Kharchenko, 2021). Many differential expression analysis methods

for bulk-RNA sequencing data focus on the comparison at themean

level and ignore some multi-source heterogeneities. Sequencing

technologies develop rapidly, and single-cell RNA-sequencing

(scRNA-seq) has become widespread in more experiments.

Technological improvements in single-cell RNA sequencing drive

novel biological insights and new problems in data analysis.

Developments of single-cell RNA-sequencing enable researches

on cancer heterogeneity at a high resolution. In contrast with

bulk RNA sequencing data, the scRNA-seq data have extensive

data sizes, significant fractions of observed zeros, and various gene

expression patterns (Soneson andRobinson, 2018;Wang et al., 2019;

Kharchenko, 2021). They are large-scale, highly sparse, variable, and

complex. Emerging data features unique to scRNA-seq data require

novel differential expression analysis methods to detect DE genes

(Zheng et al., 2017; Ding et al., 2020).

Several DE methods for single-cell data have been proposed

to fit the data characteristics in scRNA-seq data. They are two

classes of methods in principle: model-based and test-based

methods. Model-based DE methods model parametrically with

strong assumptions of theoretical distribution of gene expression.

Such as, SCDE (Kharchenko et al., 2014) assumed a mixture of

Poisson (dropout) and negative binomial (amplification)

distributions for the distribution of genes. DESeq2 (Love

et al., 2014) tests differential expression using negative

binomial generalized linear models. MAST (Finak et al., 2015)

fits two-part, generalized linear models for characterizing

heterogeneity in scRNA-seq data. Monocle3 (Trapnell et al.,

2014; Qiu et al., 2017) uses the quasi-Poisson, or negative

binomial distribution, to model gene expression counts across

cells. NBID (Chen et al., 2018) calculates each gene’s independent

dispersion in each group based on the negative binomial

distribution. SC2P (Wu et al., 2018) supposes the gene

expression with two phases and employs a zero-inflated

Poisson (ZIP) distribution and a lognormal-Poisson (LNP)

model to describe gene expression. Thus, the deviation

between assumptive and actual distribution incurs algorithm

accuracy issues. Moreover, the growth of experimental

techniques requires single-cell algorithms to be scalable to

handle sheer volumes of data. Large-scale, sparse single-cell

data with a prevalence of zero values is challenging to model

parameter convergence. Model-based DE methods have limited

scalability and an evident diminution of computing performance

on large-scale datasets. Statistical tests are widespread

substitutions for model-based DE methods, because they have

fewer assumptions and lower computing complexity thanmodel-

based methods. For example, Seurat, a popular scRNA tool, sets

Wilcoxon rank-sum test as the default test to find differentially

expressed genes between two groups of cells. However, tests

applied for scRNA-seq data are still classical statistical tests and

not grounded in biology. Classical parametric statistical tests,

such as t-test, z-test, and F-test, have poor results due to the

extreme skewness caused by the sparsity of the scRNA-seq

datasets. Non-parametric tests, such as the Wilcoxon rank-

sum test, adapt for the sparsity of scRNA-seq data. But, they

have awful accuracy because of the high heterogeneity and

complexity of scRNA-seq data. The probabilities of Type

1 errors of the non-parametric tests vary systematically with

the increasing heterogeneous variances and remain relatively

constant even if the sample size increases (Zimmerman,

2000). Furthermore, non-parametric tests focus more on

locations than the distribution shape, so they cannot

sensitively capture various biological differences in scRNA-seq

data. Each of these two types of methods has its advantages and

limitations. Existing DE methods, whether model-based or test-

based, have difficulty balancing accuracy and computational

efficiency simultaneously in large-scale single-cell data.

In this study, we presentHEART, a scalable combination test for

DE analysis of single-cell data. Underlying this test framework,

HEART can sensitively detect biological differences in gene

expression beyond mean expression shift. We illustrate the

benefits of HEART via comparing the performances of HEART

and the other six DE methods (DESeq2 (Love et al., 2014), MAST

(Finak et al., 2015), Monocle3 (Trapnell et al., 2014; Qiu et al., 2017),

NBID (Chen et al., 2018), SC2P (Wu et al., 2018), Seurat) on vast

simulation experiments based on two simulation generation

mechanisms. HEART performs well in accuracy, scalability,

statistical robustness and computational efficiency. We

demonstrated that HEART performs robustly on two real single-

cell datasets underlying different quantification schemes.

Furthermore, we applied HEART to a single-cell dataset of a

colorectal cancer patient and identified several potentially

metastasis-related biomarkers, CTTN, S100A4, S100A6, etc.

2 Results

2.1 HEART overview

Droplet-based single-cell RNA-sequencing methods measure

gene expression on tens or hundreds of thousands of cells at the

single-cell level. Gene expression measurements in droplet

technology are often in the form of low counts with a large

fraction of zero values, and difficult to estimate the exact
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statistical distribution. We decomposed the gene expression

distribution into two parts (Figure 1B): the status of genes (“on/

off”) and the distribution shape of gene “on” parts (non-zero part).

These two parts were closely associated with cell type, cell condition,

or other biologic-driven factors. For the first part, the gene

expression state ratio was defined as the times of the gene with

the positive count in a group of cells. For the gene “On” part, we

described the distribution shape by location parameter (μ) and scale

parameter (σ) of the “On” parts (Figure 1B). Therefore, the whole

gene expression pattern can be approximated by three parameters:

the zero proportion of gene expression (p), the mean of the “On”

parts (μ), and the variance of the “On” parts (σ).We assumed that

non-DE genes have the same expression distribution shape in pre-

defined groups (Figure 1A). We tested three parameters

(H0: pj1 � pj2, μj1 � μj2, σ
2
j1 � σ2j2) to identify whether a given

gene is a DE gene (Figure 1C). Due to low counts, sparsity, and

FIGURE 1
An overview of the HEART. (A) Diagram of non-differential and differential gene expression patterns. The non-differential genes have the same
statistical distribution in different groups. Differential gene expression patterns have several modes with different characteristics. (B) The gene
expression distribution decomposes into two parts: the gene expression state (“On/Off”) and the gene expression shape when the gene is “On.” Two
parameters could approximate the distribution shape of the gene “On” part: the location parameter μ and the scale parameter σ. (C) HEART’s
combination statistical test structure. Combination test flow chart.
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complexity of gene expression, it is challenging to estimate the exact

distribution of every gene and construct a suitable statistic for the

hypothesis H0 when the theoretical distribution of genes is

unknown. Instead of generating the test statistic based on the

assumed distribution, we tested the complex null hypothesis H0

using Fisher’s (Zappia et al., 2017) theory of combination test.

H0: θ � (pj1, pj2, μj2, μj2.σj1, σj2) ∈ Θ0,

Θ0 � {θ ∈ Θ: pj1 � pj2, μj1 � μj2, σj1 � σj2}
HA: θ ∈ ΘC

0

⎧⎪⎨⎪⎩
H01: pj1 � pj2; HA1: pj1 ≠ pj2

H02: μj1 � μj2; HA2: μj1 ≠ μj2
H03: σ

2
j1 � σ2j2; HA3: σ

2
j1 ≠ σ2j2

We split the complex null hypothesisH0 into three simple null

hypotheses H0i and got a new statistic Q � −2∑ log(Li) by

combining three individual p-values Li. Each p-value Li was

obtained by testing the simple null hypothesis H0i. The chi-

square distribution was used to approximate the p-value of Q.

Underlying this test framework, we easily captured various

differences in gene expression and constructed a test for gene

expression patterns without many assumptions. Moreover, we

only calculated three simple observed test statistics and got the

new statisticQ by combining three individual p-values Li. We could

quickly identify differential expression (DE) genes in millions-scale

scRNA data. The computation cost is almost negligible. If the new

statistic Q is larger than the critical value, we reject the null

hypothesis and identify the gene as a DE gene. We examined

one gene at a time and implemented FDR correction for

p-values of all genes.

2.2 HEART validation

HEART proposed a combination test to catch various

sources of differences in gene expression patterns between two

pre-defined groups. To validate the performance of HEART, we

used two simulation data generation mechanisms to compare

HEART and other six popular DE methods, including five

model-based DE methods (DESeq2, MAST, Monocle3, NBID,

and SC2P) and a default test in Seurat (Seurat-W). Simulation

details were provided in the “Methods”. Briefly, the artificial

simulation tool, Splatter package (Zappia et al., 2017), generated

datasets in simulation1. Simulation2 datasets used a semi-

simulation mechanism based on actual scRNA-seq data

(PBMC68K)to create simulation datasets. In both simulations,

we varied the number of samples and DE strength for DE genes.

We evaluated the ability to identify DE genes, FDR control under

the null hypothesis, and computational efficiency under various

alternatives by a series of indexes: F1 score, TPR, precision,

computational time, etc.

In simulation 1, we evaluated the performances of each

method on simulation datasets with the same simulation

settings. HEART, Monocle3, and NBID perform better than

other methods (Figure 2A; Supplementary Figure S2). They

had higher F1 scores than other methods and achieved a good

balance between TPR and precision. Seurat had low precisions,

because it was apt to identify the gene with mild signals.

DESeq2 maintained high accuracy on medium-scale data

(under 10000 cells), but it shows FDR inflation on the large-

scale datasets (Supplementary Figure S2). Regarding running

time, HEART and Seurat had incomparable advantages

(Figure 2D, under 2 min on the datasets of 20000 cells).

Although NBID and DESeq2 had good accuracy, they

required a lot of running time (Figure 2D, more than 1 h on

the datasets of 20000 cells with 11000 genes).

In Simulation2, we generated semi-simulation data from

real scRNA-seq datasets instead of simulation datasets from

artificial protocols (Figure 2B; Supplementary Figure S3)

(Chen et al., 2018). We chose each cell subtype with

various sample sizes from PBMC68K (Zheng et al., 2017) as

source data to test the stability and scalability of each DE

method. HEART, NBID, and Monocle3 have higher F1 scores

in different simulation datasets than other methods. When the

sample size was adequate, HEART had good and stable

performances, regardless of the statistical characteristics of

the datasets. Seurat performed unstably on different datasets.

DESeq2, MAST, and SC2P cannot detect DE genes in most

scenarios. Importantly, HEART was much more

computationally efficient than the other methods

(Figure 2E). For the 20000-cells scale datasets, HEART

completed computation in about 1–2 min, but NBID and

DESeq2 needed 5–7 h for the same scale datasets. HEART

was applicable to data with the sample size exceeding around

millions of cells in theory. We generated null simulations

without swapping genes to test the bias in p-value

estimation for each method (Supplementary Figure S4).

HEART controlled the type 1 error well.

Generally, HEART was an accurate, practical and scalable

method for DE gene detection. In all semi-simulation

scenarios, HEART and NBID performed better than other

methods and had relatively stable performances on datasets

with various characteristics. Other methods had poor

performances on some semi-simulation datasets. As the

sample size increases, the performances of HEART, NBID,

and Monocle3 become better. However, HEART identified DE

genes in the simulation scenarios with weak DE strength of

differences, which means HEART was more sensitive than

other competing DE methods (Supplementary Figure S3;

Figure 3). The performance of NBID was slightly better

than HEART in some scenarios, but it took a lot of time to

run. (Simulation1 of 20000 cells: NBID: F1 score =

0.871 running time = 6482 s; HEART: F1 score = 0.84,

running time = 52 s. Simulation2 of CD8+ cytotoxic T cells:

NBID: F1 score = 0.97, running time = 16205 s; HEART: F1

score = 0.94, running time = 94 s)
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FIGURE 2
Simulation results. (A) F1 scores and TPRs of all methods on simulation datasets in Simulation 1 (de.factor = 0.5). Plots show F1 scores (y-axis) and
TPRs (y-axis) for different sample sizes (x-axis) for different methods. Colorful points correspond to varied sample sizes. (B) F1 scores and TPRs of all
methods on simulation datasets in Simulation 2 (FC = 2.5). Plots show F1 scores (y-axis) and TPRs (y-axis) for different source data (x-axis) for different
methods. Colorful points correspond to different source datasets with different cells. (C) Semi-simulation data generation mechanism in
Simulation 2. (D) and (E) Computational time of different methods for analyzing data with different sample sizes in Simulation1 and Simulation 2,
respectively. The X-axis in (E) corresponds to the legend of (B).
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2.3 HEART is accurate and robust on read
and unique molecular identifier counts
data

Read count and unique molecular identifier (UMI) count are

two main quantification schemes in single-cell RNA-sequencing

technologies and have different statistical characterizations.

Some literature (Zilionis et al., 2017; Chen et al., 2018;

Kashima et al., 2020; Sarkar and Stephens, 2021) suggested

that read count data have higher count levels, more sparsity

and more variability than UMI counts data. To assess the

accuracy and robustness of HEART on different quantification

mechanisms, we applied HEART and other six DE methods

(Seurat, DESeq2, MAST, Monocle3, NBID, and SC2P) on two

real single-cell datasets from quantification schemes. A human

brain dataset (Darmanis et al., 2015) (GSE67835) based on read

count quantification schemes and a dataset of peripheral blood

mononuclear cells (PBMC68K (Zheng et al., 2017)) quantified by

UMI counts.

2.3.1 Performances on human brain data
Human brain data (GSE67835) (Darmanis et al., 2015) was a

single-cell dataset quantified by read count. It sequenced 466 cells

from human cortical tissue containing six sub-cell types. In this

human brain data, we used all seven DE methods to identify DE

genes on two groups of cells (astrocytes: 62 cells,

oligodendrocytes: 38 cells) with 10483 genes. The number of

DE genes of different DE methods varied greatly (Table 1). At an

FDR of 5%, HEART identifies 973 DE genes. For Standard 1, we

obtained a list of 41 DE genes (Standard 1) between these two

sub-celltypes by comparing purified cell types via bulk RNA-seq

(Zhang et al., 2014; Darmanis et al., 2015). DE genes identified by

HEART cover all 41 DE genes in Standard 1. NBID and SC2P

also identified 41 DE genes in Standard 1. Still, they identified too

many genes as DE genes (NBID: 6116 DE genes, SC2P: 2220 DE

genes) and had low specificities (NBID: specificity = 0.42, SC2P:

specificity = 0.79), suggesting potentially false signals. Underlying

Standard 2 (top 500 genes) and Standard 3 (top 1,000 genes),

HEART had the highest F1 scores and relatively high TPRs and

specificities compared to other DE methods (Table.1). Moreover,

we compared the ability of the 41 DE genes detected in the

literature from the top ranked DE gene reported by each method

(Figure 4). Figure 4 showed that HEART, MAST, and SC2P have

higher sensitivity and reliability in capturing true DE signals than

the other four DE methods.

In this human brain single-cell dataset quantified by read

counts, HEART performs best among seven DE methods.

Underlying different standards, HEART always had excellent

accuracy for DE gene detection. DESeq2 and NBID had high

TPRs, but they maybe detect false DE genes because they

identified overabundant genes as DE genes.

2.3.2 Performances on PBMC68K
PBMC68K (Wang et al., 2019) was a single-cell UMI count

dataset of peripheral blood mononuclear cells (PBMCs)

generated by 10X Genomics. T cells were the most abundant

cell type in PBMCs and play an essential role in the immune

response and immune regulation. Naïve T cells and memory

FIGURE 3
Comparing all methods: known DE genes among the top ranked DE genes in human brain cells for astrocytes and oligodendrocytes cells.
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T cells had significant differences in functions and features, but

they had a large degree of similarity in their overall gene

expression (Supplementary Material S1; Supplementary Figure

S1). The researches on gene expression patterns of the two types

of T cells were still inadequate (Liu et al., 2001;Weng et al., 2012).

We used all seven DEmethods (HEART, Seurat, DESeq2, MAST,

Monocle3, NBID, and SC2P) to detect DE genes between CD4+

Naive T cells (1873 cells) and CD4+ memory T cells (3,061 cells)

from the PBMC68K (Zheng et al., 2017) dataset with

12406 genes. The number of DE genes identified by each

method is very different. HEART, Seurat, DESeq2, MAST,

Monocle3, NBID and SC2P selected 692, 676, 459, 36, 431,

1,214, 121 genes, respectively (Table.2). For Standard 1,

37 known DE genes from the literature were obtained from

various microarray experiments of T cells from both humans and

mice (Liu et al., 2001;Weng et al., 2012). None of the DEmethods

in our research fully identified these 37 true DE genes. HEART,

Seurat, DESeq2,Monocle3, MAST, NBID, and SC2P captured 12,

16, 0, 28, 9, 4, 20 DE genes (Table.2), respectively. NBID detected

most DE genes of the standart1, but it identified the most gene

(1,214 genes) as DE gene. HEART and Monocle had relatively

higher TPR, specificity, and F1 scores than other methods

(Table.2). Note that some genes with very low expression,

such as gene FAS, TNF, (average UMI count in two groups:

0.017, 0.028), were only detected by HEART and the NBID.

Underlying Standard 2 and Standard 3, HEART had higher F1

score (0.77 and 0.79) than other test-based DEmethods andmost

model-based DE methods (Table.2). HEART had high TPRs

while ensuring high specificity. Moreover, on the datasets of

thousands of cells, HEART only needed 40 s to run, while

DESeq2 and NBID took an hour. In this application of real-

data DE analysis, HEART had good accuracies assessed by

different standards and spends a short running time.

Especially compared with the test-based method, Seurat,

HEART performed better. Compared with model-based DE

methods, HEART had higher F1 scores than most model-

based DE methods and ran faster than all model-based DE

methods.

2.4 HEART identifies metastatic colorectal
cancer biomarkers

Colorectal cancer (CRC) is the most commonly diagnosed

cancers in the world.20% of individuals with newly diagnosed

colorectal cancer have metastatic disease upon presentation, and

another 25% of those who initially have localized illness will

eventually acquire metastases (Biller and Schrag, 2021). Distant

metastasis was the main cause of death in patients with colorectal

cancer, but the exact metastasis mechanism was still unknown.

(Zhang et al., 2014). ScRNA-seq technology provided a new

opportunity to investigate the association between genes and the

mechanism of tumor initiation, progression, and metastasis

(Lawson et al., 2018). Therefore, we applied HEART in a

single-cell dataset (containing three sub-datasets: PBMC,

normal tissue, and tumor tissue) of a stage III colorectal

cancer patient. We used HEART to identify DE genes

between tumor and normal fibroblasts and between tumor

and normal epitheliums. Furthermore, we found two

subpopulations of megakaryocytes (MKs) (Wang et al., 2021)

in the PBMCs and utilized HEART to detect 207 DE genes on

the2 MK subtype clusters to characterize functional differences

and underlying molecular mechanisms. Highly expressed genes

in the cluster MK3 (Satija et al., 2015; Stuart et al., 2019; Fa et al.,

2021; Wang et al., 2021), such as CCL5, TUBB1, MYL9,

HIST1H2AC, etc. (Figure 4A), were associated with early

platelet production. Another subpopulation, MK5, with high

CD74 and PLAC8 might be a less mature MK population.

Moreover, we observed that many DE genes between

MK3 and MK5 cells overlap with DE genes between tumor

and normal epitheliums and DE genes between tumor and

normal fibroblasts (Figure 4B, Figure 4C). They had similar

TABLE 1 The time consumption, number of DE genes, TPR, specificity, and F1 score of each method under three different standards (Human brain
data).

Method Time
(s)

#(DE
genes)

Standard 1 Standard 2 Standard 3

TPR Specificity F1
score

TPR Specificity F1
score

TPR Specificity F1
score

HEART 9.74 973 1.00 0.91 0.08 0.96 0.95 0.65 0.96 0.95 0.65

Seurat 10.79 2,943 0.93 0.72 0.03 0.83 0.75 0.24 0.83 0.75 0.24

DESeq2 75.36 5,814 1.00 0.45 0.01 0.99 0.47 0.16 0.99 0.47 0.16

MAST 82.35 2,155 0.98 0.80 0.04 0.99 0.83 0.37 0.99 0.83 0.37

Monocle3 60.73 154 0.20 0.99 0.08 0.29 1.00 0.45 0.29 1.00 0.45

NBID 263.01 6,116 0.80 0.42 0.01 0.99 0.44 0.15 0.99 0.44 0.15

SC2P 27.28 2,220 1.00 0.79 0.04 0.99 0.83 0.36 0.99 0.83 0.36
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expression patterns in the MK5 cells, tumor epitheliums, and

fibroblasts (Figure 4D) and were related to colorectal cancer

progression or metastasis. The Violin plot showed similar

distribution shapes of CTTN in MK5 cells and epithelial

tumor cells. The gene CTTN has been reported overexpressed

in various cancers, including colorectal cancer, and had the

function of promoting tumor cell migration (Luo et al., 2006;

Jing et al., 2016; Zhang et al., 2017). Furthermore, S100A4

(Helfman et al., 2005; Nader et al., 2020), S100A6 (Komatsu

et al., 2000), UBA52 (Zhou et al., 2019), FAU (Pickard et al.,

2011), and VIM (Luque-Garcia et al., 2010; Xu et al., 2017), etc.

Also had similar expression patterns between MK5 cells and

FIGURE 4
(A)Heatmap ofmarker genes for MK3 andMK5 clusters. (B)Heatmap of someDE genes detected byHEART. (C) Venn diagram of DE genes from
3 cell types of tumor and normal cells. (D) Violin plots showing some DE genes’ expression patterns in MK3, MK5 cluster, Epithelial cluster, and
fibroblast cluster in tumor and normal tissues, respectively.
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tumor epitheliums and fibroblasts. S100A4 and S100A6 play an

important role in tumor metastases, including colorectal tumor

metastasis (Komatsu et al., 2000). Recent studies have proved

that the bloodstream plays a crucial role in tumor metastasis and

tumor immune escape (Lawson et al., 2018). The cooperation of

hematopoiesis, megakaryocytes, and platelet production aided

CTCs in escaping the immune system and disseminating within

the bloodstream to establish distant organ metastasis. We also

validated the expression pattern of these genes in the spatial

transcriptome data of two other stage IV colorectal cancer

patients (Supplementary Figure S4), which showed spatial

patterns of high expression in cancer cells.

Consequently, we supposed that a series of genes, CTTN,

S100A4, S100A6, etc., were potential colorectal cancer metastasis

biomarkers. The MK5 subpopulation with highly-expressed

above potential biomarkers might be a cluster related to

colorectal cancer metastasis and have a circulating tumor cell

(CTC). The exact mechanism between MK5 and colorectal

tumor metastasis warranted further investigation.

3 Discussion

Differential expression analysis was a crucial topic in

cancer heterogeneity analysis. The new characteristics of

scRNA-seq data put forward new challenges for the DE

method. Model-based methods methods’ performances are

unstable due to strong assumptions and lacked scalability

facing the explosive growing scale of single-cell data. Test-

based methods were more scalable than model-based methods.

However, the accuracy existing in these test-based methods

was relatively too low in identifying DE genes due to the

sparsity, variability, and complexity of scRNA-seq data.

HEART proposed a bio-driven combination test framework

that captures comprehensive differences by integrating

differential information about gene expression ratio, gene

expression level, and variability. Unlike most competitors

assuming theoretical statistical distribution (some are

complex mixture distributions) for gene expression, HEART

used a combination framework of simple statistical tests to test

the two parts of the gene expression. We compared HEART

and the other six DE methods on various simulation datasets

with different sample sizes and DE strength of DE genes.

HEART achieved an excellent trade-off between accuracy and

computational efficiency. It had higher F1 scores than all

classical test method and most model-based methods and

can be apt to expand to ultra-large-scale of datasets.

Moreover, HEART had robust performances facing datasets

with different statistical characteristics, while DESeq2 and

Monocle3 had unstable performances on diverse datasets.

Although NBID acted better than HEART in some

scenarios, its computational cost on large-scale data sets

may not be worth the increased accuracy it provided (A

dataset with 20000 cells and 10000 genes: NBID: F1

scores = 0.871, running time = 6482 s; HEART: F1 scores =

0.84, running time = 52 s). To demonstrate the accuracy,

robustness, and generality of HERAT, we compared

HEART and the other six DE methods on two single-cell

datasets from different quantitative mechanisms. HEART had

high accuracy and low specificity on two various

quantification forms data. We applied HEART and other

six methods to identify DE genes between CD4+ Naive

T cells and CD4+ memory T cells from the PBMC 68k

dataset quantified by UMI counts. HEART had less

computational time and higher TPRs and F1 scores than

other methods under different standards. Moreover,

HEART had a good ability to capture the DE gene with low

expression counts level, which is easily omitted in most DE

analysis methods. HEART identified gene FAS and TNF,

verified DE genes in literature, with lower gene expression

ratios and expression counts in this PBMC68K dataset. On

human brain single-cell datasets quantified by read count,

TABLE 2 The time consumption, number of DE genes, sensitivity, specificity, and F1 score of eachmethod under three different standards (PBMC68K).

Method Time
(s)

#(DE
genes)

Standard 1 Standard 2 Standard 3

TPR Specificity F1
score

TPR Specificity F1
score

TPR Specificity F1
score

HEART 40 692 0.54 0.95 0.05 0.92 0.98 0.77 0.67 1.00 0.79

Seurat 7 676 0.24 0.95 0.03 0.71 0.97 0.60 0.52 0.99 0.62

DESeq2 3,345 459 0.32 0.96 0.05 0.83 1.00 0.87 0.46 1.00 0.63

MAST 753 36 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00

Monocle3 290 431 0.43 0.97 0.07 0.81 1.00 0.87 0.43 1.00 0.60

NBID 3,905 1,214 0.76 0.90 0.04 0.97 0.94 0.56 0.85 0.97 0.77

SC2P 223 121 0.11 0.99 0.05 0.23 1.00 0.37 0.12 1.00 0.22
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HEART had the highest accuracy and controls false-positive

rates well. It achieved a good balance between sensitivity and

specificity. In addition, applying HEART on two

subpopulations of megakaryocytes, we found several

potential cancer biomarkers (CTTN, S100A4, S100A6,

UBA52, FAU, and VIM, etc.) associated with colorectal

cancer progression and metastasis in literature. HEART

also detected these DE genes between normal and tumor

epitheliums and fibroblasts. We observed the expression

pattern of these genes showed spatial patterns of high

expression in cancer cells in the spatial transcriptome data

of two other stage IV colorectal cancer patients.

Megakaryocytes are the source of platelets. Whereas the

contribution of platelets to cancer procession and

metastasis has been extensively characterized (Cho et al.,

2012), the interaction of tumor cells with platelets and

megakaryocytes during the metastatic cascade was less well-

defined. Currently, the role of megakaryocytes during

metastasis was starting to be appreciated. Some studies have

demonstrated that increasing number of megakaryocytes in

patients with cancer metastases (Huang et al., 2019; Lucotti

and Muschel, 2020). In recent years, studies about platelet and

megakaryocytes transcriptome at the single-cell level indicated

that megakaryocytes and platelets are much more diverse than

before. They fulfilled their distinct functions by utilizing

heterogeneous subpopulations (Kharchenko, 2021; Liu

et al., 2021). Keeping with these studies, we found that an

MK subpopulation correlated with colorectal cancer

metastasis. Furthermore, the proven colorectal cancer

biomarkers had similar gene expression patterns in

MK5 subpopulation cells and tumor epitheliums. The

correlation between the MK5 subpopulation and colorectal

cancer metastasis may be closer than previous studies. Of

course, the comprehensive link and the underlying molecular

basis between MKs, platelets, and tumor cells need more

experiments and research to clarify. HEART has two main

limitations: first, it is sensitive to sample size similar to other

DE methods and performs poorly on small datasets

(n1 + n2 < 60). Second, HEART is only designed for

comparisons between two groups, and expansion to

comparisons between multiple groups requires more research.

In summary, HEART is a competitive DE method for

scRNA-seq data, which maintains high accuracy, unrivaled

computational efficiency, and strong robustness across diverse

scRNA-seq datasets.

4 Materials and methods

4.1 Datasets

We used three actual scRNA-seq datasets in applications.

The PBMC68K is available from https://support.10xgenomics.

com/single-cellgene-expression/datasets. The human brain

dataset can be obtained by R package SC2P or the GEO

database repository under accession code GSE67835. The

scRNA-seq data of one stage III colorectal cancer patient have

been deposited in the OMIX, China National Center for

Bioinformation / Beijing Institute of Genomics, Chinese

Academy of Sciences (https://ngdc.cncb.ac.cn/omix: accession

no. OMIX002120). The spatial transcriptomic data of two

colorectal cancer patients are available from (http://www.

cancerdiversity.asia/scCRLM).

4.2 Simulation settings

We used two simulation data generation mechanisms to

generate scenarios with different settings. Each design had

20 replications. The popular artificial protocol, Splatter

(Zappia et al., 2017), generated simulation datasets in

simulation 1. Each scenario contained 10000 genes (1000 DE

genes and 10000 non-DE genes) and two underlying

subpopulations. We varied the number of samples (1,000,

2000, 5,000, 10000, 20000) and DE strength for DE genes

(de.factor = 0.3, 0.5). De.factor is the differential expression

factor produced from a log-normal distribution. A high

de.factor can result in the strong DE strength of DE genes

between groups (More details of parameters in Supplementary

Material S1).

Simulation 2 adopted a semi-simulation mechanism based

on actual scRNA datasets to recover the multimodality and

biological characteristic complexity of actual scRNA-seq data

(Figure 2C, Supplementary Material S1) (Chen et al., 2018).

First, we randomly divided the real scRNA-seq dataset into

two parts regarded as two groups of cells. The second step was

to create differentially expressed genes. We ranked the mean

counts of all genes of the second group of cells and chose

200 genes, starting with the one having a mean count just

above s1. We selected another 200 genes beginning with the

mean count just above s2 � FC × s1. Then, we swapped the

gene expression of these two equal numbers sets of selected

genes in the second group of cells and got a simulation dataset

with 2 cell groups with a known DE genes list. The parameter

FC controlled the DE strength of DE genes between groups.

We considered three DE strengths of DE genes: weak (FC =

1.5), moderate (FC = 2), and strong (FC = 2.5). In simulation 2,

we chose PBMC68K (Zheng et al., 2017) as source data.

PBMC68K consisted of transcription profiles

of −68000 peripheral blood mononuclear cells and had

11 different cell subtypes with sample sizes ranging

from −90 to −20000 (more details in Supplementary

Material S1). We generated three simulation scenarios for

each subtype of cells with three different levels (weak,

moderate, and strong) of difference to test the sensitivity of

detecting the DE genes.
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4.3 DE genes list

All DE gene lists in simulation datasets were artificially set.

We calculated all method performance indices according to

known DE gene lists. Due to the unattainability of the

whole accurate DE genes list of different cell groups in real

single-cell data, we used different standards to set three

potential DE gene lists and calculated all method

performance indices.

Standard 1. Known DE genes from the literature.

Standard 2. The top 500 genes are ranked by the chosen

number of times by all methods.

Standard 3. The top 1,000 genes are ranked by the chosen

number of times by all methods.

For Standard 1, we collected dozens of known DE

genes from various experiments based on bulk RNA-seq in

the literature (Liu et al., 2001; Weng et al., 2012; Zhang et al.,

2014; Darmanis et al., 2015). They were partial genes of the

whole true DE genes between different cell clusters.

For Standard 2 and 3, we ranked all genes’ chosen

number of times by all methods and set the top 500 and

1,000 genes as potential DE genes between different cell

clusters.

4.4 Index

On the basis of the DE gene list in 2.3, we calculated a series of

indices: F1 scores, true positive rate (TPR, recall), false discovery

rate (FDR), and time consumption to assess the performance of

all methods. All indices were presented as the average value of

20 replications.

4.5 Method details

For thisH01, we compared the positive expression ratio of the

gene j in the two groups of cells. The total numbers of two groups

of cells are n1, n2, respectively. And the numbers of positive

expressions of the gene j in the two groups of cells are

mj1 � ∑ I(yj1i ≠ 0), mj2 � ∑ I(yj2i ≠ 0), respectively. yjgi

denotes the UMI count of the gene j of cell i in the group

g � 1, 2. pjg is the gene j’s positive expression proportion in the

group g. p̂jg is the estimator of pjg. Hence, the positive

expression ratios of the gene j in group 1 and group 2 are

p̂j1 � mj1

n1
, p̂j2 � mj2

n2
, respectively.

H01: pj1 � pj2; HA1: pj1 ≠ pj2

z � p̂j1 − p̂j2����������������
p̂p(1 − p̂p)( 1

n1
+ 1

n2
)√ ~ N(0, 1)

where, p̂p �
mj1 +mj2

n1 + n2

L1 � 2P(Z> |z| |H01 is true)

In terms of hypothesesH02 and H03, only the “On” state of

each gene is involved in calculations. For hypothesis H02, we

used the Student’s t-test to determine whether the two groups

differ significantly on the central location of gene j’s

expression of the “On” state.

H02: μj1 � μj2; HA2: μj1 ≠ μj2

t � �xj1 − �xj2�������
s2j1
mj1

+ s2j2
mj2

√ ~ t(dft)
L2 � 2P(T> |t| |H02 is true)

μjg is the mean of the gene j in the group g on the positive

part (“on” state). �xjg � ∑xjgi
mjg

is the estimator of the μjg. sjg

is the estimator of the σ2jg, which is the variance of the gene j in
the group g′s ‘on’ part.Where, xjg � {yjgi, which yjgi > 0}

For this H03, we used the Brown–Forsythe test to test the

equality of scattering of gene j’s positive expression.

H03: σ2j1 � σ2j2; HA3: σ2j1 ≠ σ2j2

W � ∑G
g�1(mjg − 1)

G − 1

∑G
g�1mjg(�zjg − �zj)2

∑G
g�1∑mjg

i�1 (zjgi − �zjg)2

~ F(G − 1, ∑G
g�1(mjg − 1)), zjgi � ∣∣∣∣xjgi − ~xjg

∣∣∣∣
L3 � P(F(1, mj1 +mj2 − 2)>W ∣∣∣∣∣H03 is true)

Where, ~xjg in zjgi � |xjgi − ~xjg| is the median of the g-th

subgroup. Then we performed statistical tests on each null

hypothesis H0i, respectively. The p-value of each test is

recorded as Li. We obtained a new statistic Q by combining

three individual p-values Li of the statistics for each null

hypothesis H0i.

Q � −2∑3
i�1
logLi

Q follows the χ2 distribution. If Li is independent,

Q ~ χ2(6). The degree of freedom of Q is not equal

to 6 in most scenarios because of the correlation of Li.

To solve this problem, we obtained the freedom which is

close to the real data distribution by sup
df

L(df|Q) (more

details inSupplementary Material S1).
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