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Background: A crucial part of the malignant processes of soft tissue sarcoma

(STS) is played by cuproptosis and lncRNAs. However, the connection between

cuproptosis-related lncRNAs (CRLs) and STS is nevertheless unclear. As a result,

our objective was to look into the immunological activity, clinical significance,

and predictive accuracy of CRLs in STS.

Methods: The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression

(GTEx) databases, respectively, provided information on the expression patterns

of STS patients and the general population. Cuproptosis-related lncRNA

signature (CRLncSig) construction involved the univariate, multivariate, and

least absolute shrinkage and selection operator Cox regression analysis. The

predictive performance of the CRLncSig was evaluated using a serial analysis.

Further research was done on the connections between the CRLncSig and the

tumor immune milieu, somatic mutation, immunotherapy response, and

chemotherapeutic drug susceptibility. Notably, an in vitro investigation served

to finally validate the expression of the hallmark CRLs.

Results: A novel efficient CRLncSig composed of seven CRLs was successfully

constructed. Additionally, the low-CRLncSig group’s prognosis was better than

that of the high-CRLncSig group’s based on the new CRLncSig. The innovative

CRLncSig then demonstrated outstanding, consistent, and independent

prognostic and predictive usefulness for patients with STS, according to the

evaluation and validation data. The low-CRLncSig group’s patients also displayed

improved immunoreactivity phenotype, increased immune infiltration

abundance and checkpoint expression, and superior immunotherapy

response, whereas those in the high-CRLncSig group with worse immune
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status, increased tumor stemness, and higher collagen levels in the extracellular

matrix. Additionally, there is a noticeable disparity in the sensitivity of widely used

anti-cancer drugs amongst various populations. What’s more, the nomogram

constructed based on CRLncSig and clinical characteristics of patients also

showed good predictive ability. Importantly, Real-Time Quantitative

Polymerase Chain Reaction (RT-qPCR) demonstrated that the signature CRLs

exhibited a significantly differential expression level in STS cell lines.

Conclusion: In summary, this study revealed the novel CRLncSig could be used

as a promising predictor for prognosis prediction, immune activity, tumor

immune microenvironment, immune response, and chemotherapeutic drug

susceptibility in patients with STS. This may provide an important direction for

the clinical decision-making and personalized therapy of STS.
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Introduction

The malignant tumor arising from mesenchymal tissues is

known as soft tissue sarcoma (STS). It originates from

mesenchymal tissue with distinctive differences in the site of

occurrence, transformed cell types, clinical features, and

histopathological characteristics of the various pathological types

(Dickson et al., 2016). STS mainly occurs in children and adolescent

groups, its incidence is low, and it is relatively rare, accounting for

about only 1% of all malignancies in adults and about 7% of all

malignancies in the pediatric population (Kapoor and Das, 2012;

Gamboa et al., 2020). Even though STS is a relatively uncommon

disease, its aggressive and metastatic nature usually leads to a poor

prognosis for patients (Sachpekidis et al., 2019). Currently, radiation,

chemotherapy, and surgical resection are used in conjunction to

treat STS (von Mehren et al., 2020). Targeted and immunotherapy

have also been suggested as treatments for STS in recent years (Yang

et al., 2019). However, because of the sneaky symptomatology,

delayed start of clinical symptoms, and quick progression of STS,

the 5-year survival is only 63.9% (Chávez et al., 2019). Consequently,

it is imperative to investigate brand-new, potential biomarkers to

assist with the early detection of STS and its treatment.

The mineral element copper is essential throughout many

biological processes, and it has long been considered a cofactor

in the active sites for many metalloproteins only (Gou et al., 2021).

However, emerging evidence suggests that patients with tumors had

higher serum and tissue copper levels than people without tumors,

indicating that coppermay have a role in the onset and development

of cancer (Babak and Ahn, 2021). Nevertheless, how excess copper

plays a specific role in tumors remains inconclusive and requires

further study. Cupropptosis, a fresh kind of programmed cell death

that distinguishes from apoptosis, ferroptosis, pyroptosis, and

necroptosis, has recently been proposed by Peter Tsvetkov et al.

(2022). They discovered that copper might directly bind to lipid-

acylated TCA cycle components, causing aggregation, dysregulation

of associated proteins, and inhibiting the TCA cycle, which causes

proteotoxic stress and ultimately results in cell death. And elesclomol

is a promising copper ion carrier that exhibits tumoricidal effects

through copper toxicity (O’Day et al., 2013). Together, these findings

could offer a fresh perspective on the therapies for specific tumors.

A vast family of non-coding RNAmolecules with a length larger

than 200 nucleotides (nts) are considered to be long non-coding

RNAs (lncRNAs). There are accumulating studies demonstrating

that lncRNAs participate in the malignant processes of STS, such as

the occurrence, development, andmetastasis (Min et al., 2017). And

their levels of expression can be utilized to predict patient therapy

and prognosis (Hu et al., 2021). Meanwhile, significant numbers of

studies have confirmed that programmed cell death-based lncRNA

labeling can effectively individualize the prognosis of tumor patients.

For instance, colon cancer prognosis prediction utility of ferroptosis-

related lncRNA signature was demonstrated byWu et al. (2021a). In

addition, our previous study has proved that the cuproptosis-related

lncRNA signature (CRLncSig) could use for the prognosis

prediction of osteosarcoma (Liu et al., 2022). However, the

relationship between cuproptosis-related lncRNAs (CRLs) and

STS and their predictive value is not clear so far.

Thus, we aimed to use bioinformatics and in vitro experiments

to systematically explore the prognostic performance, clinical

relevance, and immune activity of CRLs in STS. And our

findings will reveal the importance of CRLs in STS and provide

a foundation for prognosis prediction, immunity characteristics

identification, clinical chemotherapy, and immunotherapy in STS.

Materials and methods

Data collection and procession

The Cancer Genome Atlas (TCGA; https://www.cancer.gov/

aboutnci/organization/ccg/research/structural-genomics/tcga)

database was used to gather the expression patterns of the STS

cohort as well as the accompanying clinical information, somatic
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mutation, and copy number variation data. After excluding

individuals with incomplete survival information, we included a

total of 260 STS patients. Since there was insufficient normal tissue

sample in the TCGA database, we obtained 911 normal samples’

gene expression profiles from the Genotype-Tissue Expression

(GTEx) database (https://www.gtexportal.org/home/). After the

results extraction from the sources is completed, they will be

preprocessed according to strict steps for reordering,

normalization, and elimination of batch effects. Supplementary

Table S1 displays the specific clinical features of the STS cohort.

Extraction of cuproptosis-related genes in
soft tissue sarcoma

We acquired a total of 10 cuproptosis-related genes (CRGs) for

the prior investigation (Supplementary Table S2) (Tsvetkov et al.,

2022). Using the R package “limma,” we first contrasted how these

CRGs were expressed in STS versus normal tissues. Then, the somatic

mutations of these 10 CRGs in STS were visualized using the package

“Maftools.” Finally, the “Circos” package was used to map Ciros and

clarify the distribution of chromosomal positions of the 10 CRGs.

Screening of differential expressed
cuproptosis-related genes in soft tissue
sarcoma

The differences between the samples were visualized by using

principal component analysis (PCA). To find differential

expressed cuproptosis-related genes (DECRLs) between STS

and normal samples, both differential expression analysis and

Pearson co-expression analysis were implied. Differential

expression analysis was performed by the “limma” package to

identify the differential expressed lncRNAs (DElncRNAs) among

STS and normal cohorts. The criterion for DElncRNAs was an

adjusted p-value < 0.05 and |logFC| < 1.5. Heatmap and volcano

plots were used to display DElncRNAs. Next, the R software was

applied to calculate correlation coefficients based on the CRG

and lncRNA expression files, and lncRNAs with |R2| > 0.3 and

p-value < 0.05 were defined as CRLs. Ultimately, the DECRLs

were obtained for the intersection of DElncRNAs and CRLs.

Identification of cuproptosis-related long
non-coding RNAs related to the prognosis
of soft tissue sarcoma

We chose the univariate cox analysis to evaluate the

connection between the DECRLs and the STS’s prognosis to

acquire the prospective prognostic CRLs for the subsequent

signature construction. p-value < 0.05 was the requirement for

predicting CRLs.

Establishment of a cuproptosis-related
long non-coding RNA signature

Both the training group (n = 130) and test group (n = 130)

were created from the STS cohort (n = 260) by random selection.

The signature CRLs of the candidates among the predetermined

CRLs were found by the least absolute shrinkage and selection

operator (LASSO) Cox regression analysis in the training

group. The optimal CRLncSig was determined using

multivariate Cox regression analysis with the candidates’

signature CRLs. Based on the observable coefficient and

expression level of each CRL, the risk score for each STS

patient was evaluated by: RiskScore = Σβi*Xi (βi: coefficients

of the gene i, Xi: expression values of the gene i). With that,

patients with STS were separated into low- and high-CRLncSig

groups following the training cohort’s median risk score.

Evaluation and validation of cuproptosis-
related long non-coding RNA signature

To compare the overall survival (OS) of these two groups, a

Kaplan-Meier (K-M) analysis was performed. While the

association between risk score and the STS’s prognosis was

visualized by the R package “pheatmap” to plot the risk score

dispersion and patient survival situation. The receiver operating

characteristic (ROC) curves for the 1-, 3-, and five- year OS were

plotted using the R package “timeROC.” For further validation,

the same analysis methods mentioned above were performed in

the testing and whole cohort.

Furthermore, subgroup K-M analysis was employed to evaluate

the CRLncSig’s reliability in light of various clinical features

(including age, gender, cut-off margin status, metastatic status,

and new oncology events). To test the independence of CRLncSig

as a prognostic factor, we lastly conducted univariate and multifactor

Cox regression analysis of the risk score and clinical traits.

Genes with differential expression in two
risk groups

Clustered heat map volcano plot was applied to display the

DEGs between the low- and high-CRLncSig groups. On the

DEGs with |logFC| > 0.585 and an adjusted p-value < 0.05,

additional functional enrichment analysis was carried out.

Gene ontology and the kyoto
encyclopedia of genes and genomes
analysis

Using the R package “clusterProfiler,” GO and KEGG

functional enrichment analysis was carried out to access the
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biological functions of the differential gene (Wu et al., 2021b).

GO analysis included GO biological process (BP), GO cellular

compartment (CC) and GO molecular function (MF). The top

10 outcomes of the GO analysis and the top 20 outcomes of the

KEGG enrichment analysis were represented in bubble plots.

Protein-protein interaction network and
friends analysis

To further identify the top ten hub genes in these DEGs

between the two CRLncSig groups, PPI network analysis and

Friends analysis were utilized. The DEGs between the low- and

high-CRLncSig groups for the PPI network were uploaded to a

string database with default parameters, and Cytoscape software

was used to view the network (Doncheva et al., 2019). Then, the

Friends analysis was conducted to screen the top ten hub genes

using the R package “GOSemSim.”With K-M analysis and ROC

curves, the prognostic value of each hub gene in STS was

examined.

Gene set enrichment analysis and gene set
variation analysis

To investigate possible molecular paths between distinct STS

CRLncSig groups, we performed GSEA and GSVA analyses. The

GSEA analysis was applied using the “clusterProfiler” package

relying on the KEGG gene set (c2.cp.kegg.v7.4.symbols.gmt)

acquired from The Molecular Signatures Database (MSigDB,

https://www.gsea-msigdb.org/gsea/msigdb). The top ten

enrichment pathways in the low- and high-CRLncSig

categories (p-value < 0.05) were chosen. The GSVA method,

which is non-parametric and unsupervised, is frequently

employed to access the differences in pathway activity. The

GSVA was conducted by the “GSVA” package. Based on the

GSVA data, the “limma” package was applied to assess the

differences across the distinct risk categories. The clustered

heat maps’ presentation was then limited to enrichment

pathways with |logFC| > 0.15 and an adjusted p-value < 0.05.

Estimation of the tumor
microenvironment, immune checkpoints,
immune cell infiltration, and stemness

Additionally, a serial bioinformatic approach was used to

infer how the CRLncSig and immunological state are related.

Initially, the tumor microenvironment (TME) component

proportions, comprising stromal, immune, and ESTIMATE

scores, were assessed using the ESTIMATE algorithm based

on the R package “estimate”. Similar to this, the STS’s

infiltration abundance of 28 tumor immune cells was

evaluated by the single sample gene set enrichment analysis

(ssGSEA) algorithm. Then, the associations between the

immune cell infiltration and each signature CRLs and hub

gene were explored using Pearson correlation analysis. Also,

we contrasted the extracellular matrix (ECM) and possible

immune checkpoint expressions between the groups with low

and high CRLncSig. In addition, the link between the stemness of

STS and CRLncSig score was evaluated using four stemness

indices (EREG-mDNAsi, EREG-mRNAsi, mRNAsi, and

mDNAsi).

Association between distinct cuproptosis-
related long non-coding RNA signature
groups and clinical characteristics

A Chi-square test was performed to evaluate the variations in

clinical features between the low- and high- CRLncSig groups

and determine the link between clinical characteristics of STS and

the new CRLncSig. The heat map displays the results. Age,

gender, histological type, cut-off margin status, metastatic

status, and new oncologic events are the clinical factors that

were compared.

Evaluation of immunotherapy response
and drug susceptibility

We examined the variations in immunotherapy response and

chemotherapy medication susceptibility between the various

CRLncSig groups to aid the clinical treatment for STS. To

figure out the association between the unique CRLncSig group

with and without response to anti-CTAL4 and anti-PDL1

inhibitors, the Subclass Mapping (SubMap) algorithm was

applied. Besides, the corresponding results were visualized

utilizing the “pheatmap” and “ggpubr” R packages. To

compare chemotherapeutic susceptibility, we calculated half of

the maximum inhibitory concentration (IC50) using the R

package “pRRophetic.” The Wilcoxon sign-rank test was

employed to evaluate the difference in IC50 between the low-

and high-CRLncSig groups. And twelve widely used

chemotherapeutic medications, including Cisplatin,

Cytarabine, Docetaxel, Doxorubicin, Pazopanib, Vinorelbine,

Vorinostat, Erlotinib, Gefitinib, Lapatinib, and Metformin,

were included in the investigation.

Construction of nomogram and
calibration curve

As a foundation for the clinical applicability of the fresh

CRLncSig of overall survival (OS) prediction for patients with

STS, column line plots on the basis of risk scores and clinical
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parameters were created. The nomogram may aid in estimating

the 1-, 2-, and 3-year OS. The calibration curve was also used to

show how closely the actual rates match the potential outcomes

anticipated by the nomogram. The “rms” package was used to

create the nomogram and calibration curves.

Cell lines and cell culture

The Procell Life Science& Technology Co., Ltd., (Hubei,

China). Provided the human liposarcoma cell line (SW872)

for usage in research. The American Type Culture Collection’s

FIGURE 1
The flow diagram of our study.
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(ATCC) human synovial sarcoma cell line (SW982) was

purchased. Fenghui Biotechnology Co., Ltd., (Hunan, China)

supplied the human skin fibroblast cell line (HSF). In addition to

10% fetal bovine serum (Gibco, United States) and 1% penicillin-

streptomycin solution (NCM Biotech, China), all cell lines were

grown in Dulbecco’s modified Eagle’s medium (Gibco,

United States). The cell was cultured at 37°C in a 5% CO2-

humidified atmosphere.

Real-time quantitative polymerase chain
reaction

Total cellular RNA was extracted using the RNA Express

Total RNA Kit following the manufacturer’s instructions (M050,

NCM Biotech, China). After that, cDNA synthesis was carried

out using the Revert Aid First Strand cDNA Synthesis Kit

(K1622, Thermo Scientific, United States). Hieff qPCR SYBR

Green Master Mix (High Rox Plus) (11203ES, YEASEN Biotech

Co., Ltd., China) was used to measure gene expression, and the

2−ΔΔCT method was used to calculate the results. For

normalization, GAPDH served as the internal standard.

Supplementary Table S3 provides the used primer sequences.

Statistical analysis

R (version 4.0.1) and GraphPad Prism (version 9.0.0) were

used to carry out all statistical analyses for this investigation. For

comparing the differences between the different groups, the

student’s t-test or one-way analysis of variance were utilized.

The Chi-square test was used to compare the clinicopathological

parameters of the high-CRLncSig and low-CRLncSig groups. The

Log-rank test was used in the KM survival analysis to compare

the OS of two different groups. The Pearson correlation test

served as the basis for the correlation analysis. A statistically

significant difference was defined as a p-value of 0.05 or lower.

Results

Identification of differential expressed
cuproptosis-related genes in soft tissue
sarcoma

Figure 1 shows the flowchart of the present research. The

mRNA and lncRNA expression profiles were normalized and

batch corrected before analysis (Figures 2A,B). When we first

measured the frequency of copy number variation (CNV)

modifications, the result showed significant copy number

amplification for LIPT1, DLD, and MTF1, while FDX1,

DLAT, PDHB, and GLS exhibited significant copy number

deletions (Figure 2C). And the location of CNV alteration on

the chromosomes for each CRG is shown in Figure 2D. What’s

more, except for GLS, the expression of almost all CRGs was

significantly different between STS and normal tissue

(Figure 2E). Unfortunately, no link was established between

the altered CNV and the differential expression of CRGs.

Subsequently, the PCA result based on the lncRNA expression

demonstrated that the lncRNA expression profiles could clearly

distinguish between the STS and normal samples (Supplementay

Figure S1). As shown in Figures 2F,G, we identified

417 differentially expressed lncRNAs in STS according to the

different analyses. And a total of 1103 lncRNAs were defined as

CRLs through correlation analysis results (Supplementary Table

S4). Finally, 145 differentially expressed CRLs were selected for

the following signature construction (Supplementary Table S5).

Constructing a cuproptosis-related long
non-coding RNA prognostic signature

Univariate Cox regression analysis revealed 27 CRLs linked to

the prognosis of STS (Supplementary Table S6). After LASSO

regression analysis, 12 candidate signature CRLs were screened

out (Figure 3A). Subsequently, a novel CRLncSig was constructed

based on multivariate Cox regression analysis, consisting of 7 CRLs,

AC138207.5, THUMPD-AS1, LINC00294, SNHG6, AC011472.4,

SCAMP1-AS1, and HEIH (Figure 3B; Supplementary Table S7).

The CRLncSig was calculated as: risk score = THUMPD-AS1

×1.100852728 + SNHG6 × 0.538933008—AC138207.5 ×

0.27014193—LINC00294 × 0.671824437—AC011472.4 ×

0.380716037—SCAMP1-AS1 × 0.850762533 + HEIH ×

0.447005528. The distribution of risk scores and survival status

implied that the deceased person was mostly concentrated in the

high-CRLncSig group, suggesting that the STS’s prognosis may be

responsive to the risk score (Figures 3C,D). Notably, the K-M

analysis manifested that patients in the low-CRLncSig category

seemed to have a more favorable survival than those in the high-

CRLncSig group (p < 0.001, Figure 3E). Furthermore, good

sensitivity and specificity in predicting the prognosis of STS were

found through the new CRLncSig (Figure 3F).

Evaluation and validation of the novel
cuproptosis-related long non-coding RNA
signature

In further validation assessments, as expected, distribution

plots, K-M analyses, and ROC curves for the training group and

the whole cohort showed consistent results, which further

demonstrated the feasibility of the novel CRLncSig

(Supplementary Figures S2, S3). The innovative CRLncSig was

found to be stable, as evidenced by subgroup survival analysis

based on clinical features, which revealed that STS patients with

lower risk scores had significantly increased OS regardless of
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FIGURE 2
Identification of CRLs in STS. (A,B) Boxplots of mRNA and lncRNA expression profile after batch effect correction. (C) The frequencies of CNV
gain and loss of CRGs. (D) The location of CRGs on chromosomes. (E) The expression level of CRGs between STS and normal tissue. (F,G) The
volcano plot and heat map of the differentially expressed lncRNAs.
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FIGURE 3
Construction of the novel CRLncSig. (A) The LASSO COX regression analysis. (B) The forest plot of the prognostic ability of the 7 CRLs included
in CRLncSig. (C,D) The distribution of risk score and patient survival status. (E) The K-M survival curves of the novel CRLncSigin the training cohort. (F)
Evaluate the prognostic performance of the risk score using time-dependent ROC in the training cohort.
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FIGURE 4
Independent prognostic value of the novel CRLncSig. (A–J) K–M survival curves is stratified by Age, Gender, Margin status, Metastasis status,
and New tumor events between the distinct groups. (K) The univariate Cox regression analysis. (L) The multivariate Cox regression analysis. (M)
Association between the risk scores and clinical features.
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clinical grouping (p < 0.001, Figures 4A–J). Additionally, the new

CRLncSig was found to be an independent predictive risk factor

for the STS group by univariate [hazard ratio (HR) = 3.354, 95%

confidence interval (CI) = 2.167–5.190, p < 0.001] and

multivariate (HR = 4.120, 95% CI = 2.164–7.843, p < 0.001)

Cox analyses (Figures 4K–L). The interaction between the new

CRLncSig and the clinicopathological features of STS was

examined using a Chi-square test. And the heatmap revealed

notable variations in the two CRLncSig groups’ gender and

histology types (Figure 4M).

FIGURE 5
The relationships of seven signature CRLs with STS and cuproptosis. (A) Co-expression analysis of the seven signature CRLs with CRGs. (B–H)
The expression level of seven signature CRLs in low-CRLncSig and high-CRLncSig groups. (I–O) The K-M survival curves for seven signature CRLs.
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Relationships between signature long
non-coding RNA with cuproptosis in soft
tissue sarcoma

Co-expression analysis revealed an obvious co-expression

correlation between the seven signature CRLs and CRGs

(Figure 5A). Similarly, the expression of each signature CRLs

showed a significant association (Supplementary Figure S4).

When assessing the expression of labeled CRLs in the STS, in

the high-CRLncSig group, it was observed that THUMPD-AS1

and SNHG6 represented higher expression, while AC138207.5,

LINC00294, AC011472.4, SCAMP1-AS1, and HEIH were

downregulated in the low-CRLncSig group (p < 0.001, Figures

5B–H). Likewise, the heatmap of testing, training, and entire

groups displayed comparable outcomes (Supplementary Figure

S5). Consist with the expression result, the K-M survival results

indicated that the THUMPD-AS1 and SNHG6 exhibited a

significant risk prognostic effect in STS, while AC138207.5,

LINC00294, AC011472.4, SCAMP1-AS1, and HEIH showed a

significant protective prognostic effect in STS (p < 0.05, Figures

5I–O). Hence, these results implied a potential prognostic value

of these seven CRLs for STS.

Genes with differential expression and
functional enrichment analysis among
different risk groups

A substantial difference in the mRNA expression was found

between the groups with low and high CRLncSig, according to

differential analysis (Figures 6A,B). Under the screening criteria,

800 DEGs were discovered between various CRLncSig groups

and their volcanoes (Figures 6C,D). Among them, 203 DEGs had

increased regulation in the high-CRLncSig group, whereas

597 had decreased regulation. Figure 6E also displayed the

PPI network. These DEGs were also found to be enhanced in

immune response, B cell-mediated immunity, immunoglobulin-

mediated immunity, immunoglobulin complex, MHC protein

complex, MHC class II protein complex binding, etc., by the Go

enrichment analysis (Figure 6F). Based on the KEGG database,

we discovered that these DEGs were primarily concentrated in

cell adhesion molecules, phagosomes, Human T-cell Leukemia

Virus 1 infection, etc., (Figure 6G).

Screening of cuproptosis-related hub
genes in soft tissue sarcoma

The Friends analysis revealed ten potential hub genes that

may be involved in copper synapse formation (Figure 7A). And

the co-expression results showed that these ten pivotal genes

were closely associated with the signature CRLs (Figure 7B). As

shown in Figures 7C–L, subsequent K-M survival analysis

assessed the prognostic value of the identified key genes:

ANGPTL1, APBB1IP, IFI6, MEDAG, NXPH3, RASL12, and

TNFSF12 were positively associated with improved prognosis

of STS, while elevated PERP and TROAP were associated with

poor STS’s prognosis (p < 0.05). The above results suggested that

these key genes may be potential prognostic biomarkers of STS

and provide a reference for future STS biomarker studies.

Exploration of the underlying pathways of
cuproptosis-related long non-coding RNA
signature

According to Supplementary Figure S6, the pathways of

CRLncSig in the high-CRLncSig group were primarily

enriched in several tumor-related pathways, namely the cell

cycle, DNA replication, ECM receptor interaction, pathway in

cancer, TGF-beta signaling route, andWnt signaling pathway. In

contrast, CRLncSig pathways were primarily focused on the

complement and coagulation cascades, cytokine-cytokine

receptor interaction, and chemokine signaling pathway in the

low-CRLncSig group. Encouragingly, the heatmap of GSVA

showed similar results (Figures 8A,E). Based on the GSVA

outcomes, the pathways of CRLncSig in the high-CRLncSig

cohort were also enriched in the cell cycle and DNA

replication, whereas the pathways of CRLncSig in the low-

CRLncSig STS cohort were primarily enriched in immune-

related pathways, along with chemokine signaling pathway,

primary immunodeficiency, and Toll-like receptor signaling

pathway. Together, these findings showed that the new

CRLncSig was related to STS carcinogenesis and tumor

immunity.

Associations of cuproptosis-related long
non-coding RNA signature with tumor
microenvironment and immune cell
infiltration

TME and immune cell infiltration were examined due to the

variations in molecular biological processes and immune-related

pathways between the two CRLncSig groups. Primarily, the

ESTIMATE outcomes manifested that the low-CRLncSig

group appeared to have greater stromal, immune, and

estimate scores than those in the high-CRLncSig group

(Figure 8B). Additionally, the low-CRLncSig group’s immune

cells almost universally displayed better infiltration abundance as

compared to the proportion of immune cells that were infiltrated

in STS (Figure 8C). Also, the low-CRLncSig group showed

additional immune checkpoint expression (Figure 8D). The

correlation analysis also revealed that these signature CRLs

and hub genes were positively correlated with immune cell

infiltration (Supplementary Figure S7). The indices of
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FIGURE 6
The differentially expressed and functional enrichment analysis between high- and low-CRLncSig groups. (A) The screen plot of PCA analysis is
based on the differentially expressed gene between the low- and high-CRLncSig group. (B) PCA between high- and low-CRLncSig groups on all
genes. (C,D) The volcano plot and heatmap of DEGs between the distinct risk group. (E) PPI network analysis of differential expressed gene. (F,G) The
GO analysis and KEGG enrichment pathway analysis.
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mDNAsi, mRNAsi, and EREG-mDNAsi were considerably

greater in the high-CRLncSig group, indicating that the high-

CRLncSig group was related to higher stemness in STS, based on

an analysis of the association between the stemness of STS and

CRLncSig score (Figure 8F). And it also implied the high-

CRLncSig group was more aggressive. The extracellular matrix

of the two groups was further analyzed, and it was discovered that

the high-CRLncSig group had much more collagen than the low-

CRLncSig group did, while the low-CRLncSig group had more

ECM-related proteins and secreted factors (Figure 8G).

Altogether, these findings showed that the STS cohort with a

higher CRLncSig score had a poor immune status, higher tumor

stemness, and higher collagens in ECM, which may account for

the prognosis difference of patients in the distinct groups.

Tumor mutation status between two
distinct cuproptosis-related long non-
coding RNA signature groups

A growing body of research revealed that TMB was closely

associated with tumor immunotherapy (Wang et al., 2019).

However, significant differences in TMB scores and patterns

of chromosomal alterations between CRLncSig groups had not

FIGURE 7
Screening cuproptosis-related hub genes. (A) The Friends analysis of GO-related genes. (B) The association between these ten hub genes and
seven signature CRLs. (C–L) The K-M survival and ROC curve of these ten hub genes.
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FIGURE 8
Evaluation of tumor microenvironment, immune cell infiltration, and immune checkpoint genes in distinct groups. (A) The heatmaps of GSVA
showed signaling pathways between different risk groups. (B) Comparison of TME score between the high- and low-CRLncSig groups. (C)
Differences in the infiltration of immune cells between the distinct risk groups. (D) The expression level of immune checkpoint genes between the
high- and low-CRLncSig groups. (E) Differences in signaling pathways between different risk groups. (F) The differences in stemness index
between the high- and low-CRLncSig groups (G) The different extracellular matrix components between the high- and low-CRLncSig groups.
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been observed (p = 0.15, Figures 9A,B). No discernible difference

was found in the frequency of copy-number loss between the two

CRLncSig groups (p = 0.198, Figure 9C), whereas copy-number

expansion was more common in the high-CRLncSig group than

in the low-CRLncSig group (p < 0.05, Figure 9D). Additionally,

Figures 9E,F displayed the differences in somatic mutation

distribution across the two separate CRLncSig groups, and

these waterfall plots displayed the detailed mutation spectrum

of the top 10 mutated genes in the high-CRLncSig and low-

CRLncSig groups.

FIGURE 9
Tumor mutation status among different risk groups. (A) TMB in the high- and low-CRLncSig groups. (B) The genome-wide gene CNV of STS.
(C,D) The difference in CNV loss and gain between the distinct risk groups. (E,F) The differences in mutations between distinct risk groups (the top
20 mutated genes).
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Cuproptosis-related long non-coding
RNA signature predicts efficacy of
immunotherapy response and
chemotherapy susceptibility

In the case of immunotherapy, the low-CRLncSig group

achieved higher responses to PD-1 and CTLA-4 inhibitors

(Figure 10A). The IC50 of 12 chemotherapy drugs was

different between these two groups (p < 0.05), according to

Figures 10B–M, which also showed the relationship between

risk scores and sensitivity to commonly used anti-cancer

medications. Patients in the high-CRLncSig group had lower

IC50 values for the drugs cisplatin, cytarabine, docetaxel,

doxorubicin, pazopanib, vinorelbine, and vorinostat (Figures

10B–I), but had higher IC50 values for erlotinib, gefitinib,

lapatinib, and metformin than those in the low-CRLncSig

group (Figures 10J–M).

Establishment of the nomogram

As shown in Figure 11A, the nomogram created using the

CRLncSig risk score and other clinical traits made it possible to

accurately forecast OS of 1-, 3-, and 5- years. And the ROC curve

FIGURE 10
Evaluation of immunotherapy response and chemotherapy sensitivity in STS with a different risk score. (A) The therapeutic responses to
immune checkpoint inhibitors in STS patients. (B–M) The differences in estimated IC50 values of 12 representative drugs between the high- and low-
CRLncSig groups.
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exhibited that this nomogram offered great prognostic prediction

accuracy for patients with STS. The nomogram’s area under the

curve (AUC) values for years 1, 3, and 5 were 0.788, 0.758, and

0.739 (Figure 11B). Furthermore, the calibration curve showed

that the nomogram’s predictions for 1-, 3-, and 5-year OS under

the ideal model worked well (Figure 11C). The above outcomes

manifested that the nomogram had strong predictive power.

Verification of the signature long non-
coding RNA expression

Ultimately, it was discovered that THUMPD-AS1 and

SNHG6 were enhanced in the STS cell lines (SW982, SW872,

and hSS-005R), particularly in SW982 and hSS-005R, when RT-

qPCR was utilized to confirm these signature CRLs’ expression in

the STS cell lines (Figures 12A,B). Contrary, compared with the

normal cell lines, AC011472.4 and AC138207.5 were reduced in

the STS cell lines (Figures 12C,D). In addition, SCAMPA1-AS1

and HEIH were overexpressed in SW982 and SW872 cell lines

while dramatically decreasing in hSS-005R (Figures 12E,F). And

LINC00294 exhibited an increasing trend in the STS cell lines,

especially in the SW872 cell line (Figure 12G).

Discussion

STS is a rare group of soft tissue malignancies that include a

variety of histological subtypes and can occur in any anatomic

location (Agulnik et al., 2017). Due to the rarity of STS and its high

histological subtype heterogeneity, a bottleneck has been

encountered in improving the prognosis of STS. Furthermore,

FIGURE 11
Construction of the nomogram for predicting overall survival for STS. (A)Nomogram based on the novel CRLncSigin for predicting 1-, 3-, and 5-
year overall survival of STS. (B)Calibration curves of the nomogram. (C) The area under the time-dependent ROC curves for nomogram at 1-, 3-, and
5-year.
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early detection, diagnosis, and therapy are essential components in

enhancing the clinical survival prognosis for STS. Currently,

cuproptosis offers a potential insight for forecasting the prognosis

of tumor patients into the prognosis prediction of the tumor,

according to mounting data. A solid basis for tumor treatment

has already been laid by a previous study that identified a

cuproptosis-related gene signature associated with clear cell renal

cell carcinoma and suggested that it might function as a possible

prognostic predictor for the disease (Bian et al., 2022). Additionally,

cuproptosis associated lncRNA had good prediction ability for

osteosarcoma. However, studies examining the connection

between CRLs and STS were still infrequent.

In the present study, a novel CRLncSig consisting of seven

CRLs was successfully constructed, which could be used as a

promising tool for assessing prognosis prediction, immune

status, immunotherapy response, and chemotherapy in STS.

Initially, 1103 CRLs in STS were screened by analysis of

cuprotosis-related genes and expression files of STS. Next, the

univariate Cox analysis reflected that 27 CRLs were related to the

prognosis of STS. Following these prognostic CRLs, seven CRLs

were screened for signature construction using the LASSO and

multivariate Cox regression analysis. Moreover, the K-M analysis

and ROC curve manifested that the novel CRLncSig had a robust

prognostic, predictive ability. Additionally, the internal validation,

clinical subgroups survival analysis, and independent analysis

further proved that the novel CRLncSig had excellent, stable,

and independent prognostic and predictive utility for STS.

Furthermore, the Friend analysis revealed that the pivotal

genes ANGPTL1, APBB1IP, IFI6, MEDAG, NXPH3, RASL12,

TNFSF12, PERP, and TROAP might serve as promising

FIGURE 12
Verification of the expression of signature CRLs in OS cell lines. (A) THUMPD3-AS1. (B) SNHG6. (C) AC011472.4. (D) AC138207.5. (E) SCAMPA-
AS1. (F) HEIH. (G) LINC00294. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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biomarkers. Remarkably, some earlier studies have shown the

significance of these hub genes in cancers. For instance,

ANGPTL1 has been proven to inhibit tumor metastasis in

several cancers. According to Ge et al. (2021), the APBB1IP

could be used as a predictive biomarker in malignancies, and

its expression is relevantly linked with the tumor immune

microenvironment. IFI6, also known as G1P3, is a

mitochondrial localized antiapoptotic protein that has been

shown to promote the metastatic ability of breast cancer cells

through mtROS (Cheriyath et al., 2018). Consistently, Dai et al.

(2021) also found MEDAG to be a protective factor for the

prognosis of STS, further confirming the accuracy of the

CRLncSig. And RASL12 exhibited a diminished expression in

lung adenocarcinoma, and its downregulation was positively

correlated with better OS (Li et al., 2021). Besides, the

overexpression of TNFSF12 has been proven to promote

apoptosis in gefitinib-resistance cell lines (Li et al., 2018). In

contrast, TROAP was anticipated to be a new target for glioma

therapy since it could accelerate the malignant growth of gliomas

by activating the Wnt/β-Catenin signaling pathway (Zhao et al.,

2021). According to our findings and other research, these hub

genes may be essential in STS and serve as a foundation for

upcoming biomarker studies.

We used GSEA and GSVA to further research the molecular

mechanism of how the new CRLncSig impacts the prognosis of

STS. The findings showed that pathways implicated in

carcinogenesis and progression, such as the cell cycle, TGF-beta

signaling system, and Wnt signaling route, were notably enriched

in the CRLncSig pathways in the high-CRLncSig category. As

critical signaling pathways that are associated with tumorigenesis,

previous studies have established that these pathways have a vital

role in promoting malignant phenotype in STS. The abnormal cell

cycle regulation is a vital cancer hallmark (Hanahan and

Weinberg, 2011), and it has been proven that the disruption of

cell cycle monitoring and proliferation mechanisms is the leading

cause of the proliferation and specific phenomena of tumor cells

(Lv et al., 2019). In addition to being linked with the possession of

embryo growth and tissue homeostasis, theWnt signaling pathway

is also linked to the development of cancer (Zhan et al., 2017). And

TGF-beta is a multifunctional regulator of cell growth and

differentiation (Wang et al., 2003). Chen et al. (2019)

discovered that GDF15 might control the TGF-beta signaling

pathway to help osteosarcoma’s ability to invade and migrate.

Additionally, earlier research has shown that immunological status

has a significant impact on the prognosis of STS (Lin et al., 2021).

The immunological state may be linked to a better prognosis in the

low-CRLncSig group, given this study’s finding that the pathways

of CRLncSig in the low-CRLncSig STS cohort were largely

enriched in immune-related pathways. The aforementioned

findings and studies thus show that these tumor-related

pathways and immunological states may be related to new

CRLncSig in STS, but the specific relationship needs to be

further investigated.

Different immunological states may influence the clinical course

of the same type of tumor in different ways (Zhou et al., 2021). In

comparison to the high-CRLncSig group patients, the low-CRLncSig

group patients had better stromal, immunological, and TME cells.

And this is in line with the outcomes of several earlier STS research

(Huang et al., 2021; Qi et al., 2022). Similarly, the abundance of lots

of immune cells infiltrating the body involving natural killer cells

(NK cells), activated CD8 T cells, mast cells, etc., was higher in the

low-CRLncSig group than in the high-CRLncSig group. As part of

innate immunity, NK cells exhibit a suppression effect in the

development of tumors (Yamamoto et al., 2018). Meanwhile, the

activated CD8 T cells can directly kill tumor cells or mediate

cytotoxic antitumor immune responses by producing granzyme

or perforin, IFN-γ, and tumor necrosis factor (Hadrup et al., 2013;

Wang et al., 2021). Additionally, tumor development andmetastasis

are tightly correlated with tumor stemness. High stemness STS were

reported to have a worse prognosis and be more likely to

metastasize. Low immunological infiltration of immune killer

cells and more immunosuppressive cells are signs of poor

prognosis, whereas patients with low stemness showed stronger

immune status and better prognoses. Cancer frequently exhibits

dysregulation and disruption of the ECM, and the ECM is intimately

linked to the development of cancer. Moreover, collagen matrix has

been shown to significantly enhance the metastatic potential of

tumors, and collagen degradation could enhance the immune

microenvironment. According to the outcomes of this study,

which are consistent with those of earlier studies, the high-

CRLncSig group’s stem cells had higher stemness, more collagen

matrix, and worse immune status. Combined with the above

analyses and previous reports, The various prognoses of STS

patients with different risk scores may be explained by

considerable disparities in the immunological state, stemness, and

ECM of STS patients in diverse CRLncSig risk categories. And there

is also a correlation between the ECM, stemness, and immune status.

In addition, we noticed that the CRLncSig risk scores and the

expression of most immune checkpoint genes were inversely

associated. And it has been proposed that immune checkpoint

expression may be a reflection of the clinical outcome of

immunotherapy that targets immunological checkpoints (Zheng

et al., 2021). Immunotherapy that targets immunological

checkpoints (PD-1 and CTLA-4) has recently become a

potential treatment option for a variety of malignancies (Zhou

et al., 2017; Chen et al., 2021). However, each tumor exhibits a

different response to immunotherapy (Zou et al., 2016). It is

interesting to note that this study’s findings suggested that

patients of the low-CRLncSig category reacted better to PD-1-

targeted immunotherapy, bringing renewed hope for personalized

immunotherapy. Meanwhile, due to drug resistance and

heterogeneity, STS is relatively insensitive to various

chemotherapeutic agents, resulting in limited benefits in

chemotherapy (Chang et al., 2018). To examine the response to

chemotherapy in various CRLncSig groups, we chose 12 regularly

used anti-cancer medicines. Higher sensitivity to cisplatin,
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cytarabine, docetaxel, doxorubicin, pazopanib, vincristine, and

vorinostat was shown in high-CRLncSig group patients. The

low-CRLncSig group patients, however, responded favorably to

the medications erlotinib, gefitinib, lapatinib, and metformin.

Altogether, this study provided an approach to optimize the

combination regimen of immunotherapy and chemotherapy

based on the novel CRLncSig, providing practical information

for the individualized treatment of STS.

Furthermore, we finally detected the expression of CRLs in the

signature using RT-qPCR and discovered that the expression of

these CRLs varied significantly amongst the STS cell lines. And it has

been shown that several CRLs had important roles in a variety of

cancers. Among them, THUMPD3-AS1 may have an impact on

Non-Small Cell Lung Cancer cell growth and self-renewal through

controlling miR-543 and ONECUT2 (Hu et al., 2019). And the

expression of LINC00294 is downregulated in glioma, thereby

targeting miR-1278 to promote NEFM and inhibit glioma cell

proliferation (Zhou et al., 2020). Meanwhile, SNHG6 expression

is increased in osteosarcoma and is a new risk prognostic biomarker

for osteosarcoma (Ruan et al., 2018). In contrast, AC011472.4 was

discovered as a new lncRNA biomarker linked to the poor OS in

colorectal cancer patients (Chu et al., 2020). A significant functional

role for HEIH in the occurrence and growth of malignancies has

been demonstrated in earlier research. According to Wan et al.

(2020), HEIH could improve the ability of cholangiocarcinoma cells

to proliferate, migrate, and invade by controlling miR-98-5p and

HECTD. However, the roles of SCAMP1-AS1 and AC138207.5 in

tumorigenesis and progression are still poorly understood. Thus,

these findings suggested that these signature CRLs may play a

significant predictive role in the STS cohorts’ prognosis in the

various CRLncSig groups and may serve as a useful benchmark

for related studies.

Despite the robust findings, there are still several issues with

this study’s limitations that need to be resolved. First, because other

databases lack information on the same signed CRL, external

validation cannot be performed. Although the RT-qPCR may

be regarded as a validation, further verification by more clinical

cohorts is still needed in the future. In addition, extensive and

relevant in vivo and in vitro experimental validation is necessary to

understand the precise function of the signature CRLs in the

development of STS and to support our findings.

Conclusion

In summary, this study comprehensively analyzed the CRLs in

STS and confirmed the predictive efficacy of the novel CRLncSig

on the prognosis of STS.Moreover, the novel CRLncSig was closely

relevant to the immune activity, tumor immune

microenvironment, immune response, and chemotherapeutic

drug susceptibility. This could lead to the development of novel

techniques for the clinical prognostic prediction and personalized

therapy of STS patients.
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Glossary

STS soft tissue sarcoma

CRLs cuproptosis-related lncRNAs

TCGA the cancer genome atlas

GTEx genotype-tissue expression

CRLncSig cuproptosis-related lncRNA signature

RT-qPCR real-time quantitative polymerase chain reaction

CRGs cuproptosis-related genes

PCA principal component analysis

DElncRNAs differentially expressed lncRNAs

DECRLs differential expressed cuproptosis-related genes

GO gene ontology

KEGG kyoto encyclopedia of genes and genomes

BP biological process

CC cellular compartment

MF molecular function

PPI protein-protein interaction

K-M Kaplan-Meier

GSEA gene set enrichment analysis

GSVA gene set variation analysis

MSigDB molecular signatures database

TME tumor microenvironment

ssGSEA single sample gene set enrichment analysis

ECM extracellular matrix

SubMap subclass mapping

IC50 maximum inhibitory concentration

OS overall survival

ATCC american type culture collection

HSF human skin fibroblast

CNV copy number variation

AUC area under the curve

NK cells natural killer cells
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