
LABAMPsGCN: A framework for
identifying lactic acid bacteria
antimicrobial peptides based on
graph convolutional neural
network

Tong-Jie Sun1, He-Long Bu1, Xin Yan1, Zhi-Hong Sun2,
Mu-Su Zha2* and Gai-Fang Dong1*
1College of Computer and Information Engineering, Inner Mongolia Agricultural University, Hohhot,
China, 2College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot,
China

Lactic acid bacteria antimicrobial peptides (LABAMPs) are a class of active

polypeptide produced during the metabolic process of lactic acid bacteria,

which can inhibit or kill pathogenic bacteria or spoilage bacteria in food.

LABAMPs have broad application in important practical fields closely related

to human beings, such as food production, efficient agricultural planting, and so

on. However, screening for antimicrobial peptides by biological experiment

researchers is time-consuming and laborious. Therefore, it is urgent to develop

a model to predict LABAMPs. In this work, we design a graph convolutional

neural network framework for identifying of LABAMPs. We build heterogeneous

graph based on amino acids, tripeptide and their relationships and learn weights

of a graph convolutional network (GCN). Our GCN iteratively completes the

learning of embedded words and sequence weights in the graph under the

supervision of inputting sequence labels. We applied 10-fold cross-validation

experiment to two training datasets and acquired accuracy of 0.9163 and

0.9379 respectively. They are higher that of other machine learning and

GNN algorithms. In an independent test dataset, accuracy of two datasets is

0.9130 and 0.9291, which are 1.08% and 1.57% higher than the best methods of

other online webservers.
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1 Introduction

Lactic acid bacteria (LAB) is a kind of bacteria that can use fermentable carbohydrates

to produce large amounts of lactic acid (Gu et al., 2022; Hu et al., 2022). Organic acids,

special enzymes, lactobacilli and other substances produced by lactic acid bacteria through

fermentation have special physiological functions. A large number of research data show

that lactic acid bacteria can promote animal growth, regulate the normal flora of
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gastrointestinal tract, maintain micro ecological balance, thereby

improving gastrointestinal function, improving food digestibility

and biological titer, reducing serum cholesterol, controlling

endotoxin, inhibiting the growth of intestinal putrefactive

bacteria, and improving the immunity of the body (Teusink

and Molenaar, 2017). Lactic acid bacteria have been widely used

in food industry and poultry husbandry, and also have important

academic value in genetic engineering (Greub et al., 2016),

biochemistry (Kadomatsu, 2022), genetics (Sung Won et al.,

2020) and molecular biology (Saibil, 2022).

Antimicrobial peptides of lactic acid bacteria are a kind of

active peptides or proteins produced by the metabolic process of

lactic acid bacteria, which can inhibit or kill pathogenic bacteria

or spoilage bacteria in food. In recent years, several new methods

have been developed for the screening and development of new

antimicrobial peptides, including enzyme-linked

immunodeficient assay (Huang X et al., 2022), biological

analysis of K+ ion current (Lauger and Apell, 1988), ATP-

bioluminescence method (Crouch et al., 1993; Aiken et al.,

2011), Lux gene-bioluminescence method (Van Dyk et al.,

1994), berberine-based fluorescence analysis method (Liu

et al., 1998; Song et al., 2018) and micro-plate method (Kai

et al., 2012). Although the above wet experimental methods can

distinguish, they are time-consuming and expensive, so they

cannot be popularized and used. To help wet lab researchers

identify novel antimicrobial peptides, a variety of computational

methods for antimicrobial peptide identification have been

proposed. Many algorithms combine machine learning or

statistical analysis techniques such as discriminant analysis

(DA) (Kouw and Loog, 2021; Beck and Sharon, 2022), fuzzy

K-nearest neighbors (Zhai et al., 2020), hidden Markov models

(Fuentes-Beals et al., 2022), logistic regression (Fagerland and

Hosmer, 2012), random forests (RF) (Ziegler and Koenig, 2014),

and support vector machines (SVM) (Azar and El-Said, 2014).

Although these models have made great progress in

antimicrobial peptide recognition, the following challenges still

exist: First, many related classification tasks based on machine

learning suffer from the small number of samples. The model

trained with small sample size cannot achieve robustness and is

prone to the problems of over fitting and poor generalization

ability. Secondly, most of the existing feature extraction

technologies are aimed at specific datasets, and do not have

universality.

In a word, most of the existing machine learning based

classification work mainly uses the manually determined

features (Jiang et al., 2021), which is highly dependent on

biologists. The artificially determined features also have their

shortcomings. On the one hand, the intrinsic nonlinear

information of the function of some peptides cannot be

obtained through this featured way; On the other hand, when

the research object is changed, the adaptability of artificial

features is poor. In addition, the dimension disaster caused by

feature engineering brings new troubles to researchers.

In the past 10 years, deep learning has achieved extremely

rapid development. In the field of text processing, achievements

in the application of natural language processing to biological

information prediction have been published repeatedly. In

particular, graph neural network plays an excellent role in text

classification (Xie et al., 2022; Zhou et al., 2022). Qu (Qu et al.,

2017) proposed a method based on deep learning to identify

DNA binding protein sequences. This method uses a two-stage

convolutional network to detect the functional domain of protein

sequences, and uses LSTM neural networks to identify context

dependencies. In the independent test set, the accuracy of the

model in the yeast data set is 80%; Hamid and Friedberg (Hamid

and Friedberg, 2018) proposed a method used word embedding

and RNN to identify bacteriocin and non bacteriocin sequences.

The recall of the model in the two training data sets is 89.8% and

92.1% respectively; Veltri (Veltri et al., 2018) proposed a deep

neural network model, which includes an embedded layer, a

convolution layer and a recursive layer. The accuracy of the

model in the independent test set is 91.01%; Zeng (Zeng et al.,

2019) proposed to identify protein sequences based on the use of

node2vec technology, convolution neural network and sampling

technology. In this framework, node2vec technology is used to

capture the semantic features and topology of each protein in the

protein interaction network, and convolution layer is used to

extract information from gene expression profiles. The AUC of

the model in the training set is 82%; he (He et al., 2021) proposed

a new Meta learning framework based on mutual information

maximization. The core of the framework is ProtoNet, a classical

meta learning algorithm based on metric learning, which learns

the vector representation of each prototype. The accuracy of this

model in the training set of antifungal peptides was 91.3%. The

above five deep learning models have improved the performance

of AMP prediction to a certain extent, but most of these models

used convolutional neural network and LSTM neural network

combination framework without significant innovation.

Recently, due to the rise of graph neural networks, more and

more people began to do some research on graph neural

networks. Therefore, our work is based on graph convolution

neural network to predict LABAMPs.

In this work, we design a graph convolution neural network

framework to predict antimicrobial peptides of lactic acid

bacteria. First, we construct a large heterogeneous graph based

on all the samples, which contains sequences and peptides

(amino acids, dipeptide, tripeptide. We can think of these

peptides as words in natural language processing) as nodes.

Then connect the nodes by doing that: The edge between two

peptide fragments is determined by whether the two peptide

fragments appear together in the fixed range (window size) of a

sequence. The edge between a peptide fragment and a sequence

depends on whether the peptide fragment is a substring of this

sequence. Finally, the classification of nodes on the graph is

realized through the calculation and transmission of information

between nodes on the graph. The experimental results show that
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our model has great advantages over machine learning methods,

deep learning models and other webservers.

2 Materials and methods

2.1 Collection of datasets

We collected LABAMPs records from 25 databases (Gueguen

et al., 2006; Mulvenna et al., 2006; Fjell et al., 2007; Henderson

et al., 2007; Kawashima et al., 2008; Hammami et al., 2009;

Hammami et al., 2010; Sundararajan et al., 2012; Gogoladze et al.,

2014; Theolier et al., 2014; Pirtskhalava et al., 2021; Shi et al.,

2022) according to the 30 genus classification of lactic acid

bacteria in Supplementary Table S1. Finally, after removing

duplicate records, 1622 LABAMPs are obtained, and their

lengths are from 2 to 1619.

According to the positive raw data set obtained above, we do

some processing on it: First, we remove records which contain

unnatural amino acids such as B, J, O, U, X, and Z from these raw

data. Second, to reduce sequence homology bias and redundancy,

we used respectively the CD-HIT program (Li and Godzik, 2006)

to delete peptides with 70% and 90% similarity to each other.

Finally, we get 460 and 636 peptide sequences after removing

redundancy, respectively.

Our negative raw datasets obtained as follows:

1 On the UniProt website (Consortium, 2021), we obtain

peptide sequences between the length of 2–1619;

2 Remove sequences contain or annotated with information of

antimicrobial, antibiotic, fungicide, defensin, AMP,

membrane, toxic, secretory, defensive, anticancer, antiviral,

antifungal, effector, and exacted;

3 Remove resulting protein sequences which include

unnatural amino acids;

4 Remove peptide sequences with 70% and 90% similarity by

CD-HIT program;

5 Randomly select the same number of sequences as the

number of positive samples.

All positive and negative samples are shown as Table 1, with

processing of 70% and 90% by CD-HIT. We called them DS-70%

and DS-90% respectively. The statistics of the preprocessed

datasets are summarized in Table 2. Since we classify nodes

on the graph, the number of graphs is one respectively in DS-70%

and DS-90%. The number of sequences is the total number of

positive and negative samples of DS-70% or DS-90%. The

number of words is obtained by removing stop words and the

words whose frequencies are less than 5. The number of nodes is

the sum of the number of sequences and the number of words.

Because our work has two categories of tasks, the number of

categories is two.

2.2 Model construction

The model construction is divided into three steps: first,

establish the initial graph, then conduct the convolution

operation on the graph, and finally complete the node

classification through the classification function.

2.2.1 Establishment of initial graph
Before the construction of initial graph, we preprocess all

positive and negative samples. First, all positive and negative

samples are segmented by amino acid, dipeptide or tripeptide as

words. Secondly, count the words frequencies, and filter all the

words whose word frequency is less than 5 times. Then, we get

the required words.

Suppose the initial input graph is expressed as Graph

G � (V, E), then the number of V is equal to the sum of the

number of sequences and the number of peptide segments, and

the number of edges depends on the connecting lines between

peptide segments and the connecting lines between peptide

segments and sequences. As shown in Figure 1A, there are

two kinds of edges. One kind of edges are the connecting

lines between peptide segments—if two peptide segments

occur at the same time within the specified range of the same

sequence, the corresponding nodes of these two peptide segments

will be connected. The other kind of edges are the connection

lines between peptide segments and sequences—if a peptide

segment is a sub string of a sequence, the corresponding

nodes will be connected.

In order to calculate the information on the graph through

the edges, we establish the adjacency matrix A of the initial

TABLE 1 Raw data processed through CD-HIT program.

Attribute Raw data DS-70% DS-90%

AMPs 1622 460 636

nonAMPs 1622 460 636

TABLE 2 Summary statistics results of datasets.

Attributes Datasets

DS-70% DS-90%

Graphs 1 1

Sequences 920 1272

Words 7455 7621

Nodes 8375 8893

Classes 2 2
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graph, that is, assign a certain weight to each edge. The

calculation method is shown in Eq. 1. Where |W| represents
the total number of sliding windows in all sequences, and its

value is a positive integer. |W(i)| is the number of sliding

windows containing peptide segment i in all sequences, and

|W(i, j)| is the number of sliding windows containing both

peptide segment i and peptide segment j in all sequences. ni,j is

the number of occurrences of the peptide segment i in sequence

j, and N is the total peptide number of all sequences. |D| is the
total number of all sequences, and |{j: i ∈ j}| is the number of

sequences containing peptide segment i. The reason for adding

one to the denominator is that when the peptide segment is not

in all known sequences, |{j: i ∈ j}|will be zero. Therefore, one is
added to denominator.

Aij �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log
|W| · ∣∣∣∣W(i, j)∣∣∣∣
|W(i)| · ∣∣∣∣W(j)∣∣∣∣ i, j arewords

ni,j
N

· log |D|∣∣∣∣{j: i ∈ j}∣∣∣∣ + 1
i is word, j is sequence

1 i � j

0 otherwise

(1)

2.2.2 Graph convolutional network module
Word embedding is a method converting a word into a vector

representation. There are many methods for word embedding,

such as one-hot embedding, Skip Gram model (Carrasco and

Sicilia, 2018), CBOWmodel (Xiong et al., 2019) and GloVe word

vector (Gao and Huang, 2021). In this module, we first need to

determine the node features of the initial graph. We use one-hot

embedding to embed each word and send it to the model together

with the sequence for training. Because the initial values of node

features have little influence on the graph convolution neural

network, we set X as the identity matrix I.

Since the diagonal element of the adjacency matrix is 0, it is

easy to lose the information of the nodes themselves in the

calculation process, so an identity matrix is added to the

adjacency matrix. In order to avoid the change of feature

distribution, the adjacent matrix with an identity matrix is

normalized to obtain the processed adjacent matrix

Norm(A + I) (Gao and Huang, 2021).

We design a graph convolution neural network framework to

learn the information between nodes on the graph and transfer

the related information under the supervision of labels, and

finally achieve node classification. The graph convolution

FIGURE 1
Overview of LABAMPsGCN model architecture. (A) Graph Construction. Each sequence is processed by word segmentation, and then the
required graph is obtained by word co-occurrence technology. (B) Graph convolutional neural network. It mainly carries out message transmission
through word-sequence relations. (C) Classification. It uses the full connection layer for classification.
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neural network framework of lactobacillus antibacterial peptides

can be expressed as Eq. 2.

R � softmax(Norm(A + I)...ReLU(Norm(A + I)XW0)...Wn)
(2)

The network learning process under the supervision of

sequence labels needs to calculate the loss rate, and we use the

cross entropy loss function to calculate the loss (Aurelio et al.,

2019). Eq. 2 is a general model of LABAMPsGCN. Figure 1B

shows a two-layer LABAMPsGCN. In the following chapters, we

analyze that the two-layer LABAMPsGCN has the best

performance.

2.2.3 Classification module
We use the full connection layer to integrate the feature space

into the sample label space, and then use the softmax

classification function to calculate the probability of nodes

being classified into different categories. As is shown in

Figure 1C.

2.3 Evaluation metrics

To assess the performance of LABAMPsGCN, we adopt

statistical metric of precision, recall, accuracy and F1 score.

They defined as follows:

Pr ecision � TP

TP + FP
(3)

Recall � TP

TP + FN
(4)

Accuracy � TP + TN

TP + TN + FP + FN
(5)

F1 score � 2 ×
Pr ecision × Recall
Pr ecision + Recall

(6)

TP, TN, FP and FN are the four components of the confusion

matrix, and also are the abbreviation of true positive, true

negative, false positive and false negative, respectively.

Precision rate means the proportion of correctly predicted

positive to all actually positive samples. Recall rate means the

proportion of correctly predicted positive samples to all the

samples that should be predicted to be positive samples.

Accuracy means the percentage of correct predictions in all

samples. F1 score denotes the harmonic value of precision

and recall.

2.4 Implementation details

The parameters of a model have an important impact on the

performance of the model. In our LABAMPsGCN, we set the

activation function, window size, first layer convolution size,

learning rate and loss rate to ReLU, 15, 200, 0.01, and

0.5 respectively. We used Adam optimizer (Shao et al., 2021)

to train our model for 150 epochs.

2.5 Development of the webserver.

We constructed a webserver with our prediction model

embedded at the back end of website. When users submit their

interested LABAMPs, the predicted percentage will be displayed

based on the website prediction tool (Sim et al., 2012). Because the

weight matrix of the graph convolution neural network will change

with the change of the adjacency matrix and feature matrix of the

input data, we embedded SVMmodel with accuracy lower of 3.77%

than that of LABAMPsGCN.

3 Results

3.1 Effects of different feature extraction
methods on graph convolutional neural
networks

We randomly combined the features of single peptide,

dipeptide and tripeptide respectively, and obtained six feature

combinations: dipeptide, dipeptide and single peptide, tripeptide,

tripeptide and single peptide, tripeptide and dipeptide, tripeptide

added by dipeptide and single peptide. Table 3 shows the model

accuracy on the DS-70% and DS-90%.

It can be seen that the features of tripeptide and single

peptide are significantly better than other combinations on

DS-70% and DS-90%. As the number of features continues to

increase, the accuracy (ACC) of the test data is also slowly

increasing, and the number of features in DS-70% and DS-

90% begins to decline significantly after 8020.

TABLE 3 The different accuracy of different features on LABAMPsGCN.

Features Number of features Datasets

DS-70% DS-90%

Da 400 0.8913 0.9088

D + Sb 420 0.8870 0.9010

T c 8000 0.9098 0.9340

T + Sd 8020 0.9163 0.9379

T + De 8400 0.9076 0.9277

T + S + Df 8420 0.9065 0.9285

aD: Dipeptide.
bD + S: Dipeptide + Single peptide.
cT: Tripetide.
dT + S: Tripetide + Single peptide.
eT + D: Tripetide + Dipetide.
fT + S + D: Tripetide + Single peptide + Dipetide.

Note: the bold value in table means the best value.
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3.2 Parameter sensitivity

3.2.1 Window sizes
Figure 2A reports the accuracy for different sliding window on

DS-70% and DS-90% based on features of tripeptide and single

peptides. It demonstrates that the influence of the size of the

sliding window on the prediction accuracy meets the general

rule—taking 15 as the dividing point, it rises first and then falls. It

is further explained that small windows cannot accommodate

sequence fragments that play key functions, while too large

windows take some irrelevant information as key information to

participate, disturbing the judgment. Therefore, in this paper, window

size is set to 15.

3.2.2 Graph convolutional network layer
WedesignedGCNswith different layers to obtain the features of

LABAMPs. Figure 2B indicate the effect of the number of GCN

layers on the performance of our model. In this paper, we changed

theGCN layer in {1, 2, 3, 4}. It can be seen from Figure 2B that the 2-

layer GCN can achieve the optimal performance. Too many GCN

layers will cause the model to be over-smoothing, thus causing the

learned model to collapse. Although there is no direct sequence-

sequence edge connection in the graph, 2 GCNs can be connected

through the middle word node, thus realizing sequence to sequence

information interaction.

If there are too many layers, the features of a node will

aggregate the features of more and more neighbors, so that these

nodes become similar, which increases the similarity between

classes, and the natural classification effect is poor.

3.3 Compare with machine learning
methods

In order to verify metric of LABAMPsGCN, we compare

machine learning models with it on the same features. In Table 4

all results are obtained by using 10-fold cross-validation.We used

Multinomial Bayesian classifier (MNB), Random forest (RF),

Support vector machine (SVM), AdaBoost (Huang H et al., 2022)

and XGBoost (Zhang et al., 2022). It can be seen that

LABAMPsGCN show good performance no matter how

features change. This is because LABAMPsGCN can obtain

the information of sequence nodes through word nodes.

3.4 Comparison with existing AMP
prediction tools

Table 5 compares our LABAMPsGCN model to three state-

of-the-art machine learning methods which can be found

publicly for AMPs recognition. Table 5 shows that our

LABAMPsGCN model achieves the best values of metrics for

Recall, Precision and Accuracy. In DS-70%, the Recall score of

AMPfun model (Chung et al., 2020) is the highest (3.42% higher

than our model). In DS-90%, the metrics of our LABAMPsGCN

model are significantly better than other methods.

3.5 Ablation study

In order to judge if all the parts of our identifier are necessary, we

adopt three variants of LABAMPsGCN (LABAMPsGCN-noFC,

LABAMPsGCN-cheby and LABAMPsGCN-cheby-noFC) as

comparison methods. Specifically, LABAMPsGCN-noFC means

that we do not add a full connection layer after the GCN layer

for classification, while directly use the output of the GCN layer for

classifying. LABAMPsGCN-cheby adds Chebyshev polynomials

(Christiansen et al., 2021), which can use polynomial expansion

to approximate the convolution of graphs, that is, polynomial

approximation of parameterized frequency response functions.

LABAMPsGCN-cheby-noFC adds Chebyshev polynomials and

there is no full connection layer after GCN layer output.

FIGURE 2
Parameter analysis of LABAMPsGCN. (A) Accuracy varied by windows size. (B) Accuracy varied by numbers of layers.
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Table 6 shows the evaluation indicators obtained by training

with LABAMPsGCN and its variants on DS-90%. These four

groups of training were conducted on the feature of tripeptide

and single peptide. For LABAMPsGCN and LABAMPsGCN-

noFC, the ACC of LABAMPsGCNwas significantly higher than

that of LABAMPsGCN-noFC. This is because the full

connection layer integrates the feature representations and

maps them to the space where the sample labels are located.

For LABAMPsGCN and LABAMPsGCN-cheby, the

performance of LABAMPsGCN-cheby is slightly poor

because the use of Chebyshev polynomials makes each

sequence vertex fuse too much irrelevant information. For

TABLE 4 Comparisons of LABAMPsGCN with machine learning and GNN models.

Datasets Models Features

Da D +
Sb

Tc T +
Sd

T +
De

T +
S +
Df

DS-70% MNBg 0.8457 0.8283 0.8391 0.8391 0.8391 0.8391

RFh 0.8446 0.8576 0.7989 0.7891 0.7957 0.7978

SVMi 0.8554 0.8663 0.8402 0.8402 0.8402 0.8402

AdaBoost 0.7946 0.8196 0.7348 0.7348 0.7348 0.7348

XGBoost 0.8489 0.8685 0.7793 0.7793 0.7793 0.7793

GNNj 0.8596 0.8549 0.8836 0.8916 0.8513 0.8499

LABAMPsGCN 0.8913 0.8870 0.9098 0.9163 0.9076 0.9065

DS-90% MNB 0.8586 0.8461 0.8585 0.8585 0.8585 0.8585

RF 0.8776 0.8576 0.8383 0.8218 0.8359 0.8281

SVM 0.8800 0.8842 0.9002 0.9002 0.8988 0.8987

AdaBoost 0.8334 0.8328 0.7558 0.7558 0.7558 0.7558

XGBoost 0.8776 0.8791 0.8131 0.8131 0.8131 0.8131

GNN 0.8810 0.8897 0.9019 0.9146 0.8946 0.8943

LABAMPsGCN 0.9088 0.9010 0.9340 0.9379 0.9277 0.9285

aD: Dipeptide.
bD + S: Dipeptide + Single peptide.
cT: Tripetide.
dT + S: Tripetide + Single peptide.
eT + D: Tripetide + Dipetide.
fT + S + D: Tripetide + Single peptide + Dipetide.
gMNB: Multinomial naïve Bayes.
hRF: Random Forest.
iSVM: Support Vector Machine.
jGNN: graph neural network.

Note: the bold value in table means the best value.

TABLE 5 Comparisons of LABAMPsGCN with three state-of-the-art
webservers.

Datasets Tool Ra Pb ACCc

DS-70% CAMP-SVM 0.8696 0.8889 0.8804

iAMP-2L 0.875 0.9333 0.9022

AMPfun 0.8913 0.9111 0.9022

LABAMPsGCN 0.8571 0.9556 0.9130

DS-90% CAMP-SVM 0.8852 0.871 0.8819

iAMP-2L 0.8889 0.9032 0.8976

AMPfun 0.8923 0.9355 0.9134

LABAMPsGCN 0.9077 0.9516 0.9291

aR: Recall.
bP: Precision.
cACC: accuracy.

Note: the bold value in table means the best value.

TABLE 6 Performance evaluation of LABAMPsGCN and its three
variants.

Methods Ra Pb ACCc F1-score

LABAMPsGCN 0.9492 0.9032 0.9291 0.9256

LABAMPsGCN-noFC 0.8906 0.9194 0.9055 0.9048

LABAMPsGCN-cheby 0.803 0.8413 0.8189 0.8217

LABAMPsGCN-cheby-noFC 0.7846 0.8095 0.7874 0.7969

aR: Recall.
bP: Precision.
cACC: accuracy.

Note: the bold value in table means the best value.
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LABAMPsGCN and LABAMPsGCN-cheby-noFC, the

performance of LABAMPsGCN with full connection layer is

significantly higher than that without it.

3.6 Visualization of words

LABAMPsGCN learned a lot of word features related to

labels. In order to observe these words clearly, we visualized

them qualitatively. Figure 3 shows the t-SNE visualization

(Ruit et al., 2022) of the second layer word features learned

from DS-70% and DS-90%. We set the dimension of the

maximum value in the word feature vectors as the label of

the word. As can be seen from Figure 3, words of the same

color are clustered together, which means that a large number

of words are closely related to certain specific classes. The red,

green and orange in Figure 3 are used for visualization to

determine whether word embedding can learn the main

information of some sequences. Different colors in the

figure represent different sequences. Figure 3A and

Figure 3B is the results of DS-70% and DS-90%,

respectively. In Table 7, we show the top representative

words in each category, such as “ILE,” “TIW,” and “KLK”.

4 Discussion

In this study, we constructed LABAMPsGCN, a novel graph-

based identifier to predict LABAMPs accurately. In this

identifier, we designed a graph convolutional neural network

framework to automatically learning sequence features. By

retrieving and reorganizing multiple AMPs databases and

Uni-Prot database, we constructed the positive and negative

datasets. We organized positive and negative samples into a

large heterogeneous graph, transforming the sequence

classification problem into a node classification problem.

Graph convolution neural network can aggregate the

information of the surrounding nodes to predict the label

information of the central node.

LABAMPsGCN is superior to other predictors, on the one

hand, because the graph structure can effectively represent the

relationship between sequences and words (when constructing a

graph, an edge is established between a word and a sequence

when this word belongs to this sequence), on the other hand, the

label information of sequences can be transferred through the

edges on the graph. Because the graph structure is a kind of

many-to-many structure, the label information of sequences can

be transferred in the whole graph. In this way, the words

corresponding to positive and negative labels can be easily

distinguished. These words may be the key features to

determine whether a sequence is a LABAMP.

For users’ convenience, we have established a publicly accessible

web server (http://www.dong-group.cn/database/dlabamp/

FIGURE 3
The t-SNE visualization of the second layer features learned fromDS-70% and DS-90%. (A) The secondword features learned fromDS-70%. (B)
The second word features learned from DS-90%.

TABLE 7Words with highest ACCs for two datasets of DS-70% and DS-
90%.We used theword embedding at the last level of GCN to view
the best performing words under each category.

DS-70% DS-90%

LABAMPs nonLABAMPs LABAMPs nonLABAMPs

ILE YET GSG FAD

TIW MAV CIV EAE

KLK RNF KYR GHH

KDF LCH SAV KPP

GDH RSS WHT FKF

YQN WAL NAV FIL

GTW FGW IQS VMM

MPI WSG EYE PTD
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Prediction/amplab/result/) that can help to predict LABAMPs

metabolized from various Lactic acid bacteria. In the next step,

we will discuss how to mine the key fragments with antimicrobial

function from the whole genome sequence by combining

information such as multiple sequence alignment and domain

prediction. We believe LABAMPsGCN will be a competent tool

for screening lactic acid strains with antimicrobial activities.
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