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The alarming rise of microbial resistance to antibiotics has severely limited the
efficacy of current treatment options. The prevalence of β-lactamase enzymes is
a significant contributor to the emergence of antibiotic resistance. There are four
classes of β-lactamases: A, B, C, and D. Class B is the metallo-β-lactamase, while the
rest are serine β-lactamases. The clinical use of β-lactamase inhibitors began as an
attempt to combat β-lactamase-mediated resistance. Although β-lactamase
inhibitors alone are ineffective against bacteria, research has shown that
combining inhibitors with antibiotics is a safe and effective treatment that not
only prevents β-lactamase formation but also broadens the range of activity.
These inhibitors may cause either temporary or permanent inhibition. The
development of new β-lactamase inhibitors will be a primary focus of future
research. This study discusses recent advances in our knowledge of the
biochemistry behind β-lactam breakdown, with special emphasis on the
mechanism of inhibitors for β-lactam complexes with β-lactamase. The study
also focuses on the pharmacokinetic and pharmacodynamic properties of all
inhibitors and then applies them in clinical settings. Our analysis and discussion
of the challenges that exist in designing inhibitors might help pharmaceutical
researchers address root issues and develop more effective inhibitors.
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Introduction

Antibiotics are the single most consequential drug in the history of medicine. However,
they are losing their potency as microorganisms evolve resistance (Babic et al., 2006). A
substantial challenge to healthcare is the spread of multidrug-resistant (MDR) bacteria. A
bleak picture of the establishment of β-lactam resistance is supported by numerous surveys
that these mechanisms include changes in the permeability of the cell membrane and the
intrinsic activity of efflux pumps; together, these limit drug absorption, alter drug targets
and render antibiotics ineffective (Wanda 2018). In gram-negative bacteria, the emergence
of β-lactamases is one process through which they acquire resistance to antibiotics (Watkins
et al., 2013). In clinical practice, β-lactams—which impair the functionality of β-
lactams—with antibiotics have proven to be the most successful approach, since they
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are efficacious with some controllable side effects (Mojica et al.,
2022). Although these have long been studied, their evolution and
behavior remain key scientific topics that require further inquiry
(Stanton et al., 2020).

The bacteria of the Enterobacteriaceae family—Pseudomonas
aeruginosa, Neisseria gonorrhoeae, Mycobacterium tuberculosis, and
Haemophilus influenzae—are some of the prevalent organisms
medicated by β-lactamase inhibitors (Curello and MacDougall,
2014). Certain Enterobacteriaceae like P. aeruginosa have acquired
extended-spectrum β-lactamase enzymes (ESBLs), which provide
additional resistance to cephalosporin antibiotics. According to
research, β-lactamase inhibitors can effectively inhibit the synthesis
of ESBL, therefore boosting its ability to destroy these dangerous
pathogens (Tamma and Villegas, 2017). To maximize their efficiency,
β-lactams must be used in conjunction with β-lactamase inhibitors.
Many studies have attempted to find new and effective β-lactamase
inhibitors (Khanna and Gerriets, 2022).

Generic mechanism

An effective approach to inhibiting β-lactamase-mediated
resistance is to design a drug that targets the active site of the
enzyme. Inhibition can occur as either reversible or irreversible
substrate binding with the formation of an acyl intermediate that
results in steric interactions or activation of irreversible mechanisms
(Bush, 1988). Reversible inhibition is analogous to the enzyme-
substrate reaction. Through further chemical interactions at the

enzyme active site, irreversible “suicide inhibitors” can irrevocably
neutralize β-lactamase, as shown in Eq. 1.

E + I
k1
5
k−1

E: I→k2 E − I→k3 EIp (1)

This equation describes reversible inhibitors at equilibrium
constant (Ki), equal to the k-1/k1 rate constant value, that would be
independent of substrate concentration and reflect inhibitor affinity.
Irreversible inhibitors are superior to reversible inhibitors due to their
ability to prevent enzymes from functioning excessively (Bush, 1988;
Copeland, 2005). Following this brief introduction, this review will
delve into the mechanisms, structures, and therapeutic applications of
a variety of β-lactam inhibitors. A comprehensive evaluation was
made using the criteria presented here (Figure 1). A total of
1,327 articles were retrieved by an initial search. Following
extensive pre-screening for duplicates, abstracts, and titles, 448 full-
text articles were analyzed. Considering adequate information on
inhibitors (including clinical studies, modes of action, and
pharmacodynamic and pharmacokinetic profiles), 311 articles were
excluded—125 were included in the final analysis.

Avibactam

Avibactam is a β-lactamase inhibitor that was originally described
in 2003 (Lagacé-Wiens et al., 2014). It inhibits class A and C β-
lactamases, except for the synthesis of class C β-lactamases in

FIGURE 1
PRISMA statement for reporting systematic reviews and meta-analyses of research that assesses β-lactamase inhibitors.

Frontiers in Genetics frontiersin.org02

Arer and Kar 10.3389/fgene.2022.1060736

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1060736


Enterobacter cloacae. When administered independently, it exhibits
minimal activity against a majority of organisms and has moderate
activity on E. coli. A combination of avibactam and other β-lactam
antibiotics restores antibacterial activity against class A and C β-
lactamases, producing pathogens (Bennett et al., 2014).

Structure and mode of action: Chemically, avibactam is known as
[(2S, 5R)-2-carbamoyl-7-oxo-1,6-diazabicyclo [3.2.1]octan-6-yl]
hydrogen sulfate—molecular formula C7H11N3O6S. Its molecular
mass is precisely 265.25 g/mol. Avibactam differs structurally from
the rest of the utilized β-lactamase inhibitors in that it lacks a β-lactam
ring (Ehmann et al., 2012). C7 carbonyl mimics the β-lactam carbonyl
of cephalosporins, and sulfate at C6 is similar to the carbonyl group of
ceftazidime at C4 (Shirley, 2018) (PubChemID: 9835049).

Avibactam has a unique mechanism; the process is reversible,
unlike other β-lactamases. Though the strategy includes similar stages
such as covalent binding (Figure 2) to the active site, the formation of
an acyl-enzyme intermediate while unlocking the diaza-bicyclo octane
ring structure thereby terminates β-lactam hydrolysis (Lahiri et al.,
2013); hydrolysis is negligible in avibactam (Ehmann et al., 2012).

Pharmacodynamics: The pharmacodynamics (PD) of avibactam
have been examined a number of times, most often in combination
with ceftazidime. No growth was observed after treating an
ampicillinase C (AmpC)-producing E. cloacae isolate and a
Klebsiella pneumoniae Carbapenemase (KPC)-producing K.
pneumoniae isolate with .1 g/mL of ceftazidime and avibactam
(Levasseur et al., 2012). Apart from this, avibactam ≥2 μg/mL
inhibited the growth of a plasmid-mediated cefotaximases (CTX-
M-15)-producing E. coli and an AmpC-producing E. cloacae, while
avibactam 2–4 μg/mL inhibited a KPC-producing K. pneumoniae
(Lagacé-Wiens et al., 2014).

Clinical use: Infections caused by gram-negative bacteria, such as
urinary tract infections, intra-abdominal infections, and hospital-
acquired pneumonia, are treated with avibactam (Shirley, 2018).
They are effective not only against gram-negative infections but
also against a wide range of ESBL, AmpC, KPC, and OXA-48-
producing Enterobacteriaceae and multidrug-resistant (MDR) P.

aeruginosa isolates, except metallo-β-lactamase (MBL)-producing
strains and A. baumannii spp. To treat a wide range of challenging
diseases, avibactam-ceftazidime is utilized; however, a few resistant
strains have also been discovered (Shirley, 2018; Papp-Wallace et al.,
2020).

Captopril

Captopril is a metallopeptidase enzyme that was developed in the
1970s and is used to treat hypertension by mirroring the actions of the
angiotensin-converting enzyme (Akif et al., 2010). Scientists have
found that captopril may bind to prosthetic groups and stop the
enzyme from catalyzing (Zhao et al., 2021).

Structure and mode of action: Chemically, captopril is known as
(2S)-1-[(2S)-2-methyl-3-sulfanylpropanoyl] pyrrolidine-2-carboxylic
acid—molecular formula C9H15NO3S. Its molecular mass is precisely
217.29 g/mol. Crystalline powder is its most common form, with a
melting temperature of 103°C–104°C and a pKa1 = 3.7, and a pKa2 = 9.8
(PubChem ID: 44093). It has a thiol ring, a free sulfhydryl group that
serves as a zinc coordinating group, and two residues at P1’ and P2’
(Akif et al., 2010). Captopril is a metallo-β-lactamase inhibitor that
inhibits through either metal or covalent binding (Yusof et al., 2016; Ju
et al., 2018). Metal binding inhibition works by removing the metal ion
from the enzyme or active site, or by forming a complex with protein
residues that prevent antibiotics from binding (Brem et al., 2016).

Pharmacodynamics: Captopril was found to be effective in vitro
against active-on-imipenem β-lactamase (IMP-1), Verona integron-
borne metallo-β-lactamase (VIM-2), Sao Paulo metallo-β-lactamase
(SPM-1), and New Delhi metallo-β-lactamase (NDM-1)-producing
organisms such as E. coli, K. pneumoniae, S. marascens, and P.
aeruginosa. When compared to L and D captopril, D captopril was
found to be more effective, with side effects such as loss of taste and
skin rash. Finding clinically-relevant MBL inhibitors is a formidable
challenge; despite L-captopril being a well-studied ACE-2 inhibitor,
there have been no reports of selectivity for humanMBL-fold enzymes
(Brem et al., 2016).

Clavulanic acid

Clavulanic acid is a β-lactamase inhibitor isolated from
Streptomyces clavuligerus and is most commonly used in
association with β-lactamase drugs to treat β-lactamase resistance
(Brown et al., 1979; Pruess and Kellett, 1983; López-Agudelo et al.,
2021). S. clavuligerus is a gram-positive, sporing, and filamentous
bacterium with a high ability to produce, as secondary metabolites,
two classes of β-lactam compounds: those containing sulfur, and
oxygen (Vanli, 2010). Isopenicillin N, desacetoxycephalosporin C,
and cephamycin C are examples of sulfur-containing β-lactam
compounds with antibiotic activity. Clavams are oxygen-containing
β-lactam compounds that include clavulanic acid and other similar
chemicals (Okamura et al., 1977; Kenig and Reading, 1979; Thai et al.,
2001).

Structure and mode of action: Chemically, clavulanic acid is
known as (2R,3Z, 5R)-3-(2-hydroxyethylidene)-7-oxo-4-oxa-1-
azabicyclo [3.2.0]heptane-2-carboxylic acid—molecular formula
C8H9NO5. Its molecular mass is precisely 199.16 g/mol. It is
usually solid, with a boiling point of 545.8°C and a melting

FIGURE 2
Representation of β-lactamase-avibactam complex. For the ligand
outlined at 3.25σ, the difference in electron density between |Fo| and |Fc|
is shown. In this blue stick figure representation, avibactam has been
covalently bonded. (Adapted from Krishnan et al., 2015).
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temperature of 117.5°C–118°C, as well as a pKa of 2.7. Structurally,
clavulanic acid contains a β-lactam ring lacking an acylamino side
chain and an oxazolidine ring with O at C4 and 2-hydroxy ethylidene
at the C2 position (PubChem ID: 5280980).

Clavulanic acid is a clavam metabolite that contains a β-lactam
linked to an oxazolidine. Despite clavam metabolites having identical
structures, their activity differs from that of clavulanic acid. Clavams
with 3S, 5S stereochemistry have antibacterial activity, whereas
clavulanic acid with 3R, 5R stereochemistry inhibits β-lactamases
but has a low antimicrobial effect (Sydor and Challis, 2012).
Clavulanic acid’s C7 carboxyl group forms a hydrogen bond with
the active site S70 of β-lactamase (Figure 3), thereby favoring the
formation of a stable acyl intermediate through a nucleophilic attack.
Following the imine intermediate formed during the opening of the
five-membered oxazolidine ring, the inhibitor linearizes and generates
cis-enamine, which is further isomerized to the more stable trans-
enamine via isomerization. This covalent acylation irreversibly
inhibits the β-lactamase enzyme after several hours (Chen and
Herzberg, 1992; Padayatti et al., 2005).

Pharmacodynamics: Minute doses of clavulanic acid are sufficient
to inhibit the β-lactamase of common pathogens such asH. influenzae
(.12 μg/mL) and M. catarrhalis (.01–.05 μg/mL) (Cooper et al., 1990).
In vitro investigation of S. pneumoniae has revealed that clavulanic
acid with β-lactams affects β-lactamase activity by interacting with
penicillin-binding proteins (PBP), causing premature lysis and
hypersensitivity to lysozyme, which results in major alterations to
the cell wall (Severin et al., 1997).

Clinical use: Clavulanic acid is combined with amoxicillin in
therapy (Uto and Gerriets, 2021). Drug trials have revealed that
they are cost-effective in treating post-surgery infections, intra-
abdominal infections, brain abscesses, diabetic foot infections, and
pulmonary infections (Huttner et al., 2020). The combination is
effective against gram-positive bacteria like Staphylococcus
epidermidis, Streptococcus pneumoniae, Enterococcus faecalis,

Strep. pyogenes, penicillin-methicillin-macrolide resistant strains,
and gram-negative bacteria like H. influenzae, Moraxella
catarrhalis, and H. parainfluenzae (Huttner et al., 2020; Uto and
Gerriets, 2021).

Durlobactam

Durlobactam, a diazabicyclooctane (DBO) β-lactamase
inhibitor, has a wider range of action than existing inhibitors
suited for intravenous administration (Shapiro et al., 2021).
Durlobactam is an effective inhibitor that may be utilized for
treating infections caused by A. baumannii. Durlobactam-
sulbactam has potential as a supplement to existing
pharmaceutical sources (Seifert et al., 2020).

Structure and mode of action: Chemically, durlobactam is known
as [(2S, 5R)-2-carbamoyl-3-methyl-7-oxo-1,6-diazabicyclo [3.2.1]oct-
3-en-6-yl] hydrogen sulfate—molecular formula C8H11N3O6S. Its
molecular mass is precisely 277.26 g/mol. Durlobactam’s structure
contains a ring of diazocyclooctene with a carbamoyl group, a methyl
group, and sulfate, which is directly associated with the cyclo-octene
ring (PubChem ID: 89851852).

Durlobactam is known to have broader activity and is currently
available on the market since it inhibits all classes of β-lactamase
except class B. In terms of potency, durlobactam outperforms
avibactam (Durand-Réville et al., 2017), with which it bears some
resemblance: it attacks and modifies the enzyme in the serine active
site, leading to the establishment of a covalent bond (Figure 4). As
acylation proceeds, the ring is reformed, the inhibitor is released, and
the sulfated amine can recyclize onto carbamate, which no longer
reacts with β-lactamase (Shapiro et al., 2017). In gram-negative
organisms, durlobactam gains access through outer membrane
porins (OmpA), and OmpA deletion results in resistance to
durlobactam (Isler et al., 2018).

FIGURE 3
Representation of CTX-M-64-clavulanic acid complex. (A) Representation of CTX-M-64 clavulanic acid interactions, showing residue around the
binding pocket as cyan sticks with atoms colored according to atom type. Clavulanic acid is shown here in green, with the various atoms indicated by their
respective colors. (B) Red shows the contoured 2FoFc map over clavulanic acid in the CTX-M-64 pocket. Green sticks show clavulanic acid, while the cyan
sticks show residues close to the binding domain. (Adapted from Cheng et al., 2019).
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Pharmacodynamics: When combined with sulbactam, durlobactam
was effective in patients with complicated urinary tract infections. In
addition, the pharmacokinetic-pharmacodynamic results using a dosage
of 1,000 mg delivered every 6 h are being examined in phase 3 clinical
trials (Sagan et al., 2020). Sulbactam–durlobactam is effective in vivo
against extensively drug-resistant (XDR) A. baumannii clinical isolates in
a variety of thigh and lung murine infection models, with MIC values
ranging from .5/4 to 4/4 mg/L (Durand-Réville et al., 2017). Recent
research in China has shown that durlobactam is effective against A.
baumannii clinical isolates, with investigations ongoing (Yang et al.,
2020).

Clinical use: Durlobactam, a new inhibitor used to treat
Acinetobacter infections, is potent against serine β-lactamases of
classes A, C, and D, as well as carbapenem-resistant strains
(Shapiro et al., 2021), with phase 3 studies are still ongoing. The
combination of sulbactam and durlobactam does not have any serious
side effects. The side effects are mild to moderate, but healthy
individuals have been able to handle them (Sagan et al., 2020).
Sulbactam–durlobactam is also employed in the treatment of
chronic infections (Wannigama et al., 2021).

Enmetazobactam

Enmetazobactam, an N-methylated derivative of tazobactam, is
known to inhibit members of all serine β-lactamase classes without
major structural shattering (Lang et al., 2022). Enmetazobactam is a
penicillin-derived sulfone specifically known to inhibit
Enterobacterales-producing class C and D carbapenemases
(Crandon and Nicolau, 2015; Morrissey et al., 2019).

Structure and mode of action: Chemically, enmetazobactam is
known as (2S,3S, 5R)-3-methyl-3-[(3-methyltriazol-3-ium-1-yl)
methyl]-4,4,7-trioxo-4lambda6-thia-1-azabicyclo [3.2.0]heptane-
2-carboxylate—molecular formula C11H14N4O5S. Its molecular
mass is precisely 314.32 g/mol. It contains a β-lactam ring with
cyclic thiopentane derived from triazole (PubChem ID: 23653540).
Enmetazobactam is a zwitter ion with a structure similar to
tazobactam except for the methyl group at the triazole ring,
which strengthens drug activity (Papp-Wallace et al., 2018a).
The penam structure opens to react with the enzyme’s active
site, forming a stable enzyme acyl complex that protects from
hydrolysis. It inhibits serine β-lactamase and its production in
bacterial species. Enmetazobactam is known to cause irreversible
inhibition (Lang et al., 2022).

Pharmacodynamics: Enmetazobactam and cefepime’s effects on
Enterobacteriaceae and Pseudomonas aeruginosa isolates were tested
in vitro. It was found that enmetazobactam (8 μg/mL) lowered the
MIC90 of cefepime, from 0.5 to 0.25 μg/mL for Enterobacter
aerogenes, 16 to 1 μg/mL for Enterobacter cloacae, 16 to 0.12 μg/
mL for Escherichia coli, and >64 to 0.5 μg/mL for Klebsiella
pneumoniae, though it did not improve cefepime activity in P.
aeruginosa isolates (Morrissey et al., 2019). While other studies
into murine neutropenic thigh models reported that it restored
cefepime effectiveness in all isolates, their pharmacodynamic target
was greater than enmetazobactam MIC (Bernhard et al., 2020).

Clinical use: Enmetazobactam is used to treat urinary tract infections
and nosocomial infections because it is effective against a limited number
of enzymes from class A, C, and D β-lactamases (Johnson et al., 2020).
They are effective against gram-negative bacteria. Furthermore, ongoing
phase 3 studies have shown promising findings (Gallagher, 2020).

FIGURE 4
Representation of OXA-24/40-durlobactam complex. Durlobactam is also known as ETX2514. (A) ETX2514|Fo| |Fc| was eliminated from OXA-24/
40 refinement andmap calculations. Carbon atom sticks are used to symbolize the inhibitor (blue) and protein (gray). Three contours of electron density. The
K84 side chain is carbamylated and non-carbamylated, with .6 and .4 occupancy conformations labeled as “a” and “b”, respectively. Additionally, the active site
was optimized to contain a chloride ion with a .4 occupancy, represented by a green sphere labeled “Cl”. (B) ETX2514 andOXA-24/40 hydrogen bonding.
Red spheres show water molecules, while green spheres show a chloride ion that is only partly filled. (Adapted from Barnes et al., 2019).
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ETX0282

ETX0282 is the prodrug of ETX1317, a DBO β-lactamase inhibitor
(Durand-Reville et al., 2020) with an endocyclic carbon–carbon
double bond and a fluoroacetate activation group that inhibits class
A, C, and D serine β-lactamases (Miller et al., 2020).

Structure and mode of action: Chemically, ETX0282 is known as
propan-2-yl (2R)-2-[[(2R, 5R)-2-carbamoyl-4-methyl-7-oxo-1,6-
diazabicyclo [3.2.1]oct-3-en-6-yl]oxy]-2fluoroacetate—molecular
formula C13H18FN3O5. Its molecular mass is precisely 315.30 g/
mol. ETX0282 contains diazo cyclo-octane with fluoroacetic acid
and carbamoyl group (PubChem ID: 146170992).

ETX0282’s structure and mechanism are analogous to those of
other DBOs. It is a temporal inhibitor in which the urea ring S70 forms
the covalent bond between the active site of the enzyme forming the
acyl-enzyme complex; the oxyanion hole formed from the amide
group of S70 and S237 is occupied by carbonyl oxygen (Figure 5). Due
to the planarity of the C-C double bond, ETX1317 acquires a half-
chair conformation upon ring opening, allowing the methyl group to
migrate up and engage hydrophobically with Y105. This conformation
causes the recyclization of the urea ring and β-lactamase recyclization
(Lahiri et al., 2013).

Pharmacodynamics: In PK/PD studies, ETX1317 restored CPDP
(cefpodoxime proxetil) activity to 1 μg/mL (CPDP), but the inhibitory
action was not evident when ETX1317 was used alone, despite CPDP
surpassing 50% T >MIC and ETX1317 passing a concentration twice the
MIC for 60% of the dosing period. Allometric scaling of animal PK
suggests that, at fixed ETX0282 andCPDPoral dosage, ETX1317’s clinical
kinetics would be similar to that of cefpodoxime (O’Donnell et al., 2020).

Clinical use: ETX0282 and cefpodoxime are being developed as
oral therapy for infections caused by MDR gram-negative organisms
and carbapenem-resistant Enterobacteriaceae (CRE). Only a few
people have experienced mild to moderate vomiting in the phase

1 trials since it was readily absorbed and had no drug–drug
interactions (Mass, 2019). Phase 3 studies are now being conducted
(NCT03491748).

Nacubactam

Nacubactam, a potent β-lactamase inhibitor, inhibits penicillin-
binding protein 2 in Enterobacteriaceae as well as classes A, C, and
certain class D β-lactamases. Nacubactam suppresses β-lactamases to
prevent co-administered drugs from hydrolyzing (Mallalieu et al.,
2020). Nacubactam is effective against Pseudomonas aeruginosa,
Klebsiella pneumoniae, and Enterobacter cloacae (Asempa et al.,
2019; Hagihara et al., 2021).

Structure and mode of action: Chemically, nacubactam is known
as [(2S, 5R)]-2-(2-aminoethoxycarbamoyl)-7-oxo-1,6-diazabicyclo
[3.2.1]octan-6-yl]hydrogen sulfate—molecular formula
C9H16N4O7S. Its molecular mass is precisely 324.31 g/mol. Its
structure contains a diazo cyclooctane ring with an aminoethoxy
carbomoyl group with a sulfated end (PubChem ID: 73386748).

Nacubactam is a non-β-lactam inhibitor; it enhances the
effectiveness of antibiotics when taken in combination, in addition
to having antibacterial qualities (Hagihara et al., 2021). Nacubactam,
like other β-lactam inhibitors, is known to shield β-lactams but more
research is needed to determine exactly how they work (Livermore
et al., 2015a). Following nacubactam binding, S64 is changed in a way
that does not significantly affect anything. The reaction of nacubactam
produced open ring products, with the piperidine ring assuming a
chair conformation (Figure 6) and the carbamoyl-carbonyl oxygen
positioned to engage with the backbone NH of A318. Through polar
interactions with N346, T316, and K315, the N-sulfate group is
188 securely fixed in the active site (Lang et al., 2021).

Pharmacodynamics: In the pharmacodynamics study of
Hagihara et al., 2021, strains that were treated with nacubactam
and β-lactams such as aztreonam, cefepime, and meropenem showed
antimicrobial activity on carbapenem-resistant Enterobacterales

FIGURE 5
Representation of β-lactamase- ETX0282 complex. At
1.28 resolution, the complex crystal structure of ETX1317 with CTX-M-
14 β-lactamase has been determined (PDB code 6VHS). Green contours
on this impartial Fo–Fc map have a depth of 3 σ. In this illustration,
the ligand is shown in purple, and the protein in blue. The ligand-protein
hydrogen bond is shown as a black dashed line. A red sphere represents
the catalytic water. (Adapted from Durand-Reville et al., 2020).

FIGURE 6
Representation of AmpC-nacubactam complex. Active regions of
AmpC-nacubactam complex where nacubactam was modeled in a
single conformation A in which N sulfate is close to Y150. (Adapted from
Lang et al., 2021).
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(CRE) E. cloacae and K. pneumoniae. On the other hand,
meropenem in combination with nacubactam was ineffective
against K. pneumoniae and CRE, resulting in low MIC (2 μg/mL);
it was not effective against IMP-producing organisms (Livermore
et al., 2015a; Livermore et al., 2015b; Morinaka, et al., 2015).
Research on nacubactam combination therapy for CRE-caused
pneumonia has shown promising results in a PD trial; however,
only a few classes of carbapenemases have been examined
(Yamamoto et al., 2017). Although CRE infections are becoming
more common and harder to treat, this may open up new
antimicrobial treatment options for CRE-caused pneumonia
(Koizumi et al., 2018).

Clinical use: Nacubactam is used to treat infections like
nephrotoxicity, β-lactam antibiotic-caused acute tubular necrosis,
glomerulonephritis, and acute interstitial nephritis (Mallalieu et al.,
2020).When combined with aztreonam, nacubactam shows a stronger
antibacterial effect against MBL-producing Enterobacteriaceae with
limited activity on Pseudomonas spp. and anaerobes (Mushtaq et al.,
2019). Additional research indicates that the combination of
meropenem and nacubactam is effective against carbapenem-
resistant K. pneumoniae and MBLs (Carcione et al., 2021).

Relebactam

Relebactam, a non-β-lactam inhibitor based on avibactam, was
formerly known as diazabicyclooctane (DBO) (Stachyra et al., 2010).
In the presence of imipenem-cilastatin, it is effective against both class
A and C β-lactamases. The two together offer a high degree of safety.
Relebactam, when combined with imipenem, restores imipenem’s
effectiveness against a variety of imipenem-resistant bacteria,
including Enterobacterales, that produce ESBL, AmpC, and KPC
(Iyer 2022).

Structure andmode of action: Relebactam is chemically known as [
(2S, 5R) -7-oxo-2-(piperidin-4-ylcarbamoyl)-1,6-diazabicyclo [3.2.1]
octan-6-yl]hydrogensulfate—chemical formula C12H20N4O6S. Its
molecular mass is precisely 348.38 g/mol (PubChem ID: 44129647).
It has a urea core structure similar to that of avibactam’s β-lactam ring
and is highly reactive, which improves inhibition (Stachyra et al., 2010;
Lahiri et al., 2013). The sole difference between relebactam and
avibactam is the insertion of a piperidine substituent at position
2 of the carbamoyl group, which keeps cations and cell outflow
intact (Mangion et al., 2011; Bhagunde et al., 2012).

Relebactam functions as a suicide inhibitor, resulting in
irreversible inhibition (Lahiri et al., 2013). During acylation, a urea
ring formed between C7 carbonyl and serine residues, resulting in
intermediates that are stabilized by an aminoxy sulphate group
through a hydrogen bond with the catalytic site (Figure 7).
Relebactam further undergoes deacylation, resulting in active β-
lactamase (Papp-Wallace et al., 2018b).

Pharmacodynamics: An in vitro study of the hollow fiber model,
including K. pneumoniae, E. coli, S. marcescens, and P. aeruginosa,
used imipenem and relebactam in a 2:1 ratio MIC, which was greater
than the approved efficacy (>40%) (Mouton et al., 2000; Wu et al.,
2018). Additional investigation demonstrated that MIC was linked
with 2-log kill when a dose of imipenem–relebactam (500:250) was
given every 6 h (Bhagunde et al., 2019).

Clinical use: Relebactam is used in the treatment of severe urinary
tract and severe intra-abdominal infections (Campanella and
Gallagher, 2020). According to the RESTORE-IMI 1 and -IMI
2 phase III clinical studies, relebactam is effective against
pathogens such as atypical Mycobacteria spp. and non-imipenem-
sensitive strains responsible for hospital-acquired bacterial
pneumonia and ventilator-associated pneumonia. Relebactam is
effective against carbapenem-resistant P. aeruginosa, ESBL,
carbapenem-resistant Enterobacteriaceae (CRE), and gram-negative

FIGURE 7
Representation of AmpC-relebactam complexes. Active region of AmpC-relebactam complexes where relebactam was modeled in N-sulfated
conformations (A,B). (Adapted from Lang et al., 2021).
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OXA producers (Karaiskos et al., 2022). Moreover, it is known to
induce side effects such as nausea, diarrhea, and headaches
(Campanella and Gallagher, 2020; McCarthy, 2020).

Sulbactam

Sulbactam/ampicillin, a 1987 US-developed β-lactam/β-
lactamase-inhibitor combination for intravenous and intramuscular
use, irreversibly inhibits several bacterial β-lactamases but has limited
antibacterial efficacy (Betrosian and Douzinas, 2009). The β-lactam
ring in semi-synthetic penicillinate sulfone sulbactam is derived from
6-aminopenicllanic acid (Enna and Bylund, 2007). Researchers
investigated how 14 bacterial and fungal species from all four
Ambler classes broke down the drug sulbactam. Even within each
class—A, B, C, and D—reaction kinetic constants differed (Shapiro
et al., 2017). The drug is authorized as a first-line treatment for a wide
variety of community-acquired illnesses in both children and adults.
Due to the intrinsic activity of sulbactam, the combination may be
regarded as especially effective against Acinetobacter baumannii
infections (Betrosian and Douzinas, 2009).

Structure and mode of action: Chemically, sulbactam is known as
(2S, 5R)-3,3-dimethyl-4,4,7-trioxo-4λ6-thia-1-azabicyclo [3.2.0]
heptane-2-carboxylic acid—molecular formula C8H11NO5S Its
molecular mass is precisely 233.24 g/mol. Sulbactam is usually
solid, with a boiling point of 567.7°C ± 50.0°C, a melting
temperature of 154°–157°C, and a pKa of 2.62 ± .40. It is
structurally similar to clavulanic acid, lacking an acylamino side
chain, and has an oxazolidine ring with S at C4, a methyl group at
C3, and a carboxylic group at the C2 position (PubChem ID: 130313).

Sulbactam is an irreversible inhibitor and semisynthetic (Carcione
et al., 2021). Although individually it has minimal antimicrobial
activity, it shows a synergistic impact on β-lactamase producers
when combined with β-lactams (Enna and Bylund, 2007).
Sulbactam’s β-lactam ring assists in the inactivation of β-lactamase
by irreversibly binding. The actual mechanism is unknown but it is
widely assumed that sulbactam is initially recognized as the normal

substrate by β-lactamases and generates an acyl intermediate complex
by interacting with the active site serine hydroxyl group (Figure 8).
This complex undergoes further deacylation, tautomerism, and
transamination with S130 so that the enzyme is irreversibly
blocked (Rafailidis et al., 2007).

Pharmacodynamics: For sensitive strains and E. coli, 3 g of
ampicillin-sulbactam every 6 h is sufficient. Lower doses are
ineffective against the TIM2 strain but are effective against
ATCC 25922 and EC1. Few E. coli strains cause a higher rate of
durability in genitourinary tract infections, which may be due to
low dosages of ampicillin-sulbactam or resistance mechanisms
other than the β-lactamase production. It is thus unclear if
ampicillin-sulbactam resistance leads to long-term clinical failure
(Enna and Bylund, 2007).

Clinical use: Sulbactam is typically used in combination with
ampicillin to treat skin and soft tissue illnesses, lower respiratory
tract infections, intra-abdominal infections, diabetic foot infections,
and in pediatrics. However, it is ineffective against P. aeruginosa
(Lamp and Vickers, 1998). Sultamicillin has been shown in clinical
trials to be clinically efficacious in adults and children against a variety
of commonly encountered illnesses. Sulbactam is usually used in a 1:
2 ratio with cefoperazone, demonstrating exceptional activity against
Enterobacteriaceae spp., P. aeruginosa, and A. baumannii. However, a
few resistant strains ofA. baumannii have been discovered (Yang et al.,
2018; Ku and Yu, 2021).

Tazobactam

Tazobactam is a β-lactamase inhibitor that prevents the
degradation of piperacillin by β-lactamases. When coupled with
piperacillin, tazobactam expands the range of antibacterial activity
against Staphylococcus spp., Enterobacteriaceae spp., Haemophilus
influenzae, and Bacteroides species (Perry and Markham, 1999).

Structure andmode of action: Chemically, tazobactam is known as
(2S,3S, 5R)-3-methyl-4,4,7-trioxo-3-(triazol-1-ylmethyl)-4λ6-thia-1-
azabicyclo [3.2.0]heptane-2-carboxylic acid—molecular formula

FIGURE 8
Representation of CTXM-64-sulbactam complex. (A) Sulbactam-CTX-M-64 pocket interactions. The sulbactam-CTX-M-64 crystal structure shows the
residues in the region of the binding pocket as cyan sticks, with atoms colored according to their types. Gold represents acrylic acid (AKR) and trans-enamine
intermediate (TSL), with each kind of atom colored differently. (B) Sulbactam derivatives are highlighted in red on the CTX-M-64 pocket’s 2FoFc map, which
has been contoured at 3.0 σ around them. Cyan sticks represent residues around the binding pocket, whereas gold sticks represent AKR and TSL.
(Adapted from Cheng et al., 2019).
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C10H12N4O5S. Its molecular mass is precisely 300.29 g/mol.
Tazobactam is usually solid, with a boiling point of 77°C and a
melting temperature of 140°C–147°C, as well as a pKa of 2.1
(PubChem ID: 123630).

Tazobactam belongs to penicillanic acid and is one of the exocyclic
methyl hydrogens substituted by a 1,2,3-triazol-1-yl group (Tooke
et al., 2019). It is derived from 6-aminopenicllanic acid. Tazobactam,
an irreversible inhibitor, forms an imine acyl complex (Figure 9) by
attacking the active site of the enzyme. This complex can go through
any of the following processes: deacylation, liberating active enzyme
and hydrolyzed product, irreversible damage by tautomerization, or
degradation via sets of reactions (Yang et al., 1999). However, the
inhibition is determined by the rate of deacylation and
tautomerization (Drawz and Bonomo, 2010).

Pharmacodynamics: Tazobactam functions well with cefepime,
ceftolozane, and piperacillin (Papp-Wallace et al., 2019). In cefepime-
tazobactam, the threshold of tazobactam dosage is linked to net
bacterial stasis and a drop in 1-log10 colony-forming unit (CFU)
from 52.8% to 21.9%; the in vitro infection model requires more study
(VanScoy et al., 2017). Piperacillin and tazobactam were also used to
test patients, but the results did not meet pharmacodynamic goals
(Bauer et al., 2012; Thabit et al., 2016).

Clinical use: Tazobactam is used in the treatment of appendicitis,
skin infections, community-acquired nosocomial pneumonia, and
gynecological infections. It can be used against gram-positive as
well as gram-negative organisms. Nonetheless, tazobactam has
adverse effects in individuals with hypersensitive reactions, renal
impairment, bleeding manifestations, or individuals undergoing
cytotoxic therapies. Common effects during tazobactam
administration are gastrointestinal inflammation or fever (Perry
and Markham, 1999; Sarkar et al., 2017).

Taniborbactam

Taniborbactam is the first boronate inhibitor of all β lactamases
classes (Hamrick et al., 2020; Liu et al., 2020). It is an extremely strong,
gram-negative outer-membrane-penetrating inhibitor (Liu et al.,
2020).

Structure and mode of action: Chemically, taniborbactam is
known as (3R)-3-[[2-[4-(2-aminoethylamino) cyclohexyl] acetyl]
amino]-2-hydroxy-3,4-dihydro-1,2-benzoxaborinine-8-carboxylic

FIGURE 9
Representation of CTX-M-15-Tazobactam complex. Tazobactam is represented in orange sticks. Ser70 and Lys73 are represented by pink and gray
sticks,whereasCTX-M-15 backbone is displayed in a neutral gray. Stick representation of the antibiotic tazobactam in orange. Fo-Fcelectron density (green, 3)was
determined (A) after tazobactamwas eliminated from the equation. Distances in angstromsare identified in (B), and interactions between tazobactamand residues
in theCTX-M-15 active site are shownas yellowdashes. (C) SuperpositionofCTX-M-15: tazobactamonto the active site of unliganded apoCTX-M-15 (green,
PDB code 4HBT [34]). Catalytic waters at the active site are shown as spheres with different colors for each protein. (Adapted from Hinchliffe et al., 2022).

FIGURE 10
Representation of CTX-M-15-taniborbactam complex. CTX-M-15-
taniborbactam binding to the active site, revealing the primary sites of
contact between enzyme and inhibitor (magenta). Taniborbactam binds
with many conserved residues, and the inhibitor displaces the
deacylation water molecule (Wd) by 1.4Å. Both Wa and SO4 are
components of crystallization buffer solution; Wa is acylation water.
(Adapted from Hamrick et al., 2020).
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acid—molecular formula C19H28BN3O5. Its molecular mass is
precisely 389.3 g/mol. Taniborbactam contains a basic
benzoxaborinie ring with carboxylic acid as one side chain; the
other side chain is the cyclohexane chain linked via the carbamoyl
moiety. The cyclohexane has a side chain of amino ethanol amine
(PubChem ID: 76902493).

Taniborbactam is a reversible inhibitor that covalently binds to the
active serine site (S70) (Figure 10); due to this, the boron atom confers
a tetrahedral conformation, imitating an intermediate, and interacts
with N104, S130, N132, N170, and T235-conserved sites of β-
lactamases—thus narrowing the active site inhibiting β-lactamase
(Hamrick et al., 2020).

Pharmacodynamics: In vitro investigation has revealed that a
combination of taniborbactam and cefepime (2 g/0.5 g q8h as a 2 h
infusion) has significant effects on isolates where a 1-log reduction was
described in substantially all isolates, with only a few showing a 2-log
reduction and few reporting a 3-log10 reduction (Abdelraouf et al.,
2020). Taniborbactam also recovers cefepime activity; the MIC of
cefepime alone was 256 and 32 g/mL after taniborbactam was
introduced; the cefepime MIC was 4 g/mL in both cases (Hamrick
et al., 2020).

Clinical use: Taniborbactam, in combination with cefepime, is
used to treat complex urinary tract infections such as acute
pyelonephritis and hospital-acquired or ventilator-associated
bacterial pneumonia. However, moderate side effects, including
headache, nausea, dizziness, and diarrhea, have been reported
(Dowell et al., 2021).

Vaborbactam

The new β-lactamase inhibitor vaborbactam is based on a cyclic
boronic acid pharmacophore with significant inhibitory efficacy
against class A and C β-lactamases. To re-establish its effectiveness
against Klebsiella pneumoniae carbapenemases, it has been co-
formulated with meropenem (Jorgensen and Rybak, 2018).
Combining with meropenem is thought to be a good way to treat
severe infections caused by gram-negative bacteria (Lomovskaya et al.,
2017). Vaborbactam’s boronic acid pharmacophore yields a boronic

ester ring that imposes a favorable form for binding structure,
resulting in improved efficacy (Bhowmick and Weinstein, 2020).

Structure and mode of action: Chemically, vaborbactam is known
as 2-[(3R, 6S)-2-hydroxy-3-[(2-thiophen-2-ylacetyl)amino]
oxaborinan-6-yl]acetic acid—molecular formula C12H16BNO5S. Its
molecular mass is precisely 297.14 g/mol. It contains a thiophene
ring derivatized with oxaborinane through a peptide bond between
acetyl and amino groups, which is linked to an acetate group
(PubChem ID: 77846445).

Vaborbactam inhibits class A and C serine β-
lactamases—specifically KPC β-lactamases. The presence of a 2-
thienyl acetyl group in vaborbactam’s structure helps enhance the
inhibitor’s effectivity (Hecker et al., 2015). Vaborbactam enters the
organism via porins OmpK35 and OmpK36 on the outer membrane
(Lomovskaya et al., 2017) and acylates the enzyme’s catalytic serine
residue, leading to the formation of a complex (Figure 11).
Vaborbactam initially forms a non-covalent complex, followed by a
covalent interaction between the catalytic Ser residue of the enzyme
and the boron atom of vaborbactam to form the enzyme inhibitor
(EI*) complex. This reaction can be reversed because a water molecule
can quickly break down the covalent bond between the catalytic serine
residue and the boron atom to release vaborbactam (Tsivkovski et al.,
2020).

Pharmacodynamics: There is a scarcity of published data on
vaborbactam’s pharmacodynamics. It is usually utilized in
meropenem combinations; MICs ranging from 0.06/8 to 64/8 mg/L
were seen in isolates of Enterobacteriaceae that produce KPC β-
lactamases. However, when experiments were conducted on a
hollow-fiber model in a 2:2 ratio for every 8 h by 3-h infusion, a 6-
log kill was achieved and resistance was silenced (Petty et al., 2018).
Furthermore, the same dosage was investigated in a hollow-fiber
model and a neutropenic murine thigh model; the hollow fiber
exhibited the restoration of meropenem antimicrobial activity,
whereas the murine thigh model was attributed to bacteriostasis
and 1-log10 kill (Griffith et al., 2018).

Clinical use: Meropenem-vaborbactam’s pharmacokinetic
properties were compatible and clinically tolerated in phase I
studies (Wenzler et al., 2015; Griffith et al., 2016). Based on phase
I studies, antibiotic-nonsusceptible gram-negative organisms
(TANGO I and II) were targeted. In TANGO I, meropenem-
vaborbactam surpassed piperacillin-tazobactam in patients with
complicated urinary tract infections, including acute pyelonephritis,
while TANGO II showed fewer side effects in patients with CRE
infections (Petty et al., 2018).

WCK-4234

WCK-4234 belongs to the diazabicyclooctanes inhibitor class,
which is highly effective against class A and D β-lactamases
(Mushtaq et al., 2017). Meropenem and WCK 4234 effectively
function together. The latter increases carbapenem activity but does
not inhibit metallo-β-lactamases (Iregui et al., 2019).

Structure and mode of action: Chemically, WCK4234 is known as
sodium; [(2S, 5R)-2-(5-methyl-1,3,4-oxadiazol-2-yl)-7-oxo-1,6-
diazabicyclo [3.2.1]octan-6-yl]sulfate—molecular formula
C9H11N4NaO6S. Its molecular mass is precisely 326.26 g/mol. Its
structure contains a diazo-octane ring with methyl, and
aminosulfate groups (PubChem ID: 140620411).

FIGURE 11
Representation of β-lactamase-vaborbactam complex.
Vaborbactam is represented by spherical cyan carbon atoms.
Vaborbactam’s covalent interaction to the catalytic S294 shown as a
stick model with differential density contouring at the 2.75 level.
(Adapted from Kumar et al., 2021).
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WCK-4234 has been identified as a reversible inhibitor. WCK-
4234 binds covalently to the active serine site (S70), leading to the
formation of an acyl enzyme intermediate and inactivation of the
enzyme; however, it halts degradation and restores itself. Compared to
avibactam, WCK-4234 has a different desulfation process, but its
effectiveness needs more study (Papp-Wallace et al., 2018a).

Pharmacodynamics: Although WCK-4234 increases drug
function, it has insufficient antibacterial qualities (Mushtaq et al.,
2017). It is effective against carbapenemases of classes A, D, and C, as
well as class C enzymes (Iregui et al., 2019). The MIC50/90 was
reported from in vitro studies against carbapenem-resistant A.
baumannii isolates (no resistance genes detected) treated with
meropenem and WCK-4234 (2 and 8 μg/mL) (Sader et al., 2017).
However, they were less effective against OXA-23 (2/4 g/mL) and
OXA-40 (4/8 g/mL) with MIC50/90 recorded (Mushtaq et al., 2017).

Clinical use: In preclinical trials, meropenem-WCK-
4234 treatment for a neutropenic lung infection with multidrug-
resistant OXA-23-producing A. baumannii has been observed to
reduce bacterial load by 2.5 logs; however, WCK-4234 is yet to be
tested in clinical studies (Papp-Wallace et al., 2018b).

Xeruborbactam (QPX7728)

QPX7728 is a cyclic boronate-based β-lactamase inhibitor; it is
effective against Enterobacterales class A and D carbapenemases as
well as a variety of Acinetobacter carbapenemases (Lomovskaya et al.,
2021) and class B β-lactamases (Tsivkovski et al., 2020). It is most
effective as an inhibitor of organisms that produce carbapenemases
(Nelson et al., 2020).

Structure and mode of action: Chemically, xeruborbactam is
known as (1aR,7bS)-5-fluoro-2-hydroxy-1a, 7b-dihydro-1H-
cyclopropa [c][1,2] benzoxaborinine-4-carboxylic acid—molecular
formula C10H8BFO4. Its molecular mass is precisely 221.98 g/mol.
Xeruborbactam contains benzoxaborinie, which has a carboxylic acid
side chain with a twinning ring of fluorocyclohexane (PubChem ID:
140830474).

QPX7728 inhibitors are reversible; the boron atom in the inhibitor
binds covalently to the active serine site (S70), forming a complex that
inactivates the enzyme. However, the complex is dissociated and the
enzyme is restored after a certain time (Tsivkovski et al., 2020). The critical
interactions that contribute to the inhibitor’s high-affinity binding to
MBLs are: carboxylic acid’s oxygen atom, boronate ester oxygen, and
hydroxyl group ligand; direct 2 zinc ions at the active site; cap-generating
lipophilic linkages with loop L65:V73 of the side chain; aid in the
formation of the salt bridge (Lomovskaya et al., 2021).

Pharmacodynamics: QPX7728 in combination with meropenem
shows promising in vitro study results against carbapenem-resistant
Acinetobacter spp. (CRAB) with diverse resistance mechanisms,
reducing the MIC90 of meropenem from >64 to 8 μg/mL and 4 μg/mL
(Nelson et al., 2020). However, QPX7728 can also be usedwith ceftazidime,
avibactam, ceftolozane-tazobactam, meropenem, vaborbactam, imipenem,
and relebactam—all of which have been approved for clinical use against
organisms like Acinetobacter baumannii, Pseudomonas aeruginosa, and
Enterobacterales (Lomovskaya et al., 2021).

Clinical use: QPX7728 phase 1 trials are underway: it is known to
inhibit KPC, NDM, VIM, and OXA β-lactamase-producing organisms
such as Klebsiella pneumoniae, P. aeruginosa, Enterobacteriaceae spp.,
and A. baumannii (NCT04380207).

Zidebactam

Zidebactam is known to inhibit PBPs and β-lactamases, and to
synergize with them. It is a bicyclo-acyl hydrazide that inhibits class A,
C, and D β-lactamases. Zidebactam, produced from a DBO
architecture, was intended to increase PBP2 binding rather than
antagonistic activity—to promote β-lactam activity. However, it
also possesses considerable β-lactamase inhibitory action (Vázquez-
Ucha et al., 2020).

Structure and mode of action: Chemically, zidebactam is known as
[(2S, 5R)-7-oxo-2-[[[(3R)-piperidine-3-carbonyl]amino]carbamoyl]-
1,6-diazabicyclo [3.2.1]octan-6-yl]hydrogen sulfate—molecular
formula C13H21N5O7S. Its molecular mass is precisely 391.40 g/
mol. Zidebactam contains diazocyclo-octane with a six-membered
piperidine ring side chain that is attached via a carbamoyl group. The
other branch is the sulfated side chain (PubChem ID: 77846445).

Zidebactam plays a vital role in gram-negative organisms by
selectively binding to PBP2 with high affinity and inhibiting β-
lactamase activity (Sader et al., 2017). It is covalently attached to
S294 (Figure 12), and active residues of PBP interact with
diacylhydrazide. This is achieved by reorganization. This
diacylhydrazide moiety can act either as a hydrogen donor or an
electron acceptor. These interactions between diacylhydrazides and
the R1-group piperidine ring inhibit the β-lactamase and have an
antibacterial property (Rajavel et al., 2021).

Pharmacodynamics: Zidebactam is now being studied in
combination with cefepime at a dose of 2 g/1 g, infusing it every
hour for 8 h; results indicate that it serves as both a β-lactamase
inhibitor and a cefepime enhancer (Monogue et al., 2019). In an in vivo
study in a murine lung infection model, the minimum elongation
concentration (MEC) and minimum spheroplastation concentration
(MSC) were determined and further split into several minimum
inhibitory concentrations (MIC’s). These improved the R2 values
compared to the PD analysis MICs of cefepime and zidebactam, in
addition to the PK/PD index being fT > 0.015x in A. baumannii
isolates (Bhagwat et al., 2019). One of the most essential aspects of
zidebactam’s pharmacodynamics is its enhancer property. The
cefepime fT > MIC required to generate a 1-log10 colony-forming
unit (CFU) kill against multidrug-resistant A. baumanniiwas dropped
from 38.9% to 15.5% with zidebactam (Bhagwat et al., 2019).

Clinical use: Most E. coli, K. pneumoniae, Citrobacter spp.,
Enterobacter spp., Serratia spp., multidrug-resistant P. aeruginosa,
S. maltophilia, and Burkholderia spp. that cause infections are
treatable with zidebactam (Carcione et al., 2021). Meanwhile, a
phase 3 trial for treating complicated urinary tract infections and
acute pyelonephritis is currently active (NCT04979806).

Complications

As explained above, there are both established and emerging
inhibitors (Table 1). Creating a novel brand of inhibitor is a
difficult task. Inhibitors with border spectrum action may be useful
in addressing broad-spectrum resistance, like, for example,
taniborbactam inhibits KPC, OXA, and most of the metallo-β-
lactamases but not IMP β-lactamases. Another challenge is that
certain inhibitors, such as WCK-4234, only have a mild
bactericidal effect. The minute size of the active sites of metallo-β-
lactamases result in a significant problem for the development of
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inhibitors for class B β-lactamases. Hydrogen bonding between the
inhibitor and the target may help increase its selectivity, which is a
problem in and of itself. Although the nature of polarity plays a
significant role at the membrane-water interface, it is reasonable to
conclude that the non-polar form of the inhibitors predominate within
the membrane (owing to its hydrophobic nature)—neutral forms are
thus preferable over charged ones (Zhu et al., 2017). Finally, a major
hurdle in developing an efficient inhibitor is the emergence of
microbial resistance to current pharmaceutical classes. There is also
a need for greater study into the development of inhibitors for
multidrug-resistant pathogens that may counteract the key
mechanism whereby antibiotics avoid being digested by β-lactamases.

Conclusion

One of the most pressing issues in modern public health is the
spread of antibiotic-resistant bacteria. Antimicrobial resistance is a
growing problem that raises serious concerns about the efficacy of β-
lactam drugs. β-lactamase inhibitors can be used to combat β-lactamase-
mediated antibiotic resistance. An inhibitor’s utility is enhanced when it
can block activity without being reversed. Reversible inhibitors may
reactivate the enzyme by breaking non-covalent interactions, whereas
irreversible inhibitors which bind covalently are thus unaffected by the
presence of alternative substrates. Themetallo-β-lactamases are themost
challenging to treat as their active site is located in shallow grooves.
Taniborbactam, a metallo-β-lactamase inhibitor, lacks broad-spectrum
activity, whereas captopril, another metallo-β-lactamase inhibitor, has
an undesirable side effect. When it comes to inhibiting β-lactamases,
clavulanic acid is the most effective inhibitor discovered thus far because
it inhibits both gram-positive and gram-negative organisms with few

side effects. Researchers should take into account the probability that
their discoveries regarding β-lactamase inhibitors should have broader
spectrum activity. In combating antimicrobial resistance, it will be useful
to develop or modify inhibitors with irreversible action and reduce
adverse effects by considering the polarity and pKa of compounds.
Resistance-developing bacteria to inhibitors have been found recently.
Investigating the expression and alteration of trans-membrane proteins,
which may be distributed via plasmids, may increase knowledge about
the dissemination and evolution of inhibitor-resistant strains.
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TABLE 1 Data on inhibitor classes, inhibitory mechanisms, and current clinical trial status.

Inhibitors Type of inhibitor Type of inhibition Phase trial status Applicability Reference

1 Avibactam DBO Reversible Phase IIIa GNO Lahiri et al. (2013)

2 Clavulanic acid β-Lactam Irreversible Phase IIIa BGNP Sydor and Challis (2012)

3 Captopril Metallo-β-lactam inhibitor Reversible Phase II BGNP Zhao et al. (2021)

4 Durlobactam DBO Reversible Phase III GNO Shapiro et al. (2021)

5 Enmetazobactam Cyclic boronate inhibitor Irreversible Phase III GNO Lang et al. (2022)

6 ETX0282 DBO Reversible Phase I GNO Lahiri et al. (2013)

7 Nacubactam Non-β-lactam Reversible Phase I GNO Lang et al. (2021)

8 Relebactam Non-β-lactam Irreversible Phase IIIa GNO Stachyra et al. (2010)

9 Sulbactam β-Lactam Irreversible Phase IVa BGNP Carcione et al. (2021)

10 Tazobactam β-Lactam Irreversible Phase IVa BGNP Tooke et al. (2019)

11 Taniborbactam Cyclic boronate inhibitor Reversible Phase I GNO Lui et al. (2020)

12 Vaborbactam Cyclic boronate inhibitor Reversible Phase Ia GNO Tsivkovski et al. (2020)

13 WCK-4234 DBO Reversible Preclinical trials GNO Papp-Wallace et al. (2018a)

14 Xeruborbactam Cyclic boronate inhibitor Reversible Phase I BGNP Lomovskaya et al. (2021)

15 Zidebactam DBO Reversible Phase III BGNP Rajavel et al. (2021)

aCurrently used clinically.

GNO, gram-negative organisms; BGNP, both gram-negative and positive organisms.
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