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Numerous missense mutations have been reported in autosomal dominant

polycystic kidney disease which is one of the most common renal genetic

disorders. The underlying mechanism for cystogenesis is still elusive, partly due

to the lack of suitable animal models. Currently, we tried to establish a porcine

transgenicmodel overexpressing human PKD2-D511V (hPKD2-D511V), which is

a dominant-negative mutation in the vertebrate in vitro models. A total of six

cloned pigs were finally obtained using somatic cell nuclear transfer. However,

five with functional hPKD2-D511V died shortly after birth, leaving only one with

the dysfunctional transgenic event to survive. Compared with the WT pigs, the

demised transgenic pigs had elevated levels of hPKD2 expression at the mRNA

and protein levels. Additionally, no renal malformation was observed, indicating

that hPKD2-D511V did not alter normal kidney development. RNA-seq analysis

also revealed that several ADPKD-related pathways were disturbed when

overexpressing hPKD2-D511V. Therefore, our study implies that hPKD2-

D511V may be lethal due to the dominant-negative effect. Hence, to dissect

how PKD2-D511V drives renal cystogenesis, it is better to choose in vitro or

invertebrate models.
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Introduction

As the most common renal inherited disease, autosomal dominant polycystic

kidney disease (ADPKD) affects millions of people across the world. Progressively

enlarged kidneys with numerous fluid-filled cysts are the hallmark of ADPKD, leading

to end-stage renal disease in half of the patients in the sixth decade of life (Torres and

Harris, 2009). ADPKD is also a systemic disorder with extrarenal manifestations, such

as cysts in the liver, pancreas, and spleen, hypertension, cardiac valve malformation,

and intracranial aneurysms (Gabow, 1990). Although many people are afflicted by the

disease, the only treatment available besides renal replacement therapy is performed by

tolvaptan which targets the vasopressin V2 receptor (Torres et al., 2012). However,

tolvaptan was reported causing side effects, e.g., hepatic toxicity and nocturia, and only
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slow down the disease progression (Torres et al., 2017). Thus,

novel therapeutic approaches must be developed to reverse

renal function loss.

Extensive studies on ADPKD have been conducted for

several decades. However, the precise molecular mechanisms

responsible for it are still elusive. Thus far, several genes have

been reported to be associated with ADPKD, of which PKD1

and PKD2 are the main causative genes (Pignatelli et al., 1992;

Kimberling et al., 1993; Mochizuki et al., 1996). PKD1 and

PKD2 encode multiple-transmembrane proteins, polycystin-1

(PC1) and polycystin-2 (PC2), respectively, which form a

heterotetrameric protein complex mediating ion influx in

the plasma membrane and primary cilium by sensing

extracellular mechanical or chemical stimuli (Harris et al.,

1995; Qian et al., 2003). Other than primary cilium, PC2 is

abundant in the endoplasmic reticulum (ER) (Newby et al.,

2002). Initial work suggested PC2 can mediate the influx of

calcium, but contrarily, the recent study shows that the

PC2 channel has a lower permeability to calcium than

potassium and sodium (Koulen et al., 2002; Liu et al.,

2018). A newly published paper by Padhy et al. further

demonstrated that PC2 in the ER is a potassium channel,

which mediates potassium entering the ER and drives calcium

release from the ER (Padhy et al., 2022). Thus, it is essential to

study the relationship between channel activity and disease

phenotype.

Numerous mutations have been deposited in the mutation

database of ADPKD (https://pkdb.mayo.edu/). The PKD2 c.

1532A>T/p.511D>V (hereafter PKD2-D511V for gene and

PC2-D511V for protein) missense mutation, which results

in the replacement of an aspartic acid with valine in the

bottom of S3 of PC2, is one of the most extensively studied

mutations (Koulen et al., 2002). The genetic studies showed

that this mutation impacts the alternative splicing, leading to

aberrantly spliced PKD2 transcripts (Reynolds et al., 1999;

Gonzalez-Paredes et al., 2016). The experiments using

electrophysiological methods find the mutation is a

dominant-negative mutation, which could abolish the

channel activity of PC2 (Ma et al., 2005). In vivo zebrafish

studies on PKD2-D511V transient overexpression resulted in

the tail curvature, which is a reflection of zebrafish with renal

cysts (Feng et al., 2008). Moreover, morpholino targeting

zebrafish pkd2 could not be rescued by the PKD2-D511V

(Pavel et al., 2016), demonstrating the dominant-negative

effect of the mutation. To better characterize the mutation,

in vivo genetic modified animal models are needed. Currently,

only one fruit fly model with transgenic Amo-D627V

(equivalent to human PKD2-D511V) is available to study

the molecular consequence of PKD2-D511V mutation.

However, no dominant-negative effect of the mutation was

noticed in the invertebrate model (Köttgen et al., 2011;

Hofherr et al., 2016). Although rodent models have proven

critical to study the molecular basis of PKD in the past decade,

there is no report on PKD2-D511V modified mouse model

(Happé and Peters, 2014). These results suggest that it is

necessary to establish a vertebrate model with PKD2-D511V

mutation.

Since, the differences in renal anatomy (kidney size and

renal function), and life span, a mouse model may not perfectly

mimic human ADPKD. Thus, pig might be an ideal alternative

to study the disease. Previously, our group constructed a series

of pig models with overexpressed PKD2 and MYC, and PKD1

monoallelic knockout (He et al., 2013; Ye et al., 2013; He et al.,

2015). This study aims to construct a transgenic pig model with

the human PKD2-D511V gene to mimic the ADPKD genotype.

Using somatic cell nuclear transfer (SCNT), we obtained six

cloned piglets, of which only one cloned pig survived the

perinatal stage. Genetic testing showed that the five demised

piglets all have hPKD2-D511V transgene, while the survived

contained a truncated structure. This study is novel on the

PKD2-D511V vertebrate model, indicating the mutation might

be lethal for vertebrates.

Materials and method

Plasmids

The plasmids pCAG-WThPKD2-3 × FLAG-floxP-neo-

pH11 (hereafter pCAG-WT-hPKD2) and pCAG-muhPKD2

(c.1532A > T/p.511D > V)-3 × FLAG-floxP-neo-pH11

(hereafter pCAG-MU-hPKD2) were constructed in our

previous work (Zhang et al., 2020). The pX330-pH11

plasmid, encoding Cas9 protein and gRNA targeting pH11

locus, was adapted from a previous report using primer

annealing and ligation (Ruan et al., 2015). For zebrafish

injection and cell transfection, these plasmids were

extracted using the EndoFree Midi Plasmid kit (Tiangen,

Beijing, China).

Plasmids injection of zebrafish embryos

The plasmids were diluted to 100 ng/μl with 10%

phenol red before injecting into the yolk of fertilized one-

cell stage zebrafish eggs. Mock-injected was performed using

an equal volume (1 nL) of phenol red solution. The survived

fertilized eggs were counted daily, and the dead embryos

were discarded. At 5 dpf, the morphological characteristics

of zebrafish seedlings were observed under the

microscope. The seedlings with typical characteristics were

picked for photography. Three biological replicates were

performed. The total number of survived zebrafish

with mock-injection, and injection of pCAG-WT-

hPKD2 and pCAG-MU-hPKD2 were 179, 251, and 82,

respectively.
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Generation of transgenic pigs

A million primary CEMP embryonic fibroblast cells were

cultured in DMEM (Gibco, Thermo Fisher, Shanghai, China)

with 10% fetal bovine serum (Gibco, Thermo Fisher, Australia)

at 37°C in a humidified incubator. On the day of transfection, the

fibroblasts were digested and mixed with the 3 μg pX330-pH11 and

3 μg pCAG-MU-hPKD2. The transfection was performed using the

Lonza Nucleofector (V4XP-3032, Lonza, Germany) with the CA-

137 program. Then, the transfected cells were recovered for 24 h in a

6-well-plate before seeding in the 96-well plates at a density of

200 cells/well. 500 ng/μl Geneticin (Thermo fisher, Shanghai, China)

was added to eachwell, and positively selected cells were subcultured

to the 24-well-plates after 7–10 days. After that, the cells were split

into two aliquots, which were then subjected to PCR identification

and cryopreservation. The primers for the identification are detailed

in the Supplementary Table S1. Somatic cell nuclear transfer was

conducted using the pooled positive cells according to the previously

published method (Supplementary Data S1) (Wei et al., 2008). A

total of 7 surrogate sows were chosen and received an average of

300 reconstructed embryos. After 121–123 days, the cloned piglets

were delivered naturally.

Genotyping of cloned piglets

Genotyping of cloned pigs was carried out using the same

primers to identify positive transgenic cells, except that all the

PCR amplified fragments were subjected to sanger sequencing.

Quantitative real-time polymerase chain
reaction and western blotting

Total RNAwas isolated from the skin and kidney tissues using

the TRIzol Reagent (Tsingke, Beijing, China) according to the

manufacturer’s instructions. The RNA was reverse-transcribed

(Vazyme, Nanjing, China) following the manufacturer’s

instructions, using the HiScript III Reverse Transcriptase

(Vazyme, Nanjing, China) to perform the quantitative real-time

polymerase chain reactions (qRT-PCR). The primers used in our

study were listed in the Supplementary Table S1.

Membrane protein was extracted from the kidney tissues by

the membrane and cytosol protein extraction kit (Beyotime,

Shanghai, China) for western blotting. Membrane protein was

subjected to 8% SDS-polyacrylamide gel electrophoresis. The

separated proteins were transferred to PVDF membranes. The

membranes were blocked with 5% skimmed milk at 37°C for 2 h,

and incubated overnight with diluted primary antibodies against

Polycystin-2 (D-3) (PC-2) (1:1000, E20, Santa Cruz

Biotechnology, Dallas, TX, United States), DYKDDDDK Tag

(FLAG) (1:1000, M2, Sigma-Aldrich, Shanghai, China), followed

by goat anti-rabbit IgG (H + L)-HRP (1:5000, BIOKER,

Hangzhou, China) and goat anti-mouse IgG (H + L)-HRP (1:

5000, BIOKER, Hangzhou, China). An image vertical overflow

drain (VCD) gel imaging system was used to determine the

optical density (OD) of the protein bands. Finally, the relative

abundance was calculated as the ratio of the OD of each protein

to the OD of Ponceau S (Beyotime, Shanghai, China) stain.

Histological examination of cloned piglets

The sample of kidney tissues was fixed with 4%

paraformaldehyde, dehydrated, and immersed in transparent

wax. Next, the sections were sliced from the prepared paraffin

blocks. Then, these sections were stained with hematoxylin and

eosin. Antibodies for PC-2 (1:100, E20, Santa Cruz

Biotechnology, Dallas, TX, United States) and FLAG (1:100,

M2, Sigma-Aldrich, Shanghai, China) were used for

immunohistochemistry.

RNA sequencing

RNA-seq experiments were carried out by Novogene (Beijing,

China) using RNA extracted from the porcine kidneys. Following

the manufacturer’s recommendations, sequencing libraries were

built using the NEBNext UltraTM RNA Library Prep Kit for

Illumina (NEB, United States), and index codes were added to

attribute sequences to each sample. According to themanufacturer’s

instructions, TruSeq PE Cluster Kit v3-cBot-HS (Illumina,

United States) was used to cluster the index-coded samples on a

cBot Cluster Generation System. The library preparations were

sequenced on an Illumina Novaseq 6000 platform, and 150 bp

paired-end reads were generated. Next, the cDNA sequence of

human PKD2 was inserted into the Sus scrofa reference genome

(http://ftp.ensembl.org/pub/release-107/fasta/sus_scrofa/cdna/)

before indexing the reference. Salmon was used to align reads to the

reference genome and quantify gene expression (Patro et al., 2017).

DEGs were screened using the “DESeq2” package (Love et al., 2014)

in R software (version 4.1.2) with the cutoff |Log2 fold change| >
1 and adjusted p-value < 0.05.

The principal component analysis (PCA) was performed by

the bioladder cloud platform (https://www.bioladder.cn/) using

the whole genome expression profile. The volcano and bubble

charts were exported by the “ggplot2″ package (Kolde, 2015;

Gómez-Rubio, 2017). The heatmap was exported by the

“pheatmap” package (Kolde, 2015).

Gene ontology functional enrichment
analyses

Gene ontology (GO) analyses were performed using the

identified DEGs by the Database for Annotation, Visualization
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and Integrated Discovery (DAVID) with default parameters

(https://david.ncifcrf.gov/) (Jiao et al., 2012).

Statistics

Data were presented as mean ± standard errors of the mean

(SEMs). For comparing two groups, either t-test or Mann-

Whitney test was used. Pearson’s chi-square test was utilized

for comparing category data, and the resulting p-values were

adjusted with the FDR approach. The type I error was set as 0.05.

Results and discussion

By accessing the PKDmutation database (https://pkdb.mayo.

edu/), there are currently 2600 germline mutation records.

However, no mutation hotspot has been identified in both

PKD genes, indicating that ADPKD mutation is quite family-

specific (Rossetti et al., 2001; Gout et al., 2007). Thus, it is

unrealistic to establish a representative animal model to study

the underline molecular mechanisms. Numerous rodent models

have been generated to mimic ADPKD; however, most are null

mutationmodels (Happé and Peters, 2014). Additionally, pig and

monkey ADPKD models have been reported using the same

strategy by knocking out PKD1 (He et al., 2015; Tsukiyama et al.,

2019; Watanabe et al., 2022). Moreover, approximately 1/3 of the

mutations deposited in the database are missense mutations,

which might be crucial to understand the disease’s etiology. One

of the established missense mutation models is the PKD1-

R3277C mutation, which has been widely used as the slow

progression model of ADPKD (Hopp et al., 2012). Here, we

intended to construct a mini-pig model to study the consequence

of another missense mutation PKD2-D511V.

Overexpression of hPKD2-D511V resulted
in tail curvature of zebrafish

Since there is currently no published PKD2-D511V vertebrate

model to our knowledge. In addition, in vivo study demonstrated

that PKD2-D511V is a dominant-negative mutation related to

ion influx. Therefore, generating a porcine model expressing

PKD2-D511V is risky. The overexpression of the plasmids

pCAG-WT-hPKD2 and pCAG-MU-hPKD2 resulted in the

enrichment of ADPKD-related pathways in a pig kidney cell

line (Zhang et al., 2020). To further prove that hPKD2-D511V

would be functional in vivo and test the consequence of

overexpressing the mutant form, the plasmids are injected

into the one-cell stage of zebrafish. Unlike other reports,

FIGURE 1
Overexpression of hPKD2-D511V resulted in tail curvature of zebrafish. (A) Statistical analysis of the percentage of tail curvature zebrafish shows
a more severe phenotype in zebrafish injected with the pCAG-MU-hPKD2. (B) Statistical analysis of the percentage of pericardial edema zebrafish.
(C) The morphological observation of zebrafish with pCAG-MU-hPKD2 and pCAG-WT-hPKD2 injection. The arrows indicate tail curvature, and the
arrowheads indicate pericardial edema.
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FIGURE 2
Overexpression of hPKD2-D511V resulted in postnatal deaths of the pigs. (A) The schematic representation of insertion of the transgene vector
to pH11 safe harbor by the non-homologous end joining mediated targeted insertion. (B) Photos of newborn cloned pigs. (C) The results of PCR
identification. (D) Sequencing analyses of cloned pigs using primers PKD2Tg1-F/R. (E) The mRNA levels of hPKD2 in the skin tissues of different
cloned pigs. (F,G)Western blot analysis of FLAG and PC-2 in the cloned pig kidney tissues. Ponceau S staining was used as a loading control in
the measurements. (H) The mRNA levels of hPKD2 in the kidney tissues of different cloned pigs. The relative mRNA expression and membrane
protein expression levels from the WT group were used as the reference values, and * indicates that there were significant differences between the
two groups. Results were expressed as mean ± SEM (n = 3).
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plasmids, not mRNA, were used in our experiment to extend the

expression period of hPKD2. Similar to previous publications

(Feng et al., 2008; Pavel et al., 2016), hPKD2-D511V resulted in a

more severe tail curvature percentage than WT hPKD2 injection

(Figure 1). Another feature observed is that the hPKD2-D511V

injected zebrafish had a higher ratio of pericardial edema,

implying that heart development was compromised (Figures

1B,C). Zebrafish with induction of acute kidney injury or

disturbance of genes related to cilia displayed pericardial

edema and ventrally curved tail (Rbaibi et al., 2012; Lee et al.,

2015; Wen et al., 2018; Xie et al., 2019). Thus, our zebrafish

experiments indicated that the constructed pCAG-MU-

hPKD2 vector might be functional in vivo.

Efficient generation of transgenic pigs for
hPKD2-D511V

To precisely analyze the in vivo function of PKD2-D511V,

transgenic pigs were created with hPKD2-D511V. To avoid

position-effect in transgenic animals, the non-homologous end

joining mediated targeted insertion was adapted to insert the

transgene vector into the pH11 safe harbor (Ruan et al., 2015;

Zheng et al., 2017). Using this method, Cas9 protein could cut the

targets both in the plasmid and genomic DNA. Theoretically, the

linearized plasmid could integrate into the pH11 site of the pig

genome. Nevertheless, the linearized plasmid could also integrate

into other genomic locations akin to conventional transgenesis

(Ju et al., 2015). To preclude the random insertion events, several

pairs of primers were designed. Two pairs of upstream and

downstream primers could amplify the intended targeted

insertion sequence, as shown in Figure 2A. If the vector was

inserted reversely, a different combination of these primers could

also detect the event (Supplementary Table S1).

The limited dilution method was first utilized for screening

the transgenic cells. In this case, if the colonies were formed, all

the cells should be derived from the same single cell with an

identical genotype. However, due to the status of the available

CEMP primary fibroblasts, no cell colonies were formed in our

initial screen. Thus, 200 cells/well are seeded to circumvent the

problems of obtaining transgenic cells, which would inevitably

contain cells with different genotypes. After screening,

16 colonies were secured. PCR identification showed that they

all contained transgenic vectors (Supplementary Figure S1).

Colonies #3 and #5 were chosen for subsequent SCNT,

because they had the intended targeted insertion event, which

is presented in Figure 2A. Three batches of embryo transfer were

conducted serially; however, only the first batch of embryo

transfer resulted in the pregnancy of 2 surrogate sows, which

finally delivered 4 and 2 piglets (labeled from MU-hPKD2-01 to

FIGURE 3
Histological examination of cloned piglets (A,B)Optical microscopy observation of the kidney tissues in the MU-hPKD2-02 and WT pigs. (C,D)
Immunohistochemical characterization of the kidney tissues in the MU-hPKD2-02 and WT pigs. (a and c) MU-hPKD2-02. (b and d) WT pigs. (a,b)
renal cortex. (c,d) medulla.
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-06), respectively. We found that MU-hPKD2-01, 03, 04, and

05 died immediately after birth, while MU-hPKD2-02 died at P1

(Figure 2B). Autopsies showed that the cloned piglets had hepatic

congestion, splenomegaly, enlarged pancreas, and lung

congestion (Supplementary Figure S2). Only MU-hPKD2-

06 survived to date. PCR and sequencing analyses revealed

that of the 6 cloned piglets, only MU-hPKD2-02 contained

targeted insertion of the transgene in the pH11 locus, while

the others were randomly transgenic events (Figures 2C,D).

Interestingly, the survived MU-hPKD2-06 contained a 5′
truncated hPKD2, which was validated by qRT-PCR using

skin tissues with comparable hPKD2 levels with the WT

piglets (Figure 2E). Thus, the transgenic hPKD2 might be

disrupted in the survived piglet.

FIGURE 4
RNA-seq analysis of pig kidneys. (A) Principal component analysis (PCA) of merged RNA-seq data indicated the separation of the hPKD2-D511V
group (MU-hPKD2-01-05) and theWT group (WT-hPKD2-01-04). (B) The Heatmap of RNA-seq data with the hPKD2-D511V group (MU-hPKD2-01-
05) or theWT group based on the Log2 intensity. (C) Volcano plots showing the adjusted p-values and the log2 fold change (FC) values of genes in the
hPKD2-D511V group (MU-hPKD2-01-05) versus the WT group (WT-hPKD2-01-04). DEGs are indicated by the red or blue dots. (D,E) Bubble
plots of significant gene ontology (GO) (biological processes) terms enriched in genes from the DEG sets (upregulatedDEG for D and downregulated
DEG for E) of the two genotypes. (F) The TPM of hPKD2 and pPKD2 in hPKD2-D511V group (MU-hPKD2-01-05) and WT group.
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Next, the kidneys of the demised pigs were harvested. qRT-

PCR and western blotting were then performed to see whether

hPKD2 was elevated in these transgenic pigs. As shown in

Figures 2F–H, the transgenic vector could encode the hPKD2-

D511V in the kidneys at both the mRNA and protein levels.

Contrary to the readily detectable hPKD2 expression, no

malformation was noticed in the kidney sections, indicating at

least that hPKD2-D511V did not affect normal kidney

development (Figures 3A,B). Furthermore, immunohistochemical

analyses showed increased PC2 in the epithelia of renal tubules when

compared to age- and gender-matched WT pigs (Figures 3C,D).

These results indicated that the hPKD2-D511V overexpression did

not elicit the cystic phenotype in newborn piglets. Similar

phenomena were also uncovered in our transgenic pigs

overexpressing MYC and pig PKD2, in addition to some rodent

models (He et al., 2013; Ye et al., 2013; Cai et al., 2014; Li et al., 2015),

making it still divisive whether overexpression model is an

explanation to ADPKD (Nagao et al., 2012).

RNA sequencing reveals the enrichment of
ADPKD-related pathways

The kidneys were subjected to RNA-seq due to the lack of renal

cystic phenotype to see whether disease-related pathways were

disturbed. Four age- and gender-matched WT CEMP piglets were

sacrificed, and kidneys were harvested for RNA-seq. The principal

component analysis (PCA) showed that overexpression of hPKD2-

D511V significantly changed the transcriptome compared with the

WT group (Figure 4A), which was further confirmed by the

heatmap and clustering analysis (Figure 4B). Meanwhile, the

volcano plot visualized many differentially expressed genes

(DEGs), including 449 upregulated genes and

389 downregulated genes (Figure 4C). GO analysis shows

several ADPKD-related biological processes were enriched in

our transgenic pigs, e.g., Wnt, MAPK, EGF, JAK-STAT, cell

proliferation, apoptosis, and migration (Figures 4D,E) (Bhunia

et al., 2002;Wei and Liu, 2002; Ma et al., 2005; Lal et al., 2008). The

EGF-mediated ion flux could be activated when overexpression of

WT hPKD2 in a cell line (Ma et al., 2005). Moreover, this

observation could not be replicated when overexpression

hPKD2-D511V. Our analysis discovered that seven genes were

significantly upregulated in hPKD2-D511V pig kidneys

(Supplementary Table S3), validating the relationship between

PKD2-D511V and the EGF pathway. One of the pathological

hallmarks of ADPKD is massive transcriptomic dysregulation,

including EGFR pathway. Some of the major signaling pathways

initiated by EGFR activation, and then dependent on the

recruitment and binding of specific signaling proteins to the

phosphorylated tyrosine residues on the carboxyl termini of

EGFR receptor molecules. Further regulate cell function

including cell growth, proliferation, migration, differentiation,

and apoptosis (He et al., 2013). Besides, the heart development

term is also enriched, which might be used to explain the

pericardial edema in the zebrafish injected with MU-hPKD2

(Figure 1B). In accordance with qRT-PCR results, the RNA-seq

also validated elevated exogenous hPKD2 transcripts and unaltered

endogenous pPKD2 levels in the transgenic pigs (Figure 4F).

Conclusion

The current study showed that hPKD2-D511V resulted in

more tail curvature and pericardial edema in zebrafish

experiment, and the hPKD2-D511V as a dominant-negative

mutation might be lethal in a transgenic pig model. Out of

the six cloned piglets, only one survived; moreover, the survived

one contained a truncated form of the transgene that would not

be expressed at the mRNA level (Figure 2E). Therefore, to study

the molecular mechanism of PKD2-D511V driving cystogenesis

in human patients, other approaches, such as transient

expression in zebrafish embryos or the construction of non-

invertebrate models, should be considered.
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