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Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal lung disease with

limited treatment options. N6-methyladenosine (m6A) is a reversible RNA

modification and has been implicated in various biological processes.

However, there are few studies on m6A in IPF. This project mainly explores

the prognostic value of m6A-related genes as potential biomarkers in IPF, in

order to establish a set of accurate prognostic prediction model. In this study,

we used GSE28042 dataset in GEO database to screen out 218 m6A-related

candidate genes with high IPF correlation and high differential expression

through differentially expressed gene analysis, WGCNA and m6A correlation

analysis. The genes associated with the prognosis of IPF were screened out by

univariate Cox regression analysis, LASSO analysis, and multivariate Cox

regression analysis, and the multivariate Cox model of prognostic risk of

related genes was constructed. We found that RBM11, RBM47, RIC3,

TRAF5 and ZNF14 were key genes in our model. Finally, the prognostic

prediction ability and independent prognostic characteristics of the risk

model were evaluated by survival analysis and independent prognostic

analysis, and verified by the GSE93606 dataset, which proved that the

prognostic risk model we constructed has a strong and stable prediction

efficiency.
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1 Introduction

Pulmonary fibrosis (PF) is a chronic, progressive tissue repair response, which leading

to irreversible scarring and lung remodeling (King et al., 2011). PF can occur secondary to

certain predisposing factors or diseases, such as radiation (He et al., 2019), asbestos (Pira

et al., 2018), silica (Cao et al., 2020), drugs (Della Latta et al., 2015), autoimmune diseases

(Fischer and Distler, 2019), etc. However, some patients with PF without a clear cause,

which is called idiopathic pulmonary fibrosis (IPF). IPF is a chronic, age-related
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interstitial lung disease (ILD) characterized by excessively

deposition of extracellular matrix (ECM) protein and

irreversible loss of lung function, causing progressive

respiratory failure (Richeldi et al., 2017; Barratt et al., 2018).

The pathogeny of IPF is still unknown, but it likely related to

heredity and environment. There are large regional differences in

the incidence of IPF, ranging from 0.35 to 1.30 per

100,000 individuals in Asia–Pacific countries, 0.09 to 0.49 per

100,000 individuals in Europe, and 0.75 to 0.93 per

100,000 individuals in North America (Maher et al., 2021).

IPF tends to occur in men between 40 and 50 years of age

and has a poor prognosis. The average life expectancy of

untreated IPF patients is only 3–5 years, and most patients die

of acute exacerbations of IPF or respiratory failure. Actually,

acute exacerbations of IPF can occur at any time during the

course of the disease and are associated with extremely high

mortality (Spagnolo andWuyts, 2017). Although two antifibrotic

drugs, nintedanib and pirfenidone, have been shown to delay the

progression of IPF, there is currently no drug that can cure IPF

(Raghu et al., 2015).

Epigenetics usually refers to the heritable modification of

genetic material without changing gene sequence, including

DNA methylation, RNA methylation, histone modification,

chromosome remodeling, etc., which plays an important role

in various diseases and tumors (Berger et al., 2009). At present,

more than 100 kinds of RNA (mRNA, lncRNA, snRNA, etc.)

have been found post-transcriptional modifications, among

which N6-methyladenosine (m6A) is the most common (Yue

et al., 2015; Boccaletto et al., 2018). M6A RNA modification is a

dynamic and reversible post-transcriptional modification

process mediated by m6A WER proteins (methyltransferase

“writers”, demethylase “erasers”, binding proteins “readers”),

which plays a crucial regulatory role in RNA metabolism,

splicing, translation and other processes (Wang et al., 2020).

Previous studies have shown that m6A is widely involved in the

development of various diseases, such as pneumonia, lung

cancer, colorectal cancer, breast cancer, nasopharyngeal

cancer, systemic lupus erythematosus, etc. (Li et al., 2018;

Chang et al., 2020; Yue et al., 2020; Maher et al., 2021; Meng

et al., 2021; Li et al., 2022). For example, Li et al. (2021) found that

SNHG4 promoted LPS-induced inflammation by inhibiting

METTL3-mediated m6A level of STAT2 mRNA. And

research pointed out that overexpressed FTO enhanced the

expression of MZF1 by reducing the m6A modification level

and stability of MZF1 mRNA, thereby promoting the

development of lung cancer (Liu et al., 2018). Similarly,

enhanced activity of methyltransferase METTL3 increased the

m6A modification level of JUNB mRNA and accelerated the

progression of TGF-β-induced lung adenocarcinoma (LUAD)

(Wanna-Udom et al., 2020). These studies indicated that RNA

methylation regulators could affect the development of the above

diseases by regulating the m6A modification of RNA. M6A-

related genes can also be used as diagnostic and prognostic

markers for lung diseases. For example, studies found that

m6A-related genes (EGFR, RFXAP, KHDRBS2, ADAMTS6,

etc.) were determined to be associated with overall survival

(OS) in patients with LUAD, in which RFXAP and

KHDRBS2 exhibited independent prognostic value (Sun et al.,

2021). Additionally, Jia et al. (2022) showed that three m6A-

related genes (FAM71F1, MT1E, andMYEOV) were identified as

prognostic genes in Lung Squamous Carcinoma (LUSC).

However, there are few reports on m6A methylation

modification in the occurrence and development of IPF.

Therefore, it is of great significance to explore m6A-related

genes and construct IPF-related prognostic risk model to

assist in judging the progression and prognosis of IPF.

Weighted gene co-expression network analysis (WGCNA) is

a comprehensive analysis technique based on biological network,

which can identify a class of genes (or proteins) that are co-

expressed, and cluster genes with similar expression patterns

through algorithms into different modules, analyze the

association between modules and characteristic traits or

phenotypes, use clustering modules to associate with

phenotypes to build a co-expression network, and explore the

core genes (or proteins) in the modules, so as to provide ideas for

exploring the molecular mechanism of diseases (Presson et al.,

2008; Yin et al., 2018). Compared with microarray and high-

throughput sequencing analysis, WGCNA is suitable for multiple

statistical tests to analyze the correlation between genes and avoid

losing the trend information of genes according to a fixed

threshold screening.

The Cox proportional hazards model is essentially a

regression model commonly used in medical research statistics

to study the association between a patient’s survival time and one

or more predictor variables (Cox, 1972). It is applicable to

quantitative predictor variables and categorical variables. It

mainly includes univariate and multivariate Cox regression

analysis. Univariate Cox analysis is usually used to remove

collinearity, but may lead to synergistic effects caused by other

variables, so multivariate Cox regression is performed to correct

other factors, which is often used for data modeling in survival

analysis (Huang and Liu, 2006; Li et al., 2016).

In this paper, the microarray data GSE28042 was

downloaded from the Gene Expression Omnibus (GEO)

database, and the gene expression profiles of peripheral blood

mononuclear cell (PBMC) and the corresponding clinical data of

75 IPF samples and 19 normal samples were obtained. Through

the analysis of differentially expressed genes, WGCNA and m6A

correlation analysis method, a group of m6A-related candidate

genes with high IPF correlation and differential expression were

screened. The genes associated with the prognosis of IPF were

screened out by univariate Cox regression analysis, LASSO

analysis, and multivariate Cox regression analysis, and the

multivariate Cox model of prognostic risk of related genes

was constructed. Finally, the prognostic predictive ability and

independent prognostic characteristics of the risk model were
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evaluated by survival analysis and independent prognostic

analysis, and verified by GSE93606 dataset, which is intended

to provide a basis for prognostic prediction of IPF patients

(Figure 1).

2 Materials and methods

2.1 Data collection and processing

First, we searched the GEO database (https://www.ncbi.

nlm.nih.gov/geo/) for keywords such as “idiopathic

pulmonary fibrosis”, “survival”, “blood”, etc. Then, by

combining samples for survival information, we eventually

included the GSE28042 and GSE93606 datasets into the study.

GSE28042 was used as the experimental dataset and

GSE93606 was used as the validation dataset. The

GSE28042 dataset contains the gene expression profiles of

peripheral blood mononuclear cell (PBMC) and their

corresponding clinical data of 75 IPF patients and

19 healthy people. The probes were converted to

corresponding gene symbols by referring to the annotation

information of the GPL6480 [Agilent-014850 Whole Human

Genome Microarray 4 × 44K G4112F (Probe Name version)]

platform. The GSE93606 dataset contains peripheral whole

blood gene expression profiles and corresponding clinical data

of 60 IPF patients and 20 healthy subjects. The probes were

converted to the corresponding gene symbols by referring to

the annotation information of GPL11532 [Hugene-11-ST]

Affymetrix Human Gene 1.1 ST Array [transcript (Gene)

version] platform.

2.2 Construction of weighted gene co-
expression network analysis

In order to explore the modules and genes related to the

clinical characteristics of healthy people and IPF patients, the

data of GSE28042 were analyzed by using the WGCNA package

of R language, and the samples were clustered. In order to ensure

the reliability of the results, we analyzed the samples and

removed the samples that were not clustered, that is, the

outlier samples. In order to ensure that the network conforms

to the scale-free network distribution, the “pickSoftTreshold”

function in the WGCNA package is used to calculate the

correlation coefficient of β value and the mean of gene

connectivity, and the appropriate soft threshold β is selected

to make the network conform to the standard of scale-free

network. Then, the modules were clustered with a minimum

cluster of 100 genes and a cut height of 0.25. Finally, the gene

significance (GS) andmodule membership (MM) were calculated

and correlated with clinical traits. The two modules with the

highest correlation with IPF were selected, and the genes in the

modules were further analyzed. Genes in the co-expression

module have high connectivity and genes in the same module

may have similar biological functions.

2.3 DEG analysis

Using R language (R) 4.0.3 limma package to analyze the

gene differences between the gene expression matrix of

peripheral blood monocytes of healthy people and IPF

patients. Set the screening criteria as |log2FC| >0.5, p < 0.05

FIGURE 1
The workflow for prognostic analysis of m6A-related genes as potential biomarkers for idiopathic pulmonary fibrosis.
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FIGURE 2
WGCNA module construction and selection of modules with high correlation with IPF. (A) Sample clustering diagram (delete 7 outlier
samples by setting the height to 120); (B) Determination of the optimal soft threshold (in the process of module selection, the adjacency
matrix is converted into a topology matrix, and the optimal soft threshold β = 10 is determined); (C) Cluster tree of co-expressed gene
modules (similar genes are grouped into the same module through dynamic splicing and cluster analysis); (D) The correlation
between gene modules and clinical information (The redder the color, the higher the positive correlation; the greener the color, the
higher the negative correlation. Numbers in the figure are Pearson’s correlation coefficient, and corresponding p-values are in
parentheses); (E) The correlation between Black and Pink modules and IPF is represented by scatter plot.
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(correction method is FDR). The up-and down-regulated genes

were represented by mapping volcanoes.

2.4 Screening of differentially expressed
genes associated highly with idiopathic
pulmonary fibrosis

The common genes obtained by WGCNA analysis and DEG

analysis were defined as IPF highly correlated differential genes.

Use the Venn diagram (https://bioinfogp.cnb.csic.es/tools/

venny/index.html) to show all the differentially expressed

genes associated highly with IPF.

2.5 Identification of m6A-related
candidate genes

The cor () and cor. test () functions of R language were used

to calculate the correlation between the expression levels of

23 m6A regulators (METTL3, METTL14, METTL16, WTAPI,

VIRMA, ZC3H13, RBM15, RBM15B, YTHDC1, YTHDC2,

YTHDF1, YTHDF2, YTHDF3, HNRNPC, FMR1, LRPPRC,

HNRNPA2B1, IGFBP1, IGFBP2, IGFBP3, RBMX, FTO,

ALKBH5) and the expression levels of IPF highly correlated

differential genes and calculate the p value (Deng et al., 2018;

Chen et al., 2019). The genes significantly associated with either

m6A regulator (| Pearson R | > 0.5 and p < 0.05) was defined as

candidate genes related to m6A.

2.6 Gene function and pathway
enrichment analysis

The online website Metascap (https://metascape.org/gp/

index.html) was used to analyze the module function and

pathway enrichment of m6A-related candidate genes to

further explore the biological functions of these genes. GO

analysis was used to annotate the functions of genes and their

products in three aspects, including biological process (BP),

molecular function (MF) and cellular component (CC). KEGG

database is a collection of information about genes, proteins,

FIGURE 3
Screening and enrichment analysis of m6A related candidate genes. (A) Volcano map of differentially expressed genes (red are up-regulated
genes, green are down-regulated genes, black are non-differentially expressed genes); (B) The genes screened by DEG and WGCNA were
intersected by Venn diagram, and IPF highly correlated differentially expressed genes were obtained; (C) Pearson correlation analysis was used to
screen out m6A-related candidate genes in IPF; (D) GO and KEGG enrichment analysis were performed for m6A related candidate genes.
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chemical components and their interactions, reactions and

relationship networks to annotate gene functions and

metabolic pathways.

2.7 Construction of prognostic risk model
and independent prognostic analysis

A series of m6A-related prognostic genes were screened by

univariate Cox regression analysis (KM < 0.05, p < 0.05), and

further screened by LASSO regression method. Then, the

prognosis model was constructed by multivariate Cox

regression analysis, and the forest map was drawn. The

Kaplan-Meier method of the “survival” function package was

used to analyze the survival of the screened genes, and the

survival curve was drawn.

The median prognostic risk value was set as a threshold.

According to this threshold, samples from patients with IPF

patients were divided into low-risk and high-risk groups. The

distribution of risk grades between the low-risk group and the

high-risk group was plotted as a scatter plot. The survival status

and survival time of patients in the two different risk groups were

also plotted as a scatter plot. Then the Kaplan-Meier method was

used to draw survival curves for the risk models.

Clinical traits and risk values were compared with survival time

and survival status. Independent prognostic analysis was conducted

to test the prognostic ability of the prognostic risk model, and to

observe whether the prognostic model can be independent of other

clinical traits and whether it has independent prognostic

characteristics of IPF. The R package “timeROC” was used to

draw time-dependent ROC curves and “survivalROC” was used

to verify the accuracy of the prognostic risk model. The ROC curve

was drawn to predict the accuracy of the model, and the accuracy

was judged by the area under the curve.

2.8 Statistical analysis

In this study, the R (version 4.2.0) and RStudio software were

utilized to carry out the statistical analysis and figure preparation.

p-values less than 0.05 were defined as statistically significant.

3 Results

3.1 WGCNA module construction and
selection of modules with high correlation
with idiopathic pulmonary fibrosis

WGCNA analysis was performed using gene expression

matrix. After setting the high degree to 120, 7 outlier samples

(GSM693752, GSM693820, GSM698444, GSM698447,

GSM698445, GSM693751, GSM693823) were removed.

Finally, 71 IPF samples and 16 normal samples were analyzed

later (Figure 2A). When the scale-free topological fitting index

R2 reaches 0.9, the appropriate β value is chosen as 10

(Figure 2B). The dynamic clipping tree algorithm was

provided to segment the modules and construct the network

diagram. Cluster analysis was performed on the modules and the

modules with similarity greater than 0.75 were merged into new

modules, in which the minimum module had 100 genes and the

clipping height was 0.25 (Figure 2C). On this basis, the WGCNA

method based on sequence free network was used to modularize

genes, and the topological overlap matrix between all genes was

described by heat map, and the relationship between sample

features and modules was analyzed. The colors corresponding to

the modules are darkred, green, darkturquoise, brown,

midnightblue, black, lightgreen, royalblue, tan, lightyellow,

cyan, pink, darkgreen, lightcyan, grey60, turquoise, yellow,

blue, greenyellow, grey. Among them, the grey module is the

gene that cannot be clustered to other modules, so it will not be

analyzed in the subsequent analysis (Figure 2D). Key modules

were identified according to the correlation coefficient between

module features and traits, in which the black module had the

highest positive correlation (cor = 0.59, p < 3.4e-130), and the

pink module had the highest negative correlation (cor = 0.48, p <
1.1e-78), and finally determined that the black module and the

pink module were the twomodules with the highest degree of IPF

correlation. A scatter plot was used to represent the correlation

between black or pink modules and IPF, and a total of 2729 genes

were found (Figure 2E).

3.2 The differentially expressed genes
between idiopathic pulmonary fibrosis
samples and normal samples were
screened

Using the limma package in R language to screen

differentially expressed genes, based on |log2FC|>0.5 and p <
0.05 (correction method is FDR) as the threshold, the differential

genes in the IPF patients and healthy population samples in the

GSE28042 dataset were screened. A total of 1292 differentially

expressed genes were found, of which 606 genes were up-

regulated and 686 were down-regulated. The results of

differentially expressed genes were used to construct a volcano

plot, where red represents up-regulated genes, green represents

down-regulated genes, and black represents genes defined as

non-differential (Figure 3A).

3.3 Screening of IPF highly correlated
differentially expressed genes

The 2729 genes in Black and Pink modules obtained by

WGCNA analysis were highly correlated with IPF, and the
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1292 genes obtained by DEG analysis were significantly different.

Therefore, a total of 405 genes were obtained by taking the

intersection of the two genes through Venn diagram, and these

genes were defined as IPF highly correlated differentially

expressed genes (Figure 3B).

3.4 Screening and enrichment analysis of
m6A-related candidate genes

Pearson correlation analysis was used to screen out

218 candidate genes related to m6A from IPF highly

correlated differentially expressed genes (|Pearson R|>0.5, p <
0.05) (Figure 3C). At the same time, the online website Metascap

(https://metascape.org/gp/index.html) was used to analyze the

candidate genes related to m6A. The results showed that the

candidate genes mainly focused on the pathways of herpes

simplex virus type I infection, neutrophil degranulation, cilia

assembly and so on (Figure 3D).

3.5 Construction of prognostic risk model

30 genes associated with IPF prognosis were screened out

from 218 m6A-related candidate genes by univariate Cox

method (Table 1), and 5 genes associated with IPF prognosis

were further screened by LASSO method (Figure 4A). On this

basis, further multivariate Cox regression analysis showed that

RBM11, RBM47, RIC3, TRAF5 and ZNF14 candidate genes had

significant impact on the prognosis of IPF patients (Figure 4B).

These five genes were used to construct a multivariate Cox model

of prognostic risk in IPF patients, riskscore=

(−0.44084*RBM11)+ (0.631579*RBM47) + (−0.01935*RIC3) +

(−0.58291*TRAF5) + (−0.00528*ZNF14) (Table 2). The

expression heat map and survival analysis of these five genes

were displayed (Figures 4C,D). Among them, the survival rate

was low when RBM47 was highly expressed, while the survival

rate was high when RBM11, RIC3, TRAF5, and ZNF14 were

highly expressed. The protein-protein interactions between

5 genes and 23 m6A regulators were analyzed by the STRING

database (https://cn.string-db.org/), and it was found that there

were obvious protein-protein interactions between RBM11,

RBM47 and m6A regulators (Figure 4E). In addition, m6A-

Atlas (http://rnamd.org/m6a/) also showed that the five key

genes had m6A sites, which increased the credibility of the

research content.

3.6 Survival analysis and independent
prognostic analysis

To further verify the predictive ability of the model for

prognosis, we took the median risk value of patients as the

threshold, divided patients into high risk group and low risk

group, and analyzed the survival status and survival time of

patients in two different risk groups (Figure 5A). And through

the survival curve, it was found that the survival rate of high-risk

patients was low, while the survival rate of low-risk patients was

high, which preliminarily demonstrated the correctness of the

model (Figure 5B).

To further assess whether the risk model for these 5 key genes

has independent prognostic features of IPF, we performed an

independent prognostic analysis. We performed univariate and

multivariate independent prognostic analyses for the above five

key genes, respectively, indicating that the risk model of the five

key genes was independent of other clinicopathological

parameters (gender, age) (Figures 5C,D).

By analyzing the prognostic risk model and drawing the ROC

curve, it was found that compared with other factors, the AUC

TABLE 1 The univariate Cox regression analysis demonstrating
30 genes associated with IPF prognosis.

ID HR p value

ACPP 2.819365 0.007666706

ADAP2 3.162390 0.010084724

BEST1 2.767257 0.004894885

BIRC3 0.380656 0.001404292

C19orf59 2.313709 0.003886102

CLEC2D 0.330340 0.002016299

CLK1 0.274811 0.005419468

CLK4 0.201311 0.00567289

DOCK5 3.361948 0.00399794

EFHA2 0.556492 0.007436865

FAM161A 0.571926 0.045819138

FRAT1 2.398299 0.009385627

JDP2 2.102222 0.005909982

KIAA1147 0.418338 0.02874775

KLF12 0.438746 0.007658451

LRBA 0.432600 0.048624944

MIDN 2.336528 0.03280022

RBM11 0.465034 0.0003472

RBM47 3.284265 0.001557636

RIC3 0.410807 0.00061674

SACS 0.520899 0.04322521

SLC38A1 0.327794 0.002712488

SLC8A1 2.434524 0.012780222

TIMP2 2.492529 0.030980637

TRAF5 0.257449 0.000397483

TTC18 0.314697 0.001033081

ZNF14 0.295492 0.000512298

ZNF30 0.380889 0.007052629

ZNF529 0.298259 0.000842414

ZNF573 0.258771 0.001805436
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FIGURE 4
Screening of key genes associated with IPF prognosis. (A) LASSO regression analysis screened 5 genes associated with prognosis; (B)
Multivariate Cox regression analysis of the effect of five key genes RBM11, RBM47, RIC3, TRAF5, ZNF14 on the prognosis of patients with IPF; (C)
Expression levels of key candidate genes in different IPF samples; (D) Kaplan-Meier survival analysis of key genes; (E) Protein interactions between
five key genes and 23 m6A regulators.
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value of riskscore was greater than that of other factors (age and

gender) (Figure 5E). By plotting the time-dependent ROC curve

of the prognostic risk model, it can be found that although the

AUC value in the first year was low (AUC at 1 year = 0.63), the

AUC value gradually increased with time (AUC at 2 years = 0.77,

AUC at 3 years = 0.85, AUC at 4 years = 0.95) (Figure 5F). This

indicates that the accuracy of our prognostic model is good.

3.7 Validation of prognostic risk model

The GSE93606 dataset was used as the validation dataset to

validate our prognostic risk model by survival analysis and

independent prognostic analysis. In the validation dataset,

survival analysis verified that high-risk patients had a low

survival rate, while low-risk patients had a high survival rate

(Figures 6A,B). Multivariate prognostic analysis verified that the

prognostic risk model was independent of other

clinicopathological parameters (gender and age) (Figure 6C).

ROC curve verified the accuracy of the prognostic risk model

(Figures 6D,E). These results indicate that the prognostic risk

model has strong and stable predictive efficiency.

4 Discussion

The etiology of IPF is still not fully understood, but some

studies have shown that its pathogenesis may be related to the

abnormal damage and repair of alveolar epithelial cells,

epithelial-to-mesenchymal transition (EMT), fibroblast-to-

myofibroblast transformation (FMT), and inflammatory

response (King et al., 2011). Worldwide, the incidence and

mortality of IPF are on the rise. Lung transplantation is the

only treatment for IPF that can prolong life expectancy (Kumar

et al., 2018). Unfortunately, IPF patients without lung

transplantation have a short median survival time. M6A is the

most abundant post-transcriptional modification in mRNA and

long non-coding RNA (lncRNA) in most eukaryotes. In addition,

studies have reported that m6A is involved in post-

transcriptional modification, cell differentiation, cell recoding,

cell stress and other processes, and plays an important role in

lung diseases such as lung cancer, pulmonary hypertension and

chronic obstructive pulmonary disease through various

mechanisms. However, there are few studies on m6A in IPF.

Therefore, it is necessary to explore the prognostic value of m6A-

related genes in IPF and establish a set of prediction models for

evaluating the survival time of IPF and improving the prognosis

of patients.

In this study, we downloaded GSE28042 dataset from GEO

database, which included peripheral blood monocyte cell gene

expression profiles and their corresponding clinical information

of 75 IPF samples and 19 normal samples, and analyzed the

obtained data. The gene expression matrix was used for

differential gene analysis, and 606 up-regulated genes and

686 down-regulated genes were screened. The correlation

between each module and the trait was obtained by WGCNA

analysis combined with correlation heat map. The black and pink

modules with the highest positive and negative correlations were

selected, and 405 intersection genes were obtained by intersection

of the DEG and the module genes with the highest correlation in

the selected WGCNA. Then, 218 m6A-related candidate genes

were screened out from the 405 IPF highly correlated

differentially expressed genes by Pearson correlation analysis,

and the enrichment analysis of these genes showed that the above

genes were mainly enriched in herpes simplex virus type Ⅰ(HSV-

1) infection, neutrophil degranulation, ciliary assembly and other

pathways. Studies have shown that chronic viral infections,

mainly herpes virus infections, may contribute to the

development of IPF. And HSV-1 is a kind of herpes virus, it

can enter the alveoli through the respiratory tract and spread

with the blood, resulting in focal necrotizing pneumonia,

followed by diffuse pulmonary fibrosis (Luyt, 2020).

Neutrophil degranulation is one of the important links that

neutrophils participate in the inflammatory response. As

inflammatory cells, neutrophils participate in the progression

of PF by promoting the proliferation of fibroblasts and enhancing

the differentiation of myofibroblasts (Gregory et al., 2015; Klopf

et al., 2021). Cilia is an organelle protruding from the cell surface.

The abnormal structure and function of cilia can cause various

diseases, such as bronchiectasis and reproductive infertility (Jain

et al., 2012; Girardet et al., 2019). Moreover, studies have shown

that pulmonary fibrosis is associated with bronchiectasis

(Fitzgerald et al., 2017). The above relevant findings suggest

that the m6A-related candidate genes screened were closely

related to the occurrence and development of PF. Therefore,

we hypothesized that the m6A-related candidate genes were

associated with IPF.

In order to explore the role of m6A-related candidate genes

in the prognosis of IPF, we screened out 30 genes associated with

patient prognosis by univariate Cox analysis, and then screened

out 5 key genes (RBM11, RBM47, RIC3, TRAF5, ZNF14) by

LASSO analysis and multivariate Cox analysis. The above studies

indicate that the five key genes and 23 m6A regulators are

significantly correlated and modified by their regulation. This

regulation can be direct or indirect, but its specific mechanism is

TABLE 2 The result of multivariate COX regression analysis.

ID COEF HR HR.95L HR.95H p value

RBM11 −0.44084 0.643493 0.357941 1.156848 0.140723

RBM47 0.631579 1.880578 0.748600 4.724255 0.178993

RIC3 −0.01935 0.980836 0.438145 2.195713 0.962464

TRAF5 −0.58291 0.558274 0.184302 1.691076 0.302605

ZNF14 −0.00528 0.994734 0.297910 3.321466 0.993152
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still unknown. The results of protein-protein interaction analysis

also showed that RBM11 and RBM47 had protein-protein

interactions with m6A regulators, and the m6A-Atlas analysis

showed that all five key genes had m6A sites (Tang et al., 2021),

which added confidence to our results. We construct a riskscore

model as an indicator to predict the prognosis of IPF [riskscore =

(−0.44084*RBM11) + (0.631579*RBM47) + (−0.01935*RIC3) +

(−0.58291*TRAF5) + (−0.00528*ZNF14)], and then survival

analysis was performed to assess the effect of the above genes

on the prognosis of IPF patients. The results of single-gene

survival analysis showed that high expression of RBM11,

RIC3, TRAF5, ZNF14 was associated with good prognosis of

IPF, while high expression of RBM47 was associated with poor

prognosis; overall survival analysis of the risk prognostic model

showed that high-risk patients had poor survival, while low-risk

patients had higher survival, which preliminarily indicated the

FIGURE 5
Survival analysis and independent prognostic analysis of the prognostic risk model. (A) Distribution of patients in different risk groups and risk
levels; (B) Overall survival curve of the model; (C) Univariate independent prognostic analysis; (D) Multivariate independent prognostic analysis; (E)
ROC curve of different factors (riskscore, age, gender); (F) ROC curve of different years (1, 2, 3 and 4 years).
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correctness of the model. Simultaneous univariate and

multivariate independent prognostic analyses indicated that

the risk model for these five key genes was independent of

other clinicopathological parameters (gender, age). TRAF5 is

an important signal transducer for a wide range of TNF receptor

superfamily members, and it mainly mediates the activation of

NF-κB pathway (Au and Yeh, 2007). Indeed, study has shown

that overactivation of NF-κB pathway is associated with

apoptosis of alveolar epithelial type II cells (AEC2) and the

development of PF (Yang et al., 2018). Besides, Ben-David

et al. (2016) demonstrated that inflammatory signals regulate

the expression and splicing of RIC3, thereby influencing the

α7 nA-ChR mediated cholinergic anti-inflammatory pathway.

Although the role of inflammation in fibrosis is controversial, it is

still considered to be an important component of IPF. Recently,

Kim et al. (2019) pointed out that RBM47 promotes the EMT of

cells by promoting TJP1-mediated alternative splicing. Globally,

EMT is considered to be one of the key mechanisms of PF. When

FIGURE 6
Validation of the accuracy of the prognostic model using the GSE93606 dataset. (A) Distribution of patients and risk levels in different risk
groups; (B) Overall survival curve of the model; (C) Multivariate independent prognostic analysis; (D) ROC curve of different factors (age and
riskscore); (E) ROC curve of different years (1, 2 years).
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tissues are subjected to various injuries, a series of immune

signals are generated, leading to inflammation and promoting

EMT. In this process, macrophages, neutrophils and other

immune cells are recruited and release proinflammatory

cytokines to maintain inflammation and pulmonary fibrosis

(Salton et al., 2019). In conclusion, we speculate that the

above three genes are closely related to the progression of

pulmonary fibrosis. However, studies on RBM11 and

ZNF14 in lung diseases are rare.

These results indicated that the key genes screened by

bioinformatics methods were highly correlated with the

occurrence and development of IPF, and had a significant

correlation with the prognosis of IPF patients. Therefore, the

above five key genes can provide reference for the diagnosis and

treatment of IPF. We also analyzed the risk model. By drawing

the time-dependent ROC curve of the prognostic model, we

found that the AUC value gradually increased with the increase

of time, indicating that the accuracy of our prognostic model was

good. Finally, the prognostic model was verified by the

GSE93606 dataset. It can be seen that the prognostic model is

also applicable to this dataset, which further confirms that the

prognostic risk model has a strong and stable prediction

efficiency.

However, the study also has certain limitations. First, our results

are based on data from existing public databases. Therefore, a large-

scale, prospective, multicenter study is needed to further validate our

results. Secondly, our study population ismainly fromEuropean and

American populations. Therefore, our findings may not be optimal

for patients from other countries and ethnicities. Finally, the

correlation between some key genes and the development and

progression of IPF has not been confirmed by biological

experiments. In follow-up studies, experimental validation will be

performed to reveal the relationship between key genes and IPF. In

this way, we can determine their suitability as new diagnostic and

therapeutic targets to provide a rationale for the clinical diagnosis

and treatment of IPF.
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