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Black and Hispanic American patients frequently develop earlier onset of

multiple sclerosis (MS) and a more severe disease course that can be

resistant to disease modifying treatments. The objectives were to identify

differential methylation of genomic DNA (gDNA) associated with disease

susceptibility and treatment responses in a cohort of MS patients from

underrepresented minority populations. Patients with MS and controls with

non-inflammatory neurologic conditions were consented and enrolled under

an IRB-approved protocol. Approximately 64% of donors identified as Black or

African American and 30% as White, Hispanic-Latino. Infinium MethylationEPIC

bead arrays were utilized to measure epigenome-wide gDNA methylation of

whole blood. Data were analyzed in the presence and absence of adjustments

for unknown covariates in the dataset, some of which corresponded to disease

modifying treatments. Global patterns of differential methylation associated

with MS were strongest for those probes that showed relative demethylation of

loci with lower M values. Pathway analysis revealed unexpected associations

with shigellosis and amoebiasis. Enrichment analysis revealed an over-

representation of probes in enhancer regions and an under-representation

in promoters. In the presence of adjustments for covariates that included

disease modifying treatments, analysis revealed 10 differentially methylated

regions (DMR’s) with an FDR <1E-77. Five of these genes (ARID5B, BAZ2B,

RABGAP1, SFRP2, WBP1L) are associated with cancer risk and cellular

differentiation and have not been previously identified in MS studies.

Hierarchical cluster and multi-dimensional scaling analysis of differential

DNA methylation at 147 loci within those DMR’s was sufficient to

differentiate MS donors from controls. In the absence of corrections for

disease modifying treatments, differential methylation in patients treated

with dimethyl fumarate was associated with immune regulatory pathways

that regulate cytokine and chemokine signaling, axon guidance, and

adherens junctions. These results demonstrate possible associations of
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gastrointestinal pathogens and regulation of cellular differentiation with MS

susceptibility in our patient cohort. This work further suggests that analyses can

be performed in the presence and absence of corrections for immune

therapies. Because of their high representation in our patient cohort, these

results may be of specific relevance in the regulation of disease susceptibility

and treatment responses in Black and Hispanic Americans.
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Introduction

Multiple sclerosis (MS) is a major cause of non-traumatic

neurologic disability in young adults. The prevalence of MS is

increasing worldwide and is more common in underrepresented

minority groups than previously thought (Weinstock-Guttman

et al., 2003; Cree et al., 2004; Chinea et al., 2012; Caldito et al.,

2018; Wallin et al., 2019). Although non-Hispanic Whites still

have the highest prevalence rate for MS in the US, the

demographics of newly diagnosed MS are also changing. One

study of patients in the US demonstrated that Black American

women had the highest incidence of MS and that Black men had

a similar incidence as compared to White, non-Hispanic men

(Langer-Gould et al., 2013). Analysis of the Gulf War military-

veteran cohort also demonstrated a higher incidence of MS in

Black Americans than other demographic groups (Wallin et al.,

2012).

In addition, multiple studies have demonstrated increased

disease severity and risk of long-term disability in Black

American patients (Cree et al., 2004; Caldito et al., 2018;

Wallin et al., 2018). Although studies in the modern era

suggest that disease modifying treatments and improved

diagnosis are associated with decreased long-term severity of

MS (Sorensen et al., 2020), these observations may not be

relevant to minority populations. These disparities in clinical

outcomes and treatment responses may reflect social and

environmental determinants of health as has been shown for

other chronic diseases.

These determinants of health may impact the epigenome.

One example is the regulation of DNA methylation, which is a

dynamic process throughout the lifetime of an individual (Li and

Zhang, 2014). The rationale for the study of epigenetic

mechanisms in MS is that environmental factors such as

stress, diet, and environmental exposures are all known

modulators of DNA methylation. Some of these epigenetic

mechanisms are associated with chronic inflammatory states

(Celarain and Tomas-Roig, 2020). Most prior studies of global

DNA methylation in MS have focused on individuals of

Northern European ancestry. As in genome wide association

studies (GWAS), the strongest association between MS and

differential DNA methylation occurs at the HLA-DRB locus

(Kular et al., 2018).

The approach in this study was to evaluate differential DNA

methylation in a cohort of patients that are predominantly from

underrepresented minority groups. This cohort is from our

clinical practice at the University of Illinois, Chicago where

approximately 55% of patients identify as Black or African

American and 25% as Hispanic or Latino. The primary goal

of this work was to identify epigenetic markers and related

cellular signaling mechanisms that are associated with disease

susceptibility in our patient population. In addition, challenges

for the characterization of epigenetic biomarkers in a real-world

setting is that most patients are on disease modifying treatments

which may also regulate DNA methylation. An additional goal

was to demonstrate the feasibility of identifying epigenetic

biomarkers of disease and treatment in parallel analyses.

Results

Clinical phenotype variance in the MS
cohort

MS patients (n = 29) and controls (n = 18) were recruited

from our clinical practice at the University of Illinois,

Chicago. A summary of demographic data for each group

is shown in Table 1, and more detailed demographic and

clinical data for each MS patient are shown in Supplmentary

Table S1. Phenotypic variance of this patient cohort is

shown in Supplmentary Figure S1 based on Functional

Systems Scores. More extensive clinical phenotyping

using network analysis has been performed on a larger

number of patients from the same cohort (Howlett-Prieto

et al., 2022).

Differential DNA methylation between MS
and controls at specific probe sites

The next goal was to analyze patterns of differential DNA

methylation between control and MS donors. As described in

Methods, probes were filtered (n = 788,804) and adjusted for

gender, age, and unknown covariates, some of which

corresponded to disease modifying treatment. Adjusted
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M-values were used to generate Mean Difference (MD) plots

(Figure 1) (Su et al., 2017).

Analysis revealed distinct patterns of global differential

methylation (Figure 1A, blue represents loci that are

demethylated in MS versus controls and red increased

methylation). For those DMP’s (differentially methylated

probes for a specific CpG region) with the greatest fold

change differences [Log (FC) > 0.7 or < -0.7, fold change of

greater 5x, FDR<0.01], these differences primarily reflected

decreased methylation of those DMP’s with lower average

M-values (M value <0; blue, left lower quadrant). There were

174 DMP’s that met these criteria in the left lower quadrant, 10 in

the upper left, 1 in the lower right, and 4 in the upper right

(Supplementary Table S2). These results suggested that those

probes with the greatest differences between MS and controls

were associated with demethylation of loci that have relatively

low levels of methylation across all donors.

In contrast, global differential methylation patterns showed a

more normalized distribution of relative increases or decreases of

probe methylation in a comparison of all Black donors versus all

White (Hispanic and non-Hispanic) individuals (Figure 1B).

Global patterns of methylation were also analyzed in

demographic subgroups (Figures 1C,D). These data suggested

that the global pattern observed for MS versus Control

(Figure 1A) occurs in both MS comparator groups but is most

marked in the Hispanic-Latino group (Figure 1C).

Comparison of differentially methylated
probes between racial and ethnic groups

The top 10,000 DMP’s (Supplementary Tables S3–S5) for

each comparator group (MS versus Control for all patients,

MS versus Control Black American only, and MS versus

Control Hispanic-Latino only) were analyzed to assess

common and distinct probe sets (Supplementary Figure

S2). There were 20,518 probes that were present in at least

one of the comparator groups. We further identified

4395 probes unique for the Black American group and

6,025 probes for the Hispanic-Latino group (Supplementary

Tables S6,S7). These data were not adjusted for unknown

covariates.

KEGG pathway analysis was performed on the Top

10,000 DMP’s for each comparator group (Supplementary

Tables S8–S10). In the comparison between all patients, there

was a possible association with sphingolipid and T cell signaling

pathways (FDR = 0.01). In the Hispanic-Latino group, there was

a possible association with apelin signaling (FDR = 0.07) which

was not observed in the other comparator groups. Pathway

analysis of the probes unique for the subgroups

(Supplementary Figure S1) did not yield any statistically

significant associations (FDR>0.18 for the Hispanic-Latino

group and FDR>0.68 for the Black American group).

More robust results were obtained for pathway analysis

following the removal of CpG regions associated with

methylation quantitative trait loci (mQTL). Although known

SNP regions were filtered prior to analysis, many probes remain

in the data set that are associated with genetic variation at CpG

loci (Min et al., 2021). For this reason, we performed analysis on

subsets of probes that are associated mQTL and those that are

not. The MeQTL Epic database (https://epicmeqtl.kcl.ac.uk) was

utilized to identify mQTL associated with probes for the Illumina

Infinium MethylationEPIC array (Villicana and Bell, 2021). In

the comparison between all patients, 6,577 loci were identified

that were not associated with mQTL (Supplementary Table S11).

KEGG pathway analysis revealed 20 pathways potentially

associated with differential methylation in MS (Table 2; p <
0.005, FDR<0.10). These pathways included those related to

immune function such as hematopoietic cell lineage and

chemokine signaling and unexpected associations with

bacterial invasion of epithelia, amoebiasis, and shigellosis.

Notably, no statistically significant associations were found

for viral infections such as Epstein Barr (p = 0.64, FDR = 0.90).

Significant associations were not observed for loci associated

with mQTL or in the demographic subgroup analyses

(FDR>0.10).

Comparison of differentially methylated
probes with genome wide association
studies

The International MS Genetics Consortium (IMSGC)

reported a detailed analysis of currently available GWAS data

identified a list of 551 non-MHC genes considered to be of high

priority that are associated with peripheral immune function and

microglia (International, 2019). We compared this gene list with

our list of top DMP’s (n = 20,518). 43 SNP regions from the

prioritized gene list were present in genes that also contained

DMP’s at other loci (Supplementary Table S13).

TABLE 1 Donor demographics for methylomic studies.

Group N = Age±SD %
Female (%)

%Black or african
american (%)

%White, hispanic
american (%)

%White, non-
hispanic (%)

MS 29 43 ± 11 69 73 24 3

Control 18 43 ± 14 67 50 39 11
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FIGURE 1
Distinct pattern of differential methylation of genomic DNA associated with MS. In the mean difference (MD) plots, average M-values across all
donors is plotted on the x-axis. A negative number on the x-axis indicates decreased methylation for that locus [differentially methylated probe,
DMP; CpG region), whereas as a positive number designates increased methylation as compared to other loci. Log fold change is plotted on the
y-axis. (A)] For the MS versus control comparison, 52,295 DMP’s were included in this analysis (FDR<0.01). An additional 20,000 probes were
randomly selected for inclusion in the plot (gray). Red points designate probes that showed a relative increase in methylation MS as compared to
controls, and blue points represent probes that demonstrated a relative decrease in methylation in the MS group. Two trends were observed. For
those probes with the greatest fold change differences [Log (FC) > 0.7 or < −0.7, fold change of greater 5×, FDR<0.01], these differences primarily
reflected decreased methylation of those DMP’s with lower average M-values (M value <0; blue, left lower quadrant). If a less stringent cut off was
used for fold change, the results suggested a tendency for significant DMP’s that had an averagemethylation score over 50% (AverageM value >0) to
be hypermethylated in MS patients, and significant probes that had an average methylation below 50% to be hypomethylated in MS patients. (B)
These trends were not observed in a comparison of all Black donors versus all White donors. The racial differences showed a more normalized
distribution of relative increases or decrease in probe methylation as compared to the MS versus control analysis. (C,D). MD plots were also
performed in racial and ethnic subgroups. The trend observed in the MS versus control comparison was most pronounced in the Hispanic-Latino
subgroup.
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Analysis of gene regulatory regions reveals
over-representation of enhancer regions
in MS associated DMP’s

Enrichment analysis was performed to determine if there was an

over-representation of enhancer or promoter regions among those

DMP’s that were associated with MS. For these analyses, the top

10,000 statistically significant DMP’s (Supplementary Tables S3–S5;

n = 20,518) in the 3 comparator groups (MS versus Control for All,

Black and Hispanic American subgroups) were compared to the

proportion of gene regulatory elements in the full data set (n =

788,804). The following databases and regions were analyzed:

FANTOM5 (functional annotations of the mammalian genome,

version 5) enhancers (Andersson et al., 2014), ENCODE

(encyclopedia of DNA elements) annotations for promoter and

enhancer regions (Gerstein et al., 2012), TSS200 (transcriptional

start site within 200 bp), and TSS1500 (transcriptional start site

within 1,500 bp.

These analyses demonstrated over-representation of enhancer

regions and reduced frequency of promoter regions in the MS

datasets (Table 3). The most striking findings were for over-

representation of FANTOM5 enhancer regions (odds ratio 3.90,

p < 1e-15, Fisher’s Exact Test for Count Data) and under-

representation of ENCODE promoter regions (odds ratio 0.26, p <

TABLE 2 KEGG pathway analysis of differential methylation in MS at loci not associated with mQTL.

KEGG pathway Description N (loci) DE P.DE FDR

path:hsa04640 Hematopoietic cell lineage 91 29 2.91E-05 0.010

path:hsa05100 Bacterial invasion of epithelial cells 76 32 0.0001 0.020

path:hsa04611 Platelet activation 123 44 0.0003 0.021

path:hsa04062 Chemokine signaling pathway 189 55 0.0003 0.021

path:hsa04071 Sphingolipid signaling pathway 118 42 0.0003 0.021

path:hsa05418 Fluid shear stress and atherosclerosis 137 41 0.0003 0.021

path:hsa04973 Carbohydrate digestion and absorption 45 18 0.0007 0.035

path:hsa05146 Amoebiasis 98 33 0.0009 0.035

path:hsa04725 Cholinergic synapse 112 42 0.0009 0.035

path:hsa05131 Shigellosis 238 64 0.0014 0.044

path:hsa04912 GnRH signaling pathway 91 33 0.0014 0.044

path:hsa04750 Inflammatory mediator regulation of TRP channels 97 36 0.0015 0.044

path:hsa04660 T cell receptor signaling pathway 99 34 0.0021 0.056

path:hsa04014 Ras signaling pathway 228 68 0.0024 0.059

path:hsa04072 Phospholipase D signaling pathway 144 50 0.0026 0.060

path:hsa04668 TNF signaling pathway 109 32 0.0029 0.065

path:hsa05200 Pathways in cancer 515 132 0.0034 0.067

path:hsa05144 Malaria 49 15 0.0034 0.067

path:hsa04722 Neurotrophin signaling pathway 114 38 0.0041 0.076

path:hsa05221 Acute myeloid leukemia 64 24 0.0043 0.076

DE: discrete elements (genes); FDR: false detection rate.

TABLE 3 Cell type composition analysis.

Condition CD8 CD4 NK B cell Monocyte Neutrophil

Control 0.12 ± 0.04 0.13 + 0.03 0.06 + 0.02 0.07 ± 0.04 0.09 ± 0.02 0.56 ± 0.08

Multiple Sclerosis 0.09 ± 0.04 0.10 ± 0.06 0.05 ± 0.02 0.06 ± 0.04 0.10 + 0.02 0.64 ± 0.11

Values are Mean ± standard deviation.
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1e-15) in theMS versusControl (all donors) comparator group. Similar

results were observed in the demographic subgroups.

Cell composition analysis

Because whole blood methylomics were utilized in this study,

some differences may reflect differences in subsets of peripheral

blood cells. For that reason, we also performed cell type

composition analysis. Methylation data from flow sorted

whole blood was used to estimate cell type composition for

each sample (Salas et al., 2018). Although there was a trend

toward a modest increase in neutrophils and a decrease in

CD8 T lymphocytes in the MS group, these differences were

not statistically significant (Table 4, Figure 2). Neutrophils were

the predominant subtype in both MS and controls.

Differential methylation in HLA-DRB1
region is not associated with MS in our
patient population

In addition to these comparisons, we performed analysis of

14 CpG loci within the HLA-DRB1 region which had previously

TABLE 4 Enrichment analysis for DNA regulatory regions.

Group DNA region DMP proportion Odds ratio* p-value*

Top DMP’s in MS
n = 10,000

All DMP’s
n = 788,804

MS versus Control (All) Enhancer FANTOM5 0.1295 0.0332 3.90 <1e-15

Enhancer 0.2101 0.1535 1.47 <1e-15

ENCODE/X450K

TSS200 0.0216 0.0433 0.49 <1e-15

TSS1500 0.0393 0.0631 0.61 <1e-15

Promoter associated 0.0325 0.1298 0.26 <1e-15

ENCODE

MS versus Control (Black or African American) Enhancer FANTOM5 0.0915 0.0332 2.94 <1e-15

Enhancer 0.2000 0.1535 1.38 4.33e-13

ENCODE/X450K

TSS200 0.0249 0.0433 0.56 <1e-15

TSS1500 0.0461 0.0631 0.72 <1e-15

Promoter associated 0.0362 0.1298 0.25 <1e-15

ENCODE

MS versus Control (Hispanic or Latino) Enhancer FANTOM5 0.0766 0.0332 2.42 <1e-15

Enhancer 0.2053 0.1535 1.42 <1e-15

ENCODE/X450K

TSS200 0.0388 0.0433 0.89 0.026

TSS1500 0.0510 0.0631 0.80 3.78e-07

Promoter associated 0.0442 0.1298 0.31 <1e-15

ENCODE

* Fisher’s Exact Test for Count Data.

Abbreviations: TSS, transcriptional start site; DMP, differentially methylated probe; FANTOM5, functional annotations of the mammalian genome, version 5; ENCODE, encyclopedia of

DNA, elements.
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been shown to be differentially methylated in MS patients

recruited in Scandinavia and Germany (Kular et al., 2018).

Unfiltered and unadjusted M values were utilized for this

analysis because ten of the CpGs had to be retrieved from the

dataset before filtering. Six of them were within known SNPs,

three were known to be cross-reactive, and two (including one of

the cross-reactive probes) were not detected in all samples. Out of

the 19 CpGs in the region identified by Kular et al., 2018, two

were not analyzed here due to being absent from the Infinium

MethylationEPIC bead array chip, and three are not shown here

because they did not show significant methylation differences.

Differential methylation was observed at the remaining

14 loci but did not necessarily indicate disease state

(Figure 3). Four out of 18 control samples were

hypomethylated in this region, whereas 14 out of 29 MS

samples were hypomethylated. These findings primarily reflect

differences in HLA-DRB1 genotype in our patient population.

Hypomethylation in this region (14 MS and 4 controls) likely

signifies that they are HLA-DRB1*15:01 positive.

Identification of gene-level biomarkers by
DMR analysis

The next goal was to identify gene level differences between

MS and controls. The DMRcate package was used to identify

differentially methylated regions (DMR’s) (Peters et al., 2015).

DMR’s contain multiple CpG loci that may be differentially

methylated within a particular gene. This analysis increases

the statistical power. As with the MD plots (Figure 1), the

adjusted M values were used for this analysis and included

corrections for disease modifying treatments.

We first analyzed differences in a comparison of all MS

patients versus all Controls, irrespective of race or ethnicity. This

analysis revealed 10,450 regions of interest (Table S14;

FDR<1.93e-6, HMFDR ≤0.005). Using hierarchal clustering

analysis, a subset of 147 DMP’s (Supplementary Table S15)

within the top 10 DMR’s (FDR<1E-77, HMFDR≤1.15<e-6)
was sufficient to differentiate MS from controls (Table 5;

Figure 4A). Gene regions included: ARID5B, BAZ2B,

CDK2AP1, CLU, CTSZ, RAB34, RABGAP1, SFRP2,

TNFSF12-TNFSF-13, and WBP1L. These genes were not

found to be differentially methylated in a comparison of all

Black American donors versus all White donors (not shown).

ARID5B, BAZ2B, RABGAP1, SFRP2, and WBP1L have not been

previously associated with MS risk, and all are associated with

neoplastic diseases and cellular proliferation.

In the hierarchal cluster analysis, approximately 86% of loci

(123/143) demonstrated relative demethylation in the MS group

as compared to controls. Relative demethylation at these DMR’s

was observed for 9/10 of the gene regions (maximal and mean

differences in M-values, Table 5). Taken together with the

distribution of probes in the MD plot (Figure 1), these results

suggested a tendency toward relative demethylation of DMR’s in

the MS group compared to controls (Table 6).

Multi-dimensional scaling (MDS) was also used to assess

similarities in the DMR datasets of differential methylation based

on disease state (MS versus controls, Figure 4B). As with the

hierarchal cluster analysis, the 143 probes in the top 10 DMR

were sufficient to differentiate MS from controls (Figure 4B). The

goodness of fit (GOF) for this MDS analysis was 0.72.

As described for the analysis of the top DMP’s, we also

performed mQTL analysis of the 143 probes within the top

10 DMR. There were 66 regions associated with mQTL

(Supplementary Table S16) and 77 that were not

(Supplementary Table S17). Hierarchal cluster analysis and

MDS plots are shown in Supplementary Figures S3,S4. The

GOF was 0.71 for those associated with mQTL and 0.74 for

those not. These analyses also showed differentiation of MS from

controls. Plots of the eigenvalues for the MDS plots are shown in

Supplementary Figure S5.

Identification of gene-level biomarkers by
DMR analysis in racial and ethnic
subgroups

DMR analysis was also performed in racial and ethnic

subgroups. In the comparison of MS versus Control in the

Black American subgroup, 3127 regions of interest were

FIGURE 2
Cell composition analysis. The CellCounts2 function in the
FlowSorted.Blood.EPIC package in R software was used to
estimate differential peripheral blood cell counts. No statistically
significant differences were observed between MS and
controls.
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identified (Supplementary Table S18, FDR<1.94e-5). The top

10 DMR’s included 6 regions that were present in the analysis of

all donors (ARID5B, CDK2AP1, CLU, CTSZ, RABGAP1, and

TNFSF12-TNFSF-13) and 4 other regions that reached statistical

significance in the analysis of all donors but that were not in the

top 10 regions (DUSP6, FOXI2, GPX6, and SPI2). The hierarchal

cluster analysis for 72 DMP’s (Supplementary Table S19) within

the top 10 DMR’s is shown in Figure 5A and the MDS plot in

Figure 5B (GOF = 0.81).

In the Hispanic-Latino subgroup, 2285 regions of interest

were identified (FDR<1.01e-10; Supplementary Table S20). The

top 10 DMR’s were: HOXD8, HPS4, KCNIP4, mir124-2,

PTCHD4, PHYHIPL, RAB32, TREML2, UNC5, and

WBSCR17. In the hierarchal clustering analysis of this

subgroup, 55 probes within the top 10 DMR’s was used

(Supplementary Table S21). One control outlier was observed

in the MS cluster (Figure 5C). However, MDS analysis showed

differentiation between MS and controls (GOF = 0.75,

Figure 5D).

Confirmation of DMR results by
pyrosequencing

Three DMR regions (BAZ2B, CLU, and RABGAP1) were

selected for confirmation by pyrosequencing. The common

FIGURE 3
Hierarchal clustering analysis of the HLA-DRB1 region. Differences in methylation were observed at 14 CpG regions within HLA-DRB1 but did
not necessarily correlate with disease state. In the heatmap, MS donors are designated by green, and controls by blue at the top of the heatmap. Blue/
purple designates relative demethylation and orange/red increased methylation at a specific CpG site.
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feature of these regions is that they all contain multiple loci in

close proximity that demonstrated relative demethylation in the

TSS1500 region (1,500 bp upstream of the transcriptional start

site) in the MS group. The regions and assay details are shown in

Table 7. A representative example of the pyrosequencing analysis

is shown for the BAZ2B gene region in Figure 6. The sequences of

interest for the 3 genes (BAZ2B, CLU, and RABGAP1) contain

3 CpG sites, and data were pooled for analysis of each of the

differentially methylated regions. There was a statistically

significant reduction in relative percent methylation at the

CpG sites within each of the analyzed regions for BAZ2B (p <
0.0001), CLU (p < 0.0001), and RABGAP1 (p = 0.0004)

(Table 7).

Identification of gene-level differentially
methylated regions associated with
dimethyl fumarate treatment

Analysis was also performed in the MS subgroup (n = 29) to

compare differential methylation of those patients treated with

dimethyl fumarate (n = 12) versus all other individuals with MS

(n = 17, 8 on glatiramer acetate, 6 on ocrelizumab, 1 on beta-

interferon, and 1 untreated). Probes were filtered as described

above, and adjustments were made for gender, age, race, and

latent variables. However, unlike the prior analyses, disease

modifying treatments were listed as a factor to be preserved.

This analysis showed 1485 DMP’s (Supplementary Table S22)

with an FDR<0.01 (p < 2E-5) and 12,915 with an FDR<0.1 (p <
0.01). KEGG pathway analysis of those probes identified possible

associations with cytokine receptor interactions, adherens

junction regulation, chemokine signaling, and axonal guidance

(Table 8).

Hierarchal cluster and MDS analysis were performed on

77 DMP’s (Supplementary Table S23) within the top 10 DMR’s

(FDR<2.5E-40). These gene regions included: CLASP2, CLU,

DOK3, GPR146, PARVB, PARVG, RAB34, SLC11A2, TAGLN3,

and WBP1L. Four of these genes (CLASP2, PARVB, PARVG,

and TAGLN3) regulate the cytoskeleton, and three of them were

also identified in the top 10 DMR’s for the MS versus controls

comparison (CLU, RAB34, and WBP1L). As shown in Table 8

(maximal and mean differences between groups), all these

regions showed relative demethylation in the DMF group as

compared to those not on DMF. As shown in the heatmap of the

hierarchal clustering analysis (Figure 7A) and in the MDS plot

(Figure 7B), analysis of these regions was sufficient to distinguish

those individuals on dimethyl fumarate versus all other MS

patients (GOF = 0.81 for the MDS analysis).

Discussion

This epigenome-wide association study demonstrated

unique patterns of global and gene level differential DNA

methylation in our MS patient population. To our

knowledge, this study is the first to focus on differential

DNA methylation in an underrepresented population of MS

patients in the United States. Notable findings included

distinct global patterns of differential demethylation in

MS, a preferential association with enhancer regions

rather than promoters, and identification of novel gene

level biomarkers associated with MS and disease

TABLE 5 Top 10 differentially methylated regions (DMR) associated with multiple sclerosis.

DMR Chromosome Start End #CpGs FDR (min
smoothed)

HMFDR Max
difference M

Value
(MSvCon)

Mean
difference M

Value
(MSvCon)

Overlapping
genes

1 chr8 27467783 27470225 14 1.20E-136 2.43E-07 −0.05091 −0.03652 CLU

2 chr17 27044169 27045894 21 6.15E-111 1.79E-05 −0.06709 −0.03536 RAB34

3 chr9 1.26E+08 1.26E+08 14 1.89E-107 9.11E-07 −0.07037 −0.0436 RABGAP1

4 chr10 63807168 63809170 17 1.50E-94 3.11E-06 0.056923 0.040503 ARID5B

5 chr17 7460485 7462249 15 8.03E-94 3.34E-06 −0.05216 −0.02834 TNFSF12-
TNFSF13

6 chr12 1.24E+08 1.24E+08 14 2.76E-90 1.35E-06 −0.06444 −0.03567 CDK2AP1

7 chr20 57581529 57583709 27 1.91E-89 1.58E-05 −0.0482 −0.0146 CTSZ

8 chr10 1.05E+08 1.05E+08 14 8.26E-82 8.14E-07 −0.04491 −0.02297 WBP1L

9 chr4 1.55E+08 1.55E+08 36 1.98E-81 1.97E-05 −0.04727 −0.01471 SFRP2

10 chr2 1.6E+08 1.6E+08 16 6.13E-78 1.15E-06 −0.07885 −0.03049 BAZ2B

DMR: differentially methylated region, CpG: 5′-cytosine-phosphate-guanine-3′, FDR: false detection rate, HMFDR: harmonic mean of individual CpG FDR’s.
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modifying treatments. There was a tendency for many of the

differentially methylated regions to demonstrate relative

demethylation in MS. In addition, pathway analysis

suggested possible associations of epigenetic biomarkers of

cellular differentiation, Shigellosis, and amoebiasis in our

patient cohort.

FIGURE 4
Hierarchal clustering and multi-dimensional scaling (MDS) analysis of differentially methylated regions associated with MS. (A) Hierarchal
clustering analysis was performed on 147 differentially methylated loci within the top 10 differentially methylated regions (Supplementary Table S15).
In the heatmap, MS donors are designated by green, and controls by blue at the top of the heatmap. Blue/purple designates relative demethylation
and orange/red increased methylation at a specific CpG site. Gene regions included: ARID5B, BAZ2B, CDK2AP1, CLU, CTSZ, RAB34, RABGAP1,
SFRP2, TNFSF12-TNFSF-13, and WBP1L. (B) MDS analysis was performed on the same data set and showed a goodness of fit (GOF) of 0.72.
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The most notable observation in the analysis of global

differential DNA methylation in MS was a tendency toward

demethylation of probe regions that demonstrated relatively low

levels of methylation across all donors. Although exceptions

exist, there is a tendency for CpG islands to be

hypomethylated in normal cells and hypermethylated in

neoplastic cells (Bird and Wolffe, 1999; Baylin et al., 2001;

Michal and Wojtas, 2019). Some cancers, such as high-grade

pediatric gliomas, are associated with DNA hypomethylation

(Bender et al., 2013). Many prior studies suggested that

hypomethylated regions in a variety of cancers occur at

introns and intergenic regions (Wilson et al., 2007). More

recent studies in chronic lymphocytic leukemia and other

hematologic malignancies revealed an association of

hypomethylation of promoter regions (Upchurch et al., 2016).

This observation may be most relevant to this study because we

examined whole blood methylomics. Taken together with our

pathway analysis results, these data suggest a possible

relationship between the pathogenesis of MS in some patient

populations and hematological malignancies.

Consistent with those results, we also observed increased

representation of enhancer regions and decreased frequency of

associations with promoters among differentially methylated

probe regions. These differential DNA methylation patterns of

enhancers have been associated with neoplastic transformation,

metastasis of solid tumors, and myelodysplastic diseases (Bell

et al., 2016; Ordonez et al., 2019). In addition, gene level analysis

suggested a pattern of hypomethylation of a subset of genes in

putative promoter regions (TSS1500). For example, one of the

genes analyzed by pyrosequencing analysis, BAZ2B, regulates

chromatin structure and hematopoietic cell development

(Arumugam et al., 2020). These results will need to be

confirmed in larger data sets.

Pathway analysis revealed unexpected associations with

gastrointestinal infections due to bacteria and parasites but

not with viral infection. The specific pathways identified were

for Shigellosis, amoebiasis, and bacterial invasion of epithelia.

Shigellosis may be particularly relevant to our patient population

because frequent outbreaks have been identified in Chicago

(Jones et al., 2006). In addition, one prior genetic study

suggested an association of the Shigellosis pathway with MS

and Crohn’s disease (Restrepo et al., 2016). The possible

association with amoebiasis may be relevant to our Hispanic-

Latino population who have emigrated from Mexico and Central

America and those who have relocated from Puerto Rico.

Although these findings need to be examined in greater detail,

they suggest that prior bacterial and parasitic gastrointestinal

infections may be more relevant to MS susceptibility in our

patient cohort than prior viral infections such as Epstein Barr

Virus (Bjornevik et al., 2022).

Prior studies of differential DNA methylation in MS have

focused primarily on patients of Northern European ancestry

(Kulakova et al., 2016; Kular et al., 2018; Souren et al., 2019;

Kiselev et al., 2021). A prior study demonstrated relative

hypomethylation of the HLA-DRB1 region in MS patients

(Kular et al., 2018). We examined this region in our patient

cohort and observed a subset of individuals that had

hypomethylation of this region, but it did not correlate with

disease state. Although these results may suggest that epigenetic

biomarkers of MS may differ between racial and ethnic groups,

these data likely reflect differences between HLA-DRB1

haplotypes in our patient population. Several other recent

studies of differential methylation in MS have focused on

specific immune cell populations. These include analyses of

CD4+ T lymphocytes (Ewing et al., 2019; Roostaei et al.,

2021), CD8+ T lymphocytes (Li et al., 2017; Deng et al., 2019;

Ewing et al., 2019), monocytes (Ewing et al., 2019; Diniz et al.,

2021), and CD19+ B lymphocytes (Maltby et al., 2018a).

For gene level analysis of differential methylation associated

with MS in our patient cohort, we focused on the top 10 DMR’s:

ARID5B, BAZ2B, SFRP2, WBP1L, CDK2AP1, CLU, CTSZ,

RAB34, RABGAP1, and TNFSF12/TNFSF13. One of these

gene regions, CTSZ, was previously reported to be

hypomethylated in MS in post-mortem brain tissue (Huynh

TABLE 6 Pyrosequencing analysis.

Chromosome Assay ID# Position Strand Name Gene Region CpG#

chr2 PM00685013 160473461 + cg17503977 BAZ2B TSS1500 3

chr9 PM00685139 125795935 + cg14115756 RABGAP1 TSS1500 3

chr8 PM00683935 27469338 + cg13488078 CLU TSS1500 3

Condition BAZ2B CLU RABGAP1

%Methylation %Methylation %Methylation

MS (n = 6) 24.9 ± 2.3** 17.1 ± 1.5** 15.3 + 1.2*

Control (n = 4) 39.6 ± 2.0** 25.6 ± 1.4** 21.2 + 1.4*

*p = 0.004, **p < 0.001.

Frontiers in Genetics frontiersin.org11

Bingen et al. 10.3389/fgene.2022.1058817

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1058817


et al., 2014) and to also be associated with risk of systemic

sclerosis (Zhu et al., 2018). This latter observation may be of

relevance to the current study because Black Americans have a

higher incidence of systemic sclerosis and are at increased risk of

a more severe disease course (Steen et al., 2012; Steen et al., 1963-

1982). One potential mechanism for CTSZ to mediate pro-

inflammatory effects is through increased interleukin 1β
secretion by antigen presenting cells (Allan et al., 2017).

FIGURE 5
Hierarchal clustering and multi-dimensional scaling (MDS) analysis of differentially methylated regions associated with MS in racial and ethnic
subgroups. (A) The top 10DMR’s for the comparison ofMS versusControls for Black Americans included 6 regions that were present in the analysis of
all donors (ARID5B, CDK2AP1, CLU, CTSZ, RABGAP1, and TNFSF12-TNFSF-13) and 4 other regions that reached statistical significance in the analysis
of all donors but that were not in the top 10 regions (DUSP6, FOXI2, GPX6, and SPI2). 72 DMP’s (Supplementary Table S19) within the top
10 DMR’s were used for hierachal cluster analysis. (B)MDS plot showed a GOF = 0.81. (C) In the Hispanic-Latino subgroup, the top 10 DMR’s were:
HOXD8, HPS4, KCNIP4, mir124-2, PTCHD4, PHYHIPL, RAB32, TREML2, UNC5, and WBSCR17. 55 probes within the top 10 DMR’s were used for
hierarchal cluster analysis (Supplementary Table S21). One control outlier was observed in the MS cluster. (D)) MDS revealed a GOF = 0.75.
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Although the other regions have not been shown to be

differentially methylated in prior studies, some of these genes

have been associated with MS in genomic, transcriptomic, and

proteomic studies. For example, CDK2AP1, a cell cycle regulator,

was previously identified as an MS risk allele that correlated with

reduced RNA expression in lymphoblast cells and peripheral

TABLE 7 KEGG pathway analysis of differential methylation with dimethyl fumarate treatment.

KEGG pathway Description N (loci) DE P.DE FDR

path:hsa04060 Cytokine receptor interaction 280 85 0.00043 0.0756

path:hsa04360 Axon guidance 175 90 0.00052 0.0756

path:hsa04520 Adherens junction 70 41 0.00067 0.0756

path:hsa04062 Chemokine signaling pathway 189 79 0.00088 0.0756

DE, discrete elements (genes); FDR, false detection rate.

FIGURE 6
Pyrosequencing analysis of differentially methylated regions. Bead array data were confirmed by pyrosequencing following bisulfite conversion
of the differentially methylated region of interest. In this representative analysis, the region of interest is in the promoter region (TSS1500) of BAZ2B
gene (sequence is at the top of the figure). CpG regions are highlighted in blue, the regions utilized for bisulfite conversion controls are shown in
yellow. For each of the 3 CpG regions analyzed, there was a relative reduction in the %methylation for the MS donor (bottom pyrogram)
compared to the control (top).
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blood mononuclear cells (PBMC’s) (IMSGC, 2010). It was also

identified as a susceptibility gene for MS in the genomic map

IMSGC study (Supplementary Table S13) (International, 2019).

Other studies demonstrated increased RNA expression of CLU, a

calcium binding protein, in peripheral blood from MS patients

(Razia et al., 2022) and increased protein levels in cerebrospinal

fluid (van Luijn et al., 2016). RAB34 (Liu et al., 2022) and the

TNFSF12-TNFSF13 (Krumbholz et al., 2008) have also been

associated with increased MS risk.

The more novel findings in this study were in genes

(ARID5B, BAZ2B, RABGAP1, SFRP2, and WBP1L) that are

associated with cancer risk and cellular differentiation. For

example, ARID5B, has been associated with leukemia (Treviño

et al., 2009), prostate cancer (Davalieva et al., 2015), gastric

cancer (Lim et al., 2014), and endometrial carcinoma

(Kandoth et al., 2013). As discussed above, BAZ2B

regulates chromosome structure, hematopoietic cell

development, and reprogramming of pluripotent stem cells

(Arumugam et al., 2020). RABGAP1 regulates mitosis, cell

migration, and mTOR signaling (Oh et al., 2022). SFRP2 is a

tumor suppressor protein that can induce cell apoptosis, and

differential methylation of its promoter region has been

associated with leukemias and renal cancer (Jost et al.,

2008; Konac et al., 2013; Li and Luo, 2018). WBP1L

regulates proapoptotic pathways in myeloid cell leukemia

(Morishima et al., 2011). Differential methylation of these

5 gene regions further suggests an association between

regulation of neoplasia and cellular proliferation in our

patient population. These epigenetic determinants may be

mediated by environmental exposures that increase the risk

of some cancers and autoimmune diseases (Dor and Cedar,

2018).

This study also demonstrated the feasibility of performing

parallel analyses to detect associations with MS and disease

modifying treatments. This analysis is important because it

may inform treatment decisions based on biomarkers of

medication responders and non-responders. In addition, in

real world practice, monitoring of biomarkers over the

patient’s disease course requires approaches that allow

ongoing disease modifying treatment to continue. In this

study, we focused on differential DNA methylation

associated with dimethyl fumarate treatment because that

group represented the largest treatment cohort in this pilot

study. Analysis of probes within the top DMR’s demonstrated

relative hypomethylation of these loci in the dimethyl

fumarate group. In a prior study of the effect of dimethyl

fumarate in CD4 T lymphocytes, four differentially

methylated loci were observed, SNORD1A, SHTN1,

MZB1 and TNF (Maltby et al., 2018b). We observed

differential methylation of SHTN1 in our comparison of

the top 10,000 DMP’s for the MS versus Control

comparison (Supplementary Tables S5–S7), but not in the

comparison of dimethyl fumarate versus other treatments.

One common feature is that differential methylation of

TNF was observed in that study and in our own. Another

study assessed differential methylation in monocytes and

CD4 T lymphocytes prior to initiation of dimethyl fumarate

and following treatment (Carlstrom et al., 2019). A potentially

important observation between our study and theirs is an

association of differential methylation with cytokine

TABLE 8 Top 10 differentially methylated regions (DMR) associated with dimethyl fumarate treatment.

DMR Chromosome Start End #CpGs FDR (min
smoothed)

HMFDR Max difference
M Value

(DMFvOther)

Mean
difference M

Value
(DMFvOther)

Overlapping
genes

1 chr22 44463707 44465038 10 2.57E-64 0.001067 −0.07046 −0.0306 PARVB

2 chr17 27044169 27045894 21 2.19E-55 0.01804 −0.07319 −0.03276 RAB34

3 chr10 1.05E+08 1.05E+08 14 5.76E-53 0.003279 −0.04699 −0.01822 WBP1L

4 chr3 1.12E+08 1.12E+08 15 1.42E-52 0.007249 −0.04847 −0.02573 TAGLN3

5 chr22 44568203 44568812 9 9.40E-51 0.004387 −0.05 −0.03259 PARVG

6 chr5 1.77E+08 1.77E+08 13 2.84E-50 0.003224 −0.04945 −0.02524 DOK3

7 chr12 51403056 51403966 6 5.95E-48 0.000422 −0.05586 −0.02471 SLC11A2

8 chr7 1094263 1096387 12 2.54E-46 0.004215 −0.04168 −0.02055 GPR146

9 chr8 27467783 27469673 13 1.19E-44 0.0076 −0.04168 −0.02666 CLU

10 chr3 33700962 33701707 9 2.44E-40 0.003399 −0.03639 −0.02407 CLASP2

*12 patients on dimethyl fumarate, 8 on glatiramer, 6 on ocrelizumab, 1 on interferon, and 1 on natalizumab.

DMR, differentially methylated region; CpG, 5′-cytosine-phosphate-guanine-3′; FDR, false detection rate; DMF, dimethyl fumarate; HMFDR, harmonic mean of individual CpG FDR’s.
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pathways, including IL6 and IL17 regulated signaling. In a

study that focused only on global patterns of differential

methylation, INFβ treatment significantly reduced global

methylation in monocytes but not in lymphocyte of MS

patients (Diniz et al., 2021). Additional studies are required

in the future to assess potential biomarkers associated with

other treatments.

This study has several limitations. One is that it is a pilot study

on a limited number of patients from our clinical practice. Further

studies are required with larger numbers of patients. In addition,

some of the findings may reflect regional differences due to unique

environmental exposures, and additional studies are necessary in

other patient cohorts. However, even if some of the differential DNA

methylation are due to regional differences, it is important to identify

FIGURE 7
Hierarchal clustering and multi-dimensional scaling (MDS) analysis of differentially methylated regions associated with dimethyl fumarate
treatment. (A)Heatmap is shown for hierarchal clustering analysis performed on differentially methylated loci within 77 differentially methylated loci
within the top 10 differentially methylated regions (DMR) (Supplementary Table S23). The gene regions are: CLASP2, CLU, DOK3, GPR146, PARVB,
PARVG, RAB34, SLC11A2, TAGLN3, and WBP1L. In the heatmap, dimethyl fumarate treatment is designated by red (n = 12), and controls by
yellow at the top of the heatmap (n = 17). Blue/purple designates relative demethylation and orange/red increasedmethylation at a specific CpG site.
(B) MDS analysis showed a goodness of fit of 0.81.
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those biomarkers associated with geographic location to better

understand disease heterogeneity on a national level. Another

limitation is that this study focused on whole blood methylomics,

and many relevant methylation differences in the CNS may be

missed. However, pathway and gene level analysis, including CLU

and RAB34, revealed associations with axonal regulatory pathways

and gene regions identified in prior studies of CNS tissue (Liu et al.,

2022) and CSF (van Luijn et al., 2016). Our results are consistent

with a prior study that demonstrated the feasibility of detecting CNS

relevant differential methylation in peripheral blood samples. That

study suggested that analysis of peripheral blood samples can detect

approximately 20%–30% of differential methylation observed in live

brain tissue (Braun et al., 2019). In addition, an important feature of

using whole blood methylomics is that it can be assessed using a

minimally invasive approach, which is important for longitudinal

assessments in real world clinical practice. Integrated analysis with

single cell approaches such as RNAseq also can be used to assess the

relevance of differential DNA methylation in specific immune cell

subtypes. An additional limitation of the current study is that HLA

typing and genome-wide genotyping were not performed.

Integrated analysis of these data with methylomics will need to

be performed in future studies of our patient cohort. In addition, it

will be important to analyze the associations of differentially

methylated regions with environmental and social determinants

of health, particularly for those regions not associated with SNP,

eQTL, or mQTL regions.

Despite the limitations of this study, the results allow us to

develop a working model to postulate possible pathobiological

differences of MS susceptibility in select populations. Overall, the

results suggest that DNA hypomethylation of many gene regions

previously associated with neoplastic regulation are associated

with MS susceptibility in Black and Hispanic American patients

in our cohort. Additional studies are required to assess the

relevance of these findings to the proliferation, invasiveness,

and pathogenicity of specific immune cell populations.

Methods

Subjects

This was a cross-sectional, case-control study. 29 subjects

with multiple sclerosis (MS) and 18 controls with non-

inflammatory neurological disease were enrolled

(Supplementary Tables S1). All subjects were followed at the

University of Illinois-Neurosciences Center and were enrolled in

the University of Illinois at Chicago (UIC) Neuroimmunology

Biobank between August, 2018 and October, 2019. The UIC

Neuroimmunology Biobank is approved by the Institutional

Review Board (IRB) of the University of Illinois College of

Medicine. All subjects provided informed written consent at

enrollment.

Inclusion and exclusion criteria

MS donors met the following criteria: 1) age between

18 and 80 years at the time of enrollment, 2) a diagnosis of

relapsing-remitting MS (RRMS) based on the McDonald

criteria 2017 (Thompson et al., 2018), 3) no history of

relapse(s) 30 days prior to the sample collection, 4) no

history of receiving steroids within 30 days prior to the

sample date, 5) no MRI activity within 30 days prior to the

sample collection date (if MRI available), and 6) availability of

the clinical data at the time of sample collection. The control

group met these criteria: 1) between 18 and 80 years at the

time of sampling, 2) presentation with a neurological

complaint other than a neuro-inflammatory or

neurodegenerative disorder, 3) no history of a recent

ischemic stroke within the 6 months prior to the sample

date, 4) no history of a systemic autoimmune disease, and

5) ambulatory without assistance at the time of sampling.

Exclusion criteria for both MS and control subjects were: 1)

failing to meet the inclusion criteria or 2) being on an

immunomodulating or immunosuppressant agent other

than the disease modifying treatments for MS within

6 months prior to the sample date.

Whole blood methylomics of
genomic DNA

Whole blood genomic DNA (gDNA) was isolated from

whole blood using EZ1 Advanced XL automated instrument

(Qiagen Cat. No. 9001875) using EZ1&2 DNA blood 350 ul kit

(Qiagen Cat. No.951054). Infinium MethylationEPIC bead

arrays (Illumina) were utilized to characterize whole blood

genomic DNA (gDNA) methylation of MS patients and

controls Samples were randomized on the chip. All samples

had very high CpG detection rates, and, therefore, none needed

to be removed from the analysis.

Normalization and filtering

Analysis was performed in R software (version 4.0.3). The

session information and packages utilized are shown in

Supplementary Table S24. Data were normalized using the

preprocessQuantile function from the minfi R package (Aryee

et al., 2014). Probes were filtered and removed from analysis for

low detection value in one or more samples (4,726 probes), sex

differences (19,072 probes on the X and Y chromosomes), CpG

sites associated with known SNP’s (single nucleotide

polymorphisms; 28,567 probes), and probe cross-reactivity

(24,690 probes) (Chen et al., 2013). 788,804 probes remained

for further analysis.
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Linear model of differential methylation

Using the lmFit and eBayes functions from the limma

package (Ritchie et al., 2015), preliminary models were fit as:

Y � Group + Race + Gender + Age

For all 47 samples, and:

Y � Group + Gender + Age

for the 30 Black American samples, and separately in the

14 Hispanic-Latino samples, where Y is the M-value

indicating the degree of methylation at a given CpG, and

Group indicates the MS or control group.

Removal of Unwanted Variation (Jacob et al., 2016) was used

to identify any latent variables that should be included in

analysis. The method of Buja and Eyuboglu (Buja and

Eyuboglu, 1992) was implemented in the num.sv function of

the sva package (Leek and Storey, 2007) indicated that 6 latent

variables should be included in the model with all 47 samples,

4 latent variables should be included in the model with the

30 Black American samples, and 3 latent variables should be

included in the model with the 14 Hispanic-Latino samples.

Negative control probes were selected as those that had a

p-value >0.5 for every effect in each of the respective above

models, which yielded 27413 probes for the model with all

47 samples, 80572 probes for the model with the 30 Black

American samples, and 78369 probes for the model with the

14 Hispanic-Latino samples. The iterateRUV function from the

RUVnormalize package (Jacob et al., 2016) was then used to

estimate latent variables under default parameters. There was no

obvious relationship between the latent variables and

demographic cofactors.

Models were then re-run as:

Y � Group + Race + Gender + Age +W

For all 47 samples, and:

Y � Group + Gender + Age +W

for the 30 Black American samples, and separately for the

14 Hispanic-Latino samples, where W represents the matrix

of latent variables estimated for the respective model.

Adjustment of M-values for covariates,
including disease modifying treatments

The RUVnormalize R package (Jacob et al., 2016) was used to

estimate unknown covariates in the dataset, some of which

corresponded to disease modifying treatments. The

removeBatchEffects function from the limma package (Ritchie

et al., 2015) was used to adjust M-values. Group, race, and

intercept were listed as factors to be preserved. Slide was

indicated as a batch effect. Gender, age, and latent variables

were indicated as covariates to be adjusted for. Data were

analyzed in the presence and absence of adjustments for

disease modifying treatments as a covariate. Adjusted

M-values were used to draw Mean Difference (MD) plots

using the glMDPlot function in the Glimma package (Su

et al., 2017). These values were also used for analysis of

DMP’s within DMR’s.

Analysis of differentially methylated
regions

The DMRcate package was used to identify differentially

methylated regions (DMR’s) based on the p-values used to detect

differentially methylated probes (DMP’s) (Peters et al., 2015). For

each of the three models used for detecting DMP’s, an FDR

threshold was determined at which probes with a p-value of

0.001 or lower would be captured. The dmrcate function was run

with lambda = 1,000 and C = 2.

KEGG pathway and cell composition
analysis

The gometh function of missMethyl was used to identify

enriched KEGG terms among differentially methylated genes

(Phipson et al., 2016). Cell composition analysis was performed

using the CellCounts2 function in the FlowSorted. Blood.EPIC

package in R software (Salas et al., 2018).

Pyrosequencing

Bisulfite conversion of gDNA was performed (EpiTect

Bisulfide Kit (Qiagen Cat. No. 59104), and regions of

interest were amplified by PCR (Qiagen Pyromark Custom

Assays, Qiagen PyroMark kit Cat. No. 978703) using a

QuantStudio 3 real time PCR system. Pyrosequencing and

analysis were performed at the Stanford University School of

Medicine’s Beckman Center for Molecular and Genetic

Medicine. The regions analyzed and assay numbers are

shown in Table 4. Data were analyzed in SPSS (version

28, IBM).
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