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Prostate cancer (PCa) is the most common malignancy. New biomarkers are in

demand to facilitate themanagement. The role of the pinin protein (encoded by

PNN gene) in PCa has not been thoroughly explored yet. Using The Cancer

Genome Atlas (TCGA-PCa) dataset validated with Gene Expression Omnibus

(GEO) and protein expression data retrieved from the Human Protein Atlas, the

prognostic and diagnostic values of PNN were studied. Highly co-expressed

genes with PNN (HCEG) were constructed for pathway enrichment analysis and

drug prediction. A prognostic signature based on methylation status using

HCEG was constructed. Gene set enrichment analysis (GSEA) and the TISIDB

database were utilised to analyse the associations between PNN and tumour-

infiltrating immune cells. The upregulated PNN expression in PCa at both

transcription and protein levels suggests its potential as an independent

prognostic factor of PCa. Analyses of the PNN’s co-expression network

indicated that PNN plays a role in RNA splicing and spliceosomes. The

prognostic methylation signature demonstrated good performance for

progression-free survival. Finally, our results showed that the PNN gene was

involved in splicing-related pathways in PCa and identified as a potential

biomarker for PCa.
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Introduction

Prostate Cancer (PCa) is the third most common cancer overall (Pan et al., 2017) and

the most common malignant tumour in the male genitourinary system (Ren et al., 2017;

Caggiano et al., 2019; Jambor et al., 2019). Its prevalence and mortality vary greatly

depending on race and geographic location (Lindberg et al., 2013). At present, PCa is
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usually screened and diagnosed through digital rectal

examination (DRE), prostate-specific antigen (PSA) value,

Gleason score by prostate biopsy, and magnetic resonance

imaging (MRI) of the prostate (Patil and Gaitonde, 2016).

New biomarkers used with techniques such as liquid biopsy

and imaging have also been used for clinical diagnosis (Kim et al.,

2016; Li et al., 2018; Law et al., 2020). In fact, metastatic PCa

remains incurable despite promising advances in biomedical

research. Therefore, patients’ good prognosis is currently

dependent on early detection. Conventional non-surgical

options for PCa therapy include androgen deprivation therapy

(ADT), radiotherapy (RT), ablation therapy, chemotherapy, and

emerging immunotherapy. However, the effectiveness of the

drugs including abiraterone and enzalutamide, are limited and

temporary, but has been established clinically.

New biomarkers for diagnosis and treatment need to explore

the mechanism deeply. In the past two decades, several

mechanisms of PCa have been continuously reported,

including novel associations of androgen signalling (Caggiano

et al., 2019; Cioni et al., 2020), TP53 signalling (Ecke et al., 2010;

Liu et al., 2021), and the Wnt signalling pathway (Murillo-

Garzón et al., 2018; Datta et al., 2020) with the disease. In

fact, it is now believed that various cytokines and intercellular

signals regulate PCa during its development (Cucchiara et al.,

2017). Thus, many potential mechanisms of PCa remain to be

explored, which may lead to new diagnostic techniques or

therapeutic strategies, especially for metastatic PCa.

The pinin protein, reported as a desmosome-associated

protein encoded by the PNN gene, is a phosphoprotein rich in

serine and arginine with a molecular size of 140 kDa. Recently, it

has been suggested that pinin is associated with cell adhesion

(Tang et al., 2020; Yao and Ma, 2020). It serves as a putative

tumour promoter by reversing the expression of E-cadherin

(Simon et al., 2015). The upregulation of pininhas been

reported to enhance metastasis in colorectal cancer (Wei

et al., 2016), triple-negative breast cancer cells (Kang et al.,

2020), pancreatic cancer (Yao and Ma, 2020), and

nasopharyngeal carcinoma cells (Tang et al., 2020). As an

oncogenic factor, PNN can protect hepatocellular carcinoma

cells from apoptosis (Yang et al., 2016) and promote cell

adhesion in ovarian cancer (Zhang et al., 2016), as well as

renal cell carcinoma (Jin et al., 2021). These studies indicate

the critical role of PNN in metastasis; thus, it could be a potential

biomarker for some tumours. However, the role of pininin PCa

progression has not been thoroughly studied yet. Since the

tumour microenvironment (TME) has emerged as a critical

factor in metastasis (Yin et al., 2019; Yuan et al., 2022), there

may also be a functional linkage between TME and PNN in PCa,

but this hypothesis remains to be investigated.

Since the PNN gene has not been comprehensively

deciphered in PCa, we conducted a series of studies on its

roles in patients’ survival and prognosis, as well as in immune

infiltration in PCa through various bioinformatic approaches.

We explored the expression pattern of the PNN gene and its

potential prognostic value for PCa. We also investigated the

relationship between PNN and the tumour immune

microenvironment (TIME), which could facilitate

understanding the mechanism of immunotherapy for PCa and

lead to the discovery of a prognosis signature or novel therapeutic

targets.

Materials and methods

To illustrate the function of PNN in PCa, we conducted a

comprehensive bioinformatic analysis using multiple datasets.

The whole analysis pipeline performed here is displayed in

Figure 1.

Data source

The transcriptome data [the level 3 mRNA expression data

(FPKM), normalized using log2(FPKM + 1)] of normal tissues

(52 cases) and tumour tissues with complete clinical information

(379 cases) were extracted from The Cancer Genome Atlas

(TCGA) database of prostate adenocarcinoma (PRAD). The

mRNA expression profiles contained in the GSE116918 (Jain

et al., 2018), GSE29079 (Börno et al., 2012), and GSE6956

(Wallace et al., 2008) datasets, which were normalized by

their corresponding providers, were downloaded from Gene

Expression Omnibus (GEO) database. A total of 248 PCa

cancer samples with clinical information were included in the

GSE116918 dataset. The GSE29079 dataset contained 48 normal

samples and 47 PCa samples, while the GSE6956 dataset had

18 normal samples and 69 PCa samples. However, neither

GSE29079 nor GSE6956 contains clinical information. The

BioGRID database offered 253 unique interactors of pinin

with experimental pieces of evidence (Oughtred et al., 2021).

TSVdb offered PNN splicing variants expression (Sun et al.,

2018). For PNN expression in pan-cancer, we downloaded the

standardised pan-cancer dataset TCGA TARGET GTEx

(PANCAN, N = 19131, G = 60499) from the UCSC (https://

xenabrowser.net/) database and further extracted the expression

data of PNN gene in each sample. In addition, we filtered out the

samples with zero expression levels, and further transformed

each expression value with log2 (x + 0.001), finally, we

excluded those with less than three samples in a single cancer

species.

Protein expression analysis with the
Human Protein Atlas database

The Human Protein Atlas (HPA) provides the protein

expression of pinin in normal prostate (via https://www.
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proteinatlas.org/ENSG00000100941-PNN/tissue/prostate) and

tumour tissues (via https://www.proteinatlas.org/

ENSG00000100941-PNN/pathology/prostate+cancer) (Uhlén

et al., 2015). All images of tissues in HPA database are

stained by immunohistochemistry. We extracted

the immunohistochemistry images directly from the HPA

database.

Independent prognostic analysis

Correlation analysis of PNN expression and

clinicopathological characteristics was performed. The

expression of PNN between the subgroups was compared

based on the following clinicopathological features: age

(<60 or ≥60 years old), N stage (N0, N1), M stage (M0, M1),

FIGURE 1
Analysis pipeline of PNN performed in this study.

Frontiers in Genetics frontiersin.org03

Wang et al. 10.3389/fgene.2022.1056224

https://www.proteinatlas.org/ENSG00000100941-PNN/tissue/prostate
https://www.proteinatlas.org/ENSG00000100941-PNN/pathology/prostate+cancer
https://www.proteinatlas.org/ENSG00000100941-PNN/pathology/prostate+cancer
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1056224


T stage (T2, T3, T4), surgical margin (R0, R1, R2, RX), prostate-

specific antigen (PSA) level (<10 or ≥10 years), and Gleason

score (6, 7, 8, 9, 10). Univariate and multivariate Cox regression

analyses were implemented to identify independent predictors of

survival in the TCGA-PRAD and GSE116918 datasets.

Expression profiles of PNN gene in primary
and metastatic prostate cancer

We downloaded GSE38241 (Aryee et al., 2013) and

GSE25136 (Sun and Goodison, 2009) datasets (the authors

processed normalisation) from GEO. For the merging of these

datasets, we used the method of COMBAT (Johnson et al., 2007),

implemented in the R package inSilicoMerging (Taminau et al.,

2012) to obtain the expression matrix. Finally, the PNN

expression was compared using the Kruskal-Wallis test.

Construction of the PNN co-expression
network

We calculated the Pearson correlation of all genes (RNA-seq)

in the TCGA dataset with PNN using the Linkomics database

(http://www.linkedomics.org/) and selected the genes with

correlation coefficients > 0.8 and p < 0.05 as PNN co-

expressed genes.

Functional and pathway enrichment
analysis

The “clusterProfiler” R package was utilised to conduct Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) analysis (Yu et al., 2012). GO enrichment analysis

mainly described the biological processes (BP), cellular

components (CC), and molecular functions (MF) correlated

with genes. The threshold for significant enrichment was set

as a p-value < 0.05 or FDR < 0.05, as stated. Single sample gene

set enrichment analysis (ssGSEA) enrichment scores were

calculated in each sample using the “GSVA” package of R

(Hänzelmann et al., 2013).

Identification of potential drugs

In this research, potential drug (or molecules) was predicted

using the Drug Signatures database (DSigDB) via Enrichr

(https://maayanlab.cloud/Enrichr/) based on the PNN gene as

well as the positively co-expressed gene with PNN (correlation

coefficient > 0.8 and p < 0.05) (Chen et al., 2013; Kuleshov et al.,

2016; Xie et al., 2021).

DNA methylation analysis and
construction of the prognostic signature

The CpG sites in the promoter of PNN and PNN’s co-

expressed genes were obtained from the MEXPRESS database

(Koch et al., 2015; Koch et al., 2019). A univariate Cox analysis in

R was used to determine the association between methylation

levels at each CpG site and progression-free survival (PFS) for

each patient, and p < 0.01 was considered statistically significant.

Candidate prognostic CpG sites were selected using the Least

Absolute Shrinkage and Selection Operator (LASSO) algorithm.

Based on the candidate CpG sites generated from the above

algorithm, a multivariate Cox regression model was used to

construct a prognostic signature. The RiskScore of each

recipient was calculated using the following formula:

RiskScore � Σn
i�1 βi × Methi

In which β refers to coefficient, and Meth refers to the level of

methylation.

Patients were divided into the high-risk (RiskScore≥median)

and low-risk groups (RiskScore<median) in the TCGA dataset.

Then, we performed ROC analysis using the R software package

pROC (version 1.17.0.1) to obtain the AUC. The R package

“survival” was used to perform the two risk groups’ Kaplan-

Meier (KM) survival analysis.

Gene set enrichment analysis

To inspect the different signalling pathways between the

PNN low- and high-expression groups in the TCGA-PRAD

dataset, Gene Set Enrichment Analysis (GSEA) was conducted

by the “clusterProfiler” package in R software (Subramanian

et al., 2005). Pathways with a p-value < 0.05 were considered

significantly enriched.

TISIDB database

The Tumor and Immune System Interaction Database (TISIDB)

(http://cis.hku.hk/TISIDB) database was utilised to analyse the

associations between PNN and tumour-infiltrating lymphocytes

(TIL), immunosuppressors, and chemokines (Ru et al., 2019).

Statistical analysis

Statistical analysis was performed using the R software package

(version 3.6.1). The differential mRNA expression of PNN between

tumour tissues and normal controls was compared using Student’s

t-test. The expression of PNN among the clinicopathological

parameters groups was compared using Student’s t-test and
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ANOVA. The area under the curve (AUC) of receiver operating

characteristic (ROC) was utilised to determine the diagnostic ability

of PNN and was calculated using the “pROC” R package (Malone

et al., 2015). KM curves of disease-free survival (DFS or PFS) of the

patients were performed by setting themedian expression of PNN as

the cut-off in the ‘survival’ R package. The log-rank test was used to

assess statistical differences, and a cut-off p-value < 0.05 was deemed

statistically significant.

Results

Prognostic and diagnostic value of PNN in
prostate cancer

The expression levels of PNN between PCa and control

samples were compared in the TCGA-PRAD, and the PNN

expression level was validated with GSE29079 and

GSE6956 datasets. As shown in the violin plots, the mRNA

expression level of PNNwas significantly higher in the PCa group

in all datasets (Figures 2A–C). Next, we used the same datasets to

evaluate the diagnostic value of the PNN gene. The accuracy of

the diagnostic model was evaluated by ROC curve analysis

(Figure 2D). As a result, the AUC of the PNN diagnostic

model was greater than 0.7 in all three datasets, indicating

that the PNN gene can be used to discriminate cancer from

normal tissues. Moreover, we also observed that the abundance

of pinin protein was higher in PCa tissue than in normal tissue

(Figures 2E,F).

To explore the relationship between PNN expression and the

clinicopathological characteristics in PCa, we compared the PNN

expression levels according to sample clinical information. The

high PNN expression was found in the advanced stage of PCa

(Figure 3B), and the Gleason scores were strongly correlated with

FIGURE 2
PNN expression profile and its diagnostic value in Prostate Cancer (PCa). (A–C) Comparison of PNN expression levels in the TCGA-PRAD,
GSE29079, and GSE6956 datasets. (D) The diagnostic value of PNN as evaluated by ROC curve. (E,F) Immunohistochemistry results of normal (two
cases) and PCa tissue (four cases) from the HPA database.
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the PNN expression levels in PCa patients in both TCGA-PRAD

datasets (p = 6.3 × 10−9) and GSE116918 dataset (p = 0.001) in

Figures 3E,I. Collectively, the Gleason score was highly positively

correlated with PNN expression. Different the surgical margins

(R0/1/2/X) found different PNN expression (Figure 3D). It has

been found that the PNN gene expression level was significantly

higher in tumors than that of the primary tissue (Figure 3J, data

process in Supplementary Figure S1), suggesting this gene can be

used for diagnostics in metastatic patients. Age (Figures 3A,F), T

stage (Figures 3C,H), or PSA level (Figure 3G) are not correlated

with the PNN expression’s significance.

Univariate and multivariate Cox analyses were conducted to

investigate the independent prognostic factors in TCGA-PRAD

and validated with GSE116918 datasets. The univariate analysis

in the TCGA-PRAD dataset indicated that the surgical margin, T

stage, N stage, Gleason score, and PNN expression were

associated with the prognosis of PCa patients (Figure 4A). In

contrast, multivariate Cox regression analyses in the same dataset

FIGURE 3
Comparison of PNN expression and clinical information in TCGA (A) Age, (B) N stage, (C) T stage, (D) Surgical margin, and (E) Gleason score.
Comparison of PNN expression and clinical information of GSE116918 (F) Age, (G) PSA level, (H) T stage, and (I)Gleason score. The t-test was used to
evaluate the difference between two groups, and analysis of variance (ANOVA) was used to compare data divided into more than two groups. (J)
Comparision of the PNN gene expression between primary andmetastatic PCa using GSE38241 and GSE25136 datasets following batch effects
removal.
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demonstrated that only the Gleason score could be used

independently to predict the prognosis of patients (Figure 4B).

Similarly, the PSA levels, Gleason score, T stage, and PNN

expression were found to be significant risk factors by

univariate Cox analysis in the GSE116918 dataset (Figure 4C).

In the same dataset, multivariate Cox regression analyses

demonstrated that T stage and PNN expression could be used

independently to predict the prognosis of patients (Figure 4D).

We then validated these findings by analysing the DFS curves of

the PNN high- and low-expression groups, which showed that

the PNN high-expression group had remarkably worse survival

rates than the low-expression group in both the TCGA-PRAD

and the GSE116918 datasets (Figures 4E,F). The hazard ratio of

PNN was greater than 1 in both datasets. Taken together, it

suggested that PNN was a risk factor in the prognosis of PCa.

However, the independent prognostic value of PNN needed

further investigation and confirmation.

PNN co-expression network and potential
drug targets in prostate cancer

To identify pharmaceutical molecules with DsigDB database

and further uncover the biological processes PNN participated,

the co-expression pattern of PNN in PCa was explored. All co-

expressed genes are listed in Supplementary Table S2.

BioGrid hosted 243 proteins interacting with pinin extracted

from published literature. A total of 368 genes were co-expressed

FIGURE 4
PNN prognostic value in the TCGA-PRAD and the GSE116918 cohorts. Forest plots of univariate andmultivariate Cox regression analysis for the
TCGA cohort (A) univariate, (B)multivariate and the GSE116918 cohort (C) univariate, (D) multivariate. (E,F) DFS curves plotted according to the KM
method for the TCGA-PRAD and GSE116918 cohorts using the log-rank test.
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with pinin following the criteria of r > 0.6 and p < 0.05, of them,

twenty-five genes overlapped with 243 interactive proteins of

pinin (25UC for short). Those 25UC genes were enriched in RNA

splicing and RNA/mRNA processing based on GO enriched

analysis (Figure 5A) and enriched in the spliceosome, mRNA

surveillance pathway, and RNA transport based on KEGG

enrichment analysis (Figure 5B). These results suggest that

PNN is mainly linked to the RNA process and RNA transport

in PCa. PNISR, RBM39, DDX39B, SF3B1, SRSF11, CPSF6, CLK2,

and SNRPB2 have the function of splicing or process of RNA;

ACIN1 and NKTR participate in cell apoptosis and immune

response. The protein-protein interaction network can be found

in Figure 5C.

To explore the potential therapeutic targets in PCa, we

focused on those genes that strongly positively (r > 0.8 and

p < 0.05) correlated with upregulated PNN, including FNBP4,

TCERG1, RBM39, DDX39B and DMTF1. Ten possible

pharmaceutical molecules were identified using the Enrichr

package from the DsigDB database, based on their p-value.

Table 1 lists the effective drugs from the DsigDB database

for PCa.

DNA methylation concerning PNN

After excluding missing values, a total of 180 CpG sites in the

PNN and its co-expressed genes FNBP4, TCERG1, RBM39,

DDX39B and DMTF1 (r > 0.8 and p < 0.05) promoter regions

were extracted from TCGA-PRAD methylation data. Univariate

Cox regression analysis showed that 25 CpG sites were

significantly correlated with PFS. Following the LASSO

algorithm, 16 CpG sites were selected (lambda = 0.009914324,

Figures 6A,B). A model was then constructed with multivariate

Cox regression. We constructed a risk score system Eq. 1 with

seven CpG sites.

Risk Score � −17.451 × cg04787786 − 2.182 × cg09878914

+ 3.097 × cg16316344 − 38.055 × cg16408528

+ 1.652 × cg17114847 − 46.828 × cg17439097

+ 1.943 × cg25800328

(1)
Eq. 1

The areas under the ROC curves (AUC) of 1-, 2-, and 3-year

PFS were 0.80, 0.74 and 0.71, respectively (Figure 6C), indicating

the good performance of the risk score signature. We noticed that

this risk score was linked to the PFS status of the PCa patients

(Figure 6D), indicating that this risk score could be used to

predict the progression of PCa. Multivariate Cox regression

confirmed that the risk scores could also be an independent

prognostic factor (Figures 6E,F). In addition, the expression level

of 47 immune checkpoint genes (ICG) proposed by Danilova

et al. (2019) were compared between high and low-risk groups

with the Wilcoxon test based on the signature constructed above.

As a result, CTLA4, CD276, CD80, NRP1, TNFRSF18, TNFSF18

and TNFRSF14 were found to be significantly higher in the high-

FIGURE 5
Co-expressed network with PNN. Enrichment results filtered
with FDR < 0.05 based on 25 uniquely interacted and co-
expressed genes with PNN with (A) GO and (B) KEGG. (C) Protein-
Protein-interaction (PPI) network constructed using
Cytoscape 3.8.2 based on PNN and 25UC.

Frontiers in Genetics frontiersin.org08

Wang et al. 10.3389/fgene.2022.1056224

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1056224


risk group, while the expression levels of BTNL2, CD160, CD200,

CD244, CD274, CD40, CD44, LAG3, TMIGD2, TNFSF15, VSIR

and VTCN1 were reduced significantly in the high-risk group

(Figure 6G). Then, a ssGSEA was performed using the KEGG

database to explore different molecular mechanisms between the

high- and low-risk groups. Among significantly enriched

pathways (p < 0.05), the top 10 were compared between high

and low-risk groups. Between the two risk groups, the splicing

factors genes, such as SF3B1, SRSF11 and SRSF7, are significantly

higher in high risk group based on the median (Figure 6H). The

expression of SRSF10 (p = 0.05) and SRSF4 (p = 0.07) were

marginally higher. Moreover, the splicing isoforms expression

was also significantly increased in the highly risky group based on

the median. Besides prostate cancer and other cancer pathways,

the risk model also found significant different enrichment scores

in spliceosome and biogenesis and degradation pathways

(Figure 6I). The correlation between the pathways and the

PNN expression is illustrated in Figure 6J.

Immune infiltration

To infer the pathways by which PNN genes were involved in

the development of PCa, GSEA enrichment was performed on

the PNN high- and low-expression groups. Among the enriched

pathways (adjusted p < 0.05) (Supplementary Table S1), we noted

that immune-related pathways were enriched, including the IL-

17 signalling pathway, the T cell receptor signalling pathway,

Th1 and Th2 cell differentiation, Th17 cell differentiation, and

the TNF signalling pathway. In addition, cancer-related

pathways, such as the cell cycle, choline metabolism in cancer,

PD-L1 expression and PD-1 checkpoint pathway in cancer, and

proteoglycans in cancer were also enriched in PCa (Figure 7A).

We calculated the expression difference between normal and

tumour samples in each tumour, and observed significant

upregulation in 14 tumours (Figure 7B). Subsequently, the

correlation between PNN and immune infiltration was

executed to broaden the cognition of the correlation between

PNN and TIL, immune inhibitors, and chemokines in PCa. As to

TIL, PNN expression was negatively correlated with iDC,

monocyte, NK cell, and Tgd in Figure 7C (rho < −0.3 and

p < 0.05). Figure 7D showed the correlations between PNN

expression and chemokines, of which CCL14 was negatively

correlated with PNN (r < −0.3 and p < 0.05).

Discussion

Prostate cancer remains one of the most common cancers,

with a poor patient prognosis upon transition to metastasis

(Phillips et al., 2020). It is urgent to continually identify

proteins or hormones related to this disease for potential

novel treatments or as potential biomarkers for early

detection. It has been suggested that PNN promotes the

epithelial-mesenchymal transition in tumours, which is the

preliminary stage of metastasis (Vandamme et al., 2020; Dai

et al., 2021; Zhang et al., 2022). The gene encodes a

transcriptional activator binding to the E-box 1 core sequence

TABLE 1 List of the suggested drugs for PCa patients with PNN expression.

Drug p-value Drug indication Drug stage
(approved or
not)

Targeted gene References

Valproic acid 7.43E-06 To control complex partial seizures and
both simple and complex absence seizures

FDA approved HDAC9 Kanai et al. (2004)

Vorinostat 1.19E-05 The treatment of cutaneous
manifestations in patients with
progressive, persistent, or recurrent
cutaneous T- cell lymphoma (CTCL)
following prior systemic therapies

Phase III for the treatment of cutaneous
T cell lymphoma (CTCL),Mesotheliomas,
Multiple Myeloma (MM)

HDAC1,HDAC2,
HDAC3, HDAC6

Chen et al. (2002), Xu
et al. (2007)

Cephaeline 1.42E-05 Experimental

Fisetin 1.74E-05 Experimental CDK6 Berman et al. (2000)

Trichostatin A 1.75E-05 Phase I: Relapsed or refractory hematologic
malignancies

HDAC7 Berman et al. (2000),
Komata et al. (2005)CASP8

Glibenclamide 2.45E-05 Diabetes mellitus type II FDA approved Q09428 Serrano-Martín et al.
(2006), Ueda et al.
(1999)

Q14654

Vitamin E 4.50E-05 Vitamin deficiency Being considered safe by the FDA SEC14L4 Schmölz et al. (2016)

Camptothecin 4.54E-05 Experimental TOP1 Chen et al. (2002)

0175029-0000 1.27E-04 Experimental

Doxorubicin 2.10E-04 various cancers and Kaposi’s Sarcoma FDA approved TOP2A Menendez et al. (2006)
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FIGURE 6
Analysis of DNA methylation levels concerning the PNN expression. (A) LASSO model tuning parameters (λ, lambda) were selected by 10-fold
cross-validation. (B) LASSO coefficient profiles of 180 CpG sites. (C) ROC Curves of the risk model performed in the TCGA-PRAD cohort’s CpG sites
methylation data. ROC, receiver operating characteristics. (D) Kaplan Meier (KM) plot for a discriminative median patient risk score with two
methylation sites about PFS. (E) Hazard ratio and p-value of constituents involved in multivariate Cox regression and some parameters of the
CpG-site signature. (F) The distribution of the PFS status of patients in the high-risk and low-risk groups. (G) Different levels of each immune
checkpoint (Danilova et al., 2019) between high and low-risk groups using violin plots and the Wilcoxon test. *p < 0.05; **p < 0.01; ***p < 0.001;

(Continued )
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of the E-cadherin promoter and upregulates E-cadherin

expression implicated in tumour metastasis as a promoter of

growth and metastasis (Na et al., 2020). In this study, we

comprehensively analysed TCGA and GEO PCa datasets with

bioinformatics approaches, which provided relations of PNN

with PCa on the molecular pathway level. Similarly, these

results indicated that the PNN gene could be a useful

prognosis feature for PCa patients in clinical practice related

to tumour progression and poor prognosis (Wei et al., 2016; Yang

et al., 2016; Tang et al., 2020; Jin et al., 2021).

We identified several FDA-approved drugs potentially useful

for PCa patients. Valproic acid (VPA) is a neuroprotective agent

used for disease relating to neurological diseases (Kale et al.,

2021). It is reported that through autophagy and apoptosis, VPA

synergistically enhances anticancer effects with Arsenic trioxide

in lung cancer cells (Park et al., 2020) and advanced patients in

clinical Phase I (Atmaca et al., 2007). Another identified drug is

Vorinostat which is applied to cutaneous T cell lymphoma

(Dumont et al., 2014). In fact, some research has applied this

drug to PCa patients as a sensitiser in therapy for PCa (Stiborova

FIGURE 6 (Continued)
****p < 0.0001. (H) Comparison of splicing factors in 25UC gene set that retrieved from Biogrid and splicing variants expression between high
and low-risk groups following ssGSEA by the Wilcoxon test. Log10 RSEM value, Expression of PNN splicing isoforms. (I) Comparison of enrichment
score (ES) > 0.5 between high and low-risk groups following ssGSEA by the Wilcoxon test. Only significant difference is displayed. *p < 0.05; **p <
0.01; ***p < 0.001; ****p < 0.0001. (J) PNN expression level correlation with the enrichment scores by Spearman test.

FIGURE 7
Immune infiltration. (A) GSEA results are based on PNN high- and low-expression groups. (B) PNN expression profile in pan-cancers. Unpaired
Wilcoxon Rank Sum and Signed Rank Tests for significance of differences analysis. Analysis of the correlation between PNN expression and (C)
tumor-infiltrating lymphocytes (TIL) and (D) chemokines. The left figure shows the correlation between PNN expression in TCGA pan-cancer and
TIL, immunosuppressants, and chemokines, and the Scatter plot (right) clearly shows correlations with PNN expression in PCa patients.
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et al., 2012; Jonsson et al., 2016). Trichostatin A comes from the

same family as Vorinostat; it inhibits histone deacetylases

(HDAC) and is a broad spectral drug for various cancers.

Additionally, the natural products and anti-proliferative

agents, Camptothecin (and its derivative) (Zhang et al., 2000;

Chiu et al., 2020) and Fisetin (Kashyap et al., 2019), are able to

induce apoptosis and interfere with the cell cycle. Cephaeline

inhibits cancer cells’ growth, migration and proliferation (Silva

et al., 2021). The progression of the PCa tumours can be hindered

by the medication of those drugs or molecules. The drug

sensitivity data were integrated to identify those drugs with

variant sensitivity in different subgroups. By proposing

promising therapy candidates for targeted treatment for PCa

patients, our results provide an additional selection of the clinical

practice for treating PCa patients. By contrast, due to the

ambiguous role of Vitamin E (Yang et al., 2020) and

Glibenclamide potentially causing death (Monami et al.,

2006), these two drugs are not suitable for clinical application.

Doxorubicin, a highly effective anticancer drug, induces many

cardiotoxic effects (Ferreira et al., 2019); hence, it is not

recommended so far.

Several studies elucidate the critical role of RNA splicing in

cancer pathogenesis (Inoue et al., 2019; Shuai et al., 2019; Suzuki

et al., 2019; Wang et al., 2020). With GO and KEGG enrichment

analysis, we found that the gene PNN, together with its 25UC

gene set, is involved in RNA splicing. We could conclude that

PNN might play a role in RNA splicing by participating in

spliceosomes. It has been suggested that tumour pathogenesis

is influenced by splicing resulting from abnormal splicing that is

widespread in cancer, such as dysregulation of splicing and

aberrant splicing patterns (Ryan et al., 2015; Seiler et al., 2018;

Wang et al., 2020). Thus, we believe that dysfunction of the PNN

gene will affect the normal function of the spliceosome, which

will result in many aberrant mRNAs because of abnormal

splicing.

The GSEA based on PNN high- and low-expression groups

offered possible pathways related to immune infiltration.

Nevertheless, we observed that plenty of genes were co-

expressed with PNN gene; hence, it is hard to state that

PNN was related to immune infiltration. The tumours with

increased PNN expression shared a similar correlation pattern

with TIL and chemokines. Thus, PNN could be a indictor for

TIL. We also performed ssGSEA to explore the potential

mechanism of PNN in RNA splicing with the high- and

low-risk groups of PCa. Among all the differently enriched

pathways, it has been found that the high-risk group showed

higher enriched scores in the spliceosome pathway and PNN

expression also positively correlated with this pathway. The

hypomethylation status of CpG sites in the PNN gene

promoter probably resulted in an increased PNN expression

and then potentially contributes to the progression of PCa.

The significantly increased expression of several splicing

factor genes, such as SF3B1, SRSF11 and SRSF7

(Figure 6H), in the high-risk group suggested that

abnormal splicing was associated with an increased risk for

PCa, such as progression.

We attempted to comprehensively determine the potential

underlying mechanisms of PNN on PCa progression. Therefore,

we also explored the role of epigenetic markers in PCa. DNA

methylation is an epigenetic marker that is essential in

regulating gene expression. DNA methylation of CGIs is

essential for gene expression and tissue-specific processes.

Previous reports indicate that DNA methylation at

promoters negatively correlates with gene expression (Chen

et al., 2016; Keller et al., 2016; Neri et al., 2017). Aberrant

methylation of PNN CGIs was correlated with changed PNN

expression (Akin et al., 2016). Using the methylation status of

CpG sites in the PNN gene and its co-expressed genes, we

constructed a prognostic signature. This signature suggested

that the methylation status of CpG sites may play a role in the

prognostic prediction, while the combined methylation

signature might provide better potential for achieving more

sensitive and specific prognostic value in PCa patients. The

prognostic value of these DNA methylation signatures has not

been intensively explored yet. We have found that the high- and

low-risk groups could respond differently to the immune

therapies, suggesting the classification of PCa is meaningful

(Xia et al., 2021). Dividing patients based on their risk scores

would be a direction of precision therapeutics, which will be

facilitated by classifying PCa (Wu et al., 2021). Therefore, the

present study provides a new insight that a combination of

epigenetic biomarkers may improve risk stratification and

survival prediction in PCa patients.

Based on those results, the pinin protein should participate in

the biological activity of spliceosomes or splicing (Kim et al.,

2017). Pinin is an exon junction component (EJC), which is a

member of the spliceosome complexes (Akin et al., 2016).

Although the mechanism underlying PNN promoting

tumourigenesis is rarely reported, SF3B1, a well-known

spliceosome-associated gene and co-expressed with PNN (r >
0.8), is linked to a variety of solid tumours, including PCa

(Rahman et al., 2020; Yang et al., 2022). Therefore, as a

member of the spliceosome, mutations in PNN could rewire

its interactions with other proteins in the spliceosome, including

the SF3B1 gene, which will lead to splicesome dysfunction, and

enhance the activation of the NF-ĸ B pathway (Pollyea et al.,

2019; Yang et al., 2022).

Through bioinformatics analyses, we have explored the

differential expression pattern of PNN between normal and

PCa patients, its independent prognostic value, the potential

regulatory mechanisms, the relationship with immune

infiltration, and the co-expression genes. We validated our

results to prove our results using external datasets. Since our

results solely come from data analysis, experimental verification

will need to support further the rationale of the molecular

mechanisms underlying PCa progression. In conclusion, PNN
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is a potentially valuable biomarker for PCa diagnosis and patient

management. Furthermore, we have identified the potential new

drugs as well as the ICGs that could be utilised in immune

therapy for PCa treatment for PCa patients with high expression

of PNN.
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